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ABSTRACT Planning of optimal/shortest path is required for proper operation of unmanned ground
vehicles (UGVs). Although most of the existing approaches provide proper path planning strategy, they
cannot guarantee reduction of consumed energy by UGVs, which is provided via onboard battery with
constraint power. Hence, in this paper, a new ant-based path planning approach that considers UGV energy
consumption in its planning strategy is proposed. This method is called Green Ant (G-Ant) and integrates
an ant-based algorithm with a power/energy consumption prediction model to reach its main goal, which is
providing a collision-free shortest path with low power consumption. G-Ant is evaluated and validated via
simulation tools. Its performance is compared with ant colony optimization, genetic algorithm, and particle
swarm optimization approaches. Various scenarios were simulated to evaluate G-Ant performance in terms of
UGV travel time, travel length, computational time by taking into account different numbers of itera-
tions, different numbers of obstacle, and different population sizes. The obtained results show that the
G-Ant outperforms the existing methods in terms of travel length and number of iteration.

13 INDEX TERMS Path planning, intelligent vehicles, evolutionary computation, ant colony optimization.

I. INTRODUCTION
Recent improvements in hardware, software, sensors and
communication technologies lead to many improvements
and developments in vehicles technologies. Autonomous
vehicles are one of these technologies that attracted many
researchers and developers in recent years and combine
different fields including computer science, robotics and
electrical and mechanical engineering. These vehicles can
be count as an evolution in existing vehicle technology
and advanced driver assistant systems, and can be used
for various purposes and applications ranging from real-
time data collection, entertainment, defense, military and
delivery [1]–[3]. Autonomous or unmanned vehicles can
be divided into three main categories, namely, Unmanned
Underwater Vehicles (UUVs), Unmanned Ground Vehi-
cles (UGVs) and Unmanned Aerial Vehicles (UAVs). UUVs
are utilized for ocean exploration, under water construction,
oceanography and military applications for long time [4].
These days, UGVs are being studied by the DARPA (Defense
Advanced Research Projects Agency), the US military,
for search and rescue operations, cargo and packet deliv-
ery, bomb detection and other military applications [5].

UAVs similar to UGVs can be used in data collection and
military applications. In addition, UAVs are being utilized for
remote sensing, imagery collection, map creation and also for
data transmission as mobile sinks [6].

Among all types of unmanned vehicles, our focus in this
paper is on UGVs. UGV navigation is one of the main prob-
lems in this research field since navigation is an essential
step in the most of the existing UGVs applications. Gener-
ally, UGV navigation includes the procedure of consecutive
motion that guides the UGV from origin point to destination
point through collision-free path in configuration area which
contains obstacles. These obstacles can be static or dynamic.
According to the study in [7], UGV navigation problem can
be divided into three sub-problems: 1) World perception:
in this stage, UGV senses the surrounding environment in
order to identify the existing obstacles and paths, 2) Path
planning & generation: the gathered data in the previous
stage is utilized to create an ordered sequence of intermediate
points that the UGV must visit and reach them to generate a
collision-free path from origin to destination, 3) Motion con-
trolling: this stage controls the UGV actions and movements
to make sure that UGV follows the correct path.
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The main concentration of this paper in on the second sub-
problem of UGV navigation, namely, path planning and gen-
eration. UGV path planning is classified as follows: global
and local path planning. In the former, prior knowledge
regarding the configuration area and predefined collision-
free paths are provided for UGV. In contrast, in the latter
case, configuration area is partially or totally unknown and
the path planning scheme uses sensory extracted information
to find a collision-free path for UGVs. Various approaches
have been proposed and developed in the literature in order to
solve this problem in both static and dynamic environments.
These solutions can be divided into four categories: visibil-
ity graphs, potential field, cell decomposition and heuristic
approaches [8]. These approaches are completely discussed
and criticized in next Section. Although most of the existing
approaches in the literature obtained promising results for
collision-free path planning, they suffer from high computa-
tional cost, trapping into local optimum/minimum condition,
and most of them are suitable for 2D environments and
maps [9]. In addition, these approaches do not pay attention
to one of the main factors of UGVs which is limited on-board
energy/power. Hence, finding a proper solution that considers
power consumption in its path planning is still lacking.

In this paper, a new approach for solving path planning
problem of UGVs is proposed. In this approach, Ant algo-
rithm is integratedwith power consumption predictionmodel,
called G-Ant (Green Ant), for considering power consump-
tion and green environment issues in path planning procedure
of UGVs. The main goal of G-Ant includes proposing the
collision-free shortest path with low travel time and power
consumption as well as smoother travel speed. Based on the
existing papers in the literature, there was not any similar
approach that exploit power consumption in its path planning
procedure which is the main contribution of this paper. The
effectiveness of the proposed approach is demonstrated via
simulation environment and its validity is examined by com-
paring it with other intelligent algorithms.

The reminder of the paper is organized as follows: Section
2 discusses the existing related works. An overview of ant
algorithm along with power consumption prediction model
is provided in Section 3. Our proposed approach, G-Ant,
is discussed in Section 4. Section 5 contains the simulation
results and algorithm validation. Finally, Section 6 concludes
the paper and provides the future direction of this research.

mds
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II. PATH PLANNING APPROACHES
Existing path planning approaches can be classified into
four types: visibility graphs, potential field, cell decompo-
sition and heuristic approaches [8]. In first case, a set of
lines is defined in free space in a way that it connects an
object’s features to those of another [10]. The complexity
of these approaches are high since O(n2) links are created
for n features. Potential functions are utilized by potential
field approaches. These functions are suitable for obstacle

avoidance in static configuration areas. UGVs or robots are
considered as point in a potential field which integrates ten-
sion to the destination, and expulsion from obstacles. For
example, semilunar and normal functions are used in [11] to
form the vector fields which control the speed and heading
direction of UGVs. In [12], the distance to the destination
along with the obstacles’ angular width are utilized to calcu-
late a potential field for UGV heading which controls angular
acceleration, direction towards the destination and avoiding
from obstacles. Although potential functions provide proper
solutions, high order potentials are required to obtain high
accuracy which increases the computational complexity and
also UGVs are sometimes trapped in local minimum condi-
tion before finding a proper path to the destination. Hence,
heuristic approaches are developed to overcome the men-
tioned drawback of potential functions. The configuration
area is represented by occupancy grid which divided into a
grid of equally separated cells. In this way, the path plan-
ning problem converted to a graph search problem where
A* algorithm [13] is most favorable solution. A* is a cor-
nerstone of some other algorithms such as best-first, depth-
first and breadth-first that can be used for problem solving.
Linear incorporation is used to extend the D* algorithm [14],
an extension of A*, during each vertex expansion in [15] as
an example of heuristic approaches. High time complexity
is the main drawback of heuristic approaches. In the last
type, the configuration area is divided into regions and in
each region, any contact between UGV and obstacles are
identified. Retraction of free space onto the Voronoi diagram,
which is constructed through the time evolution of Cellular
Automata (CA) [16] is used in [8]. However, they do not
pay attention to the drawback of Voronoi diagram in high
dimensions which requires too complex data structure.

In the last decade, various artificial intelligence algorithms
were utilized to solve UGVs and robots path planning prob-
lem. Fuzzy logic system or its combination with other tech-
niques are used in several researches [17]–[20] for guiding
mobile robot (e.g. UGV) from origin to destination in either
unknown or known environments. However, similar to most
of the other approaches, various and several sensors should be
attached to UGV in order to surrounding identification which
impose high cost to the system. Moreover, selection and
dispensation of membership functions and rule organization
have a direct impact on fuzzy logic systems performance.
Hence, most of the researchers tried to enhance these factors,
individually or simultaneously. Approaches based on neu-
ral network for path planning are also proposed in various
research works [21]–[24] without considering its high com-
putational cost. In addition, although neural network architec-
ture and synaptic weights of the connecting nodes have direct
impact on neural based approaches performance, identifying
optimal selection is a sophisticated task. Multilayered CA
which contains lattice of cells and four layers of identical
grid for presentation of configuration area and for solving
path planning problem of robots, respectively, is proposed
in [25].
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Bio-inspired algorithms such as Ant Colony Optimiza-
tion (ACO) [26]–[31], Genetic algorithm [32], [33], Artificial
Immune System [34], [35], Cuckoo Search [36], Bacteria
Foraging Optimization [37], and Particle Swarm Optimiza-
tion [38], [39] are also utilized in UGV and robot path
planning research area. A comprehensive survey regarding
UGVs/robots path planning can be found in [40]. Since our
proposed solution in this paper is based on ACO algorithm,
ACO based path planning approach are discussed in more
details in the following.

The feasibility of using ant algorithm for UGV/robot path
planning in 2D environment is investigated in [26]. High
searching speed and local optimization obviation are two
main advantages of this approach. The mathematical model
as well as ant algorithm have been established and presented.
Another ant-based path planning in static environments is
proposed in [27] where the information of environment con-
strains and neural network calculates objective function by
considering path length. In addition, the path nodes are con-
sidered as an ant, hence with the quality of ant algorithm,
the best path is calculated. Visiting multiple targets in the
presence of obstacles via UGVs are investigated in [28]. The
configuration area and UGVs are modelled in the form of
discrete cells and points, respectively. Position of the targets
are known for UGVs but the obstacles and their positions
are sensed by embedded sensors. It looks like the travelling
salesman problem along with obstacles in configuration area.
Simple ACO Distance-Memory (SACOdm) [29] is ant-based
path planning approach that includes distance of the source
and destination and ants memory, which stores the visited
nodes, in its path finding procedure. In addition, criterion
of a Fuzzy Inference System, tuned by a Simple Tuning
Algorithm, effect on path planning procedure. Combination
of ant algorithm and artificial potential field are proposed
in [30] for path planning where the former is used as global
path planning and the latter is utilized as local path planning
strategies. In order to prevent artificial potential field from
falling into local optimum, the generated pheromone via ants
are used as global information for artificial potential field.
Based on the simulation results, this integrated approach
outperforms genetic algorithm in path planning.

Another hybrid approach which combines CA and ant
algorithm for finding collision-free path for UGVs/robots
is presented in [9]. This hybrid approach can be utilized
in both static and dynamic environments since it does not
need any priori information regarding configuration area and
reacts to obstacles distribution changes. CA path planner is
utilized when there is not any pheromone on the links of the
configuration area. Being autonomous and low complexity
are two main advantages of this approach. Another ant-based
path planning method that uses a precise representation of
heuristic and visibility equation of state transition rules are
discussed in [31]. This approach is proposed for static envi-
ronments and its performance is evaluated in terms of number
of iteration and computation time. Predefined number of
scout ants, m, collaboratively investigate the configuration

area to find a collision-free path for UGVs navigation [41].
Scout ants are divided into two types. n ants use nearest-
neighbor search strategy, while, q ants (q=m-n) use random
search strategy. These strategies are enhanced by constructing
a global taboo list of visited cells. Hence, this method requires
a reliable communication among ant agents as well as a
central server for global taboo list construction which are
difficult in real world scenarios.

III. ANT ALGORITHM AND ENERGY
CONSUMPTION MODEL
A. ANT ALGORITHM THEORY
In this section, the theory of ant algorithm along with its
procedure are discussed. The way of finding food sources
and accumulate them in the nest through the shortest path via
real ants have attracted the attention of many researchers and
scientists. Based on the existing experiments, real ants deposit
a chemical liquid, named pheromone, on their traversed route
between the nest and food source according to the found
food source quality. In other words, ants communicate and
collaborate with each other through sniffing the pheromone
trails. The pheromone intensity reduces over the time, called
pheromone evaporation, to raise the chance of finding new
routes instead of insisting on the found path. This issue that
the ants find and use the shortest path between their nest
and the food source has been proved both mathematically
and experimentally by researchers. Mathematical proof can
be found in [42], while double bridge experiment is used for
experimental proof. Double bridge experiment is depicted in
Figure 1 in which there are two different bridge (i.e. paths)
between source (i.e. nest and destination (i.e. food source).

FIGURE 1. Double bridge experiment [43].

Length is the main difference between these two bridges
where bridge 1 is shorter than bridge 2. Initially, the ants
explore the surrounding environment for finding food sources
by performing a random selection between bridges 1 or 2.
However, the ants which select bridge 1 arrive faster to the
food source and come back to the nest earlier that the ants
which choose bridge 2 for food exploration. This is because
bridge 1 is shorter than bridge 2. In this way, more ants
will be attracted to bridge 1 due to pheromone existence
on it. Therefore, the pheromone intensity will be increased
on this bridge over the time, while, it will be reduced on
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bridge 2 due to pheromone evaporation. As a result, ant-based
algorithm is an efficient way to find shortest path between
two desired points. The behavior of real ants is simulated
in [44] and various ant-based algorithms are proposed by
researchers such as Ant System (AS), rank-based AS, and
Ant Colony Optimization algorithms. The pheromone update
procedure and some additional details in the pheromone trails
management are the main differences among various ant-
based approaches. More information regarding various types
of ant algorithms and their differences can be found in [45].

Ant algorithms contain four main steps. Each of these steps
are briefly discussed in the following.

1) Environment representation: the surrounding environ-
ment should be converted into a graphwithN nodes and
L links. The nodes indicate start, intermediate and end
points, while, links indicate existing paths and routes
between nodes.

2) Initialization: at this step, a predefined number of
ants (Nant ) are located on start point and a weight
is allocated to each existing link. Various values can
be assigned as initial weight for links such as dis-
tance, random number or a number calculated through
a formula. At each specified time intervals (TI) ants
are regenerated to explore the problem graph for
finding proper solution. The value of these variables
(i.e. Nant and TI) should be assigned via experiments
or trial and error approaches. The ants use probability
function to select the next node in their path from origin
to destination. Equation 1 can be used for calculating
the selection probability of j as next node from i by
ant k.

ykij(t) =


(τij)α(ηij)β∑

h/∈tabuk (τih)
α(ηih)β

ifj /∈ tabuk ,

0 otherwise,
(1)

All above mentioned variables are explained in Table 1.
3) Pheromone update: Ants utilize probability function to

select next node and store any visited node in their
memory. As soon as an ant finds a food source, it eval-
uates both quantity and quality of the food source and
takes some food and starts return trip. During the return
trip, each ant deposits a pheromone on the return path
based on the obtained information from food source.
In ant-based algorithm this procedure is called
pheromone update rule which contains two concepts,
namely, pheromone reinforcement and pheromone
evaporation, at the same time. In the former case, the
pheromone intensity of the links which are traversed
by ants are increased, while, in the latter case, the
pheromone intensity of the other links is reduced.
Pheromone update rule has a direct impact on the
exploitation (i.e. enhancing found path) and explo-
ration (i.e. discovering new path) characteristics of ant
algorithms. Equation 2 represents pheromone update

rule considering these two characteristics.

τ newij = (1− ρ)τ oldij +

m∑
k=1

1τ kij (2)

All above mentioned variables are explained in Table 1.
The amount of pheromone deposited on the link
between 2 points, i and j, by ant k is computed via
Equation 3.

1τ kij =


Q

fk
if the k th ant passed link (i,j),

0 otherwise,
(3)

The mentioned variables in Equation 3 are explained
in Table 1.

4) Stopping step: Reaching a predefined number of iter-
ation indicates that the ant-based algorithm is com-
pleted, while, reaching a predefined maximum number
of nodes before arriving to the destination point leads
to ant drop.

TABLE 1. Variables of Ant algorithm.

B. UGV ENERGY CONSUMPTION MODEL
The UGV energy consumption is affected by various factors
such as situation of road surface, velocity, internal resistance
of vehicle, driving style (e.g. aggressive and stop-and-go
operations) and embedded electronic equipment [46], [47].
The effect of these factors on fuel/energy consumption has
been extensively investigated for conventional vehicles. For
example, based on the results in [48] and [49], high speed
and aggressive driving increase both emission and fuel con-
sumption compared with moderate speed and normal driving.
Moreover, fuel consumption can be increased by average
of 5%-40% due to aggressive driving based on the results
in [50] and [51], while it can be enhanced by average
of 10%-33% in result of eco-driving style [52]. However,
these results are not applicable for UGVs due to their tele-
operated nature, delay between observation and action, small
size and unique dynamics.

One of the main limitations of the battery-powered UGVs
is the available onboard battery power. Vehicle locomotion is
the main source of UGV energy consumption. As mentioned
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FIGURE 2. Overview of UGV Energy Consumption Model [53].

before, the propulsion power of UGVs is affected by various
factors. Hence, developing a method for predicting UGV
mission energy consumption is a necessity. In this study, the
method proposed in [53] is utilized for this purpose. This
method is able to predict the UGV energy consumption in the
presence and absence of mission prior information including
qualitative knowledge regarding the road surface situation
and grade, and driving style. Linear regression and Bayesian
regression models triggered by longitudinal dynamics are
utilized for energy consumption prediction in the absence and
presence of mission prior information, respectively. Figure 2
provides an overview of UGV energy consumption model.
As it can be seen, the parameters are continuously updated
according to real-time data (e.g. velocity and power consump-
tion) in both models in a recursive manner.

TABLE 2. Variables of equation 4.

Road grade, road surface situation, driving style, vehicle
internal resistances and embedded sensors and electronic
equipment are considered asmainUGVs energy consumption
factors in [53] and formulized as Equation 4 and its variables
are represented in Table 2.

P(t) = F(t)v(t)+ b

= (Wsin(θ (t))+ fWcos(θ (t))+ ma(t)+ CI )

×v(t)+ b+ ε(t) (4)

By considering θ in Equation 4, this equation is nonlinear.
This equation can be linearized as Equation 5, since in most
cases, this value of this variable does not exceed 15 degrees.

P(t) = F(t)v(t)+ b

= (W θ (t)+ fW + ma(t)+ CI )v(t)+ b+ ε(t) (5)

Equation 5 can be rewritten as a linear regression model as
Equation 6.

P(t)− ma(t)v(t) = v(t)W (θ (t)+ f + C ′I )+ b+ ε(t) (6)

The left side of above equation can be defined as the
response y(t), v(t)W can be defined as the predictor x(t),
and θ (t) + f + C ′I is considered as the regression model
donated by C and contains the road grade, rolling resistance
coefficient, and internal fractional losses. Thus, Equation 6
can be rewritten as Equation 7.

y(t) = b+ Cx(t)+ ε(t) (7)

In this paper, it is assumed that the prior knowledge is
not available, hence, linear regression model (Equation 7)
is used for energy consumption prediction. The composed
variable, C, and b are updated according to real-time velocity
and power values via recursive least squares (RLS) prediction
with the forgetting factor, λff [54]. The upcoming vehicle
velocity is required for energy estimation which can be pre-
dicted according to driving style of the UGV operator. Expo-
nentially weighted moving average (EWMA) [55] with a
weight λu, is utilized for this purpose. More details regarding
this issue can be found in [46], [47], and [53]. In most of the
cases, the distance between source and destination is known
and the position of UGV can be traced by means of GPS.
Hence, based on the real-time UGV speed and remaining
distance to the destination, the duration of travelling to desti-
nation, Tend , can be predicted. The total energy consumption,
Ec can be computed by integrating the instant power over the
duration of the mission as Equation 8.

Ec =
∫ Tend

0
P(t)dt ≈

n∑
j=1

P(j)1t (8)

In the next section, our new approach for solving path
planning problem of UGVs, called G-Ant, is discussed.

IV. GREEN ANT
G-Ant contains four main phases, namely preparation, map
exploration, energy consumption calculator, and path plan-
ning. Figure 3 illustrates these phases along with their details
and relationships. Each of these phases is discussed in the
following paragraphs.

1) Preparation: This phase includes two sub-phases,
called map provision and data collection. This is the
first step of G-Ant approach where the required UGV
related data (e.g. velocity, mass, weight and accelera-
tion) for energy consumption calculation are collected
and the physical environment is transformed into a con-
figuration space which includes every demonstration of

1824 VOLUME 5, 2017



M. R. Jabbarpour et al.: G-Ant-Based method for Path Planning of UGVs

FIGURE 3. G-Ant Framework.

the UGV position, orientation, linear or angular speeds
as well as any other measures of interest [56]. For phys-
ical map transformation, some of current approaches,
such as driving corridors [57], start a search in suc-
cessive coordinates utilizing the road boundaries and
obstacles positions. Other approaches such as Voronoi
Diagrams [58], occupancy grids [59], cost maps [60],
and lattices [61] which are called decomposition
techniques, parse the configuration space with higher
resolution. In G-Ant, occupancy grid is utilized for
this purpose due to fast discretization and low com-
putational power [62]. In occupancy grid, the config-
uration space is divided into a grid and each cell is
associated with a probability of being occupied by a
UGV or an obstacle. Moreover, a point is assigned to
each obstacle-free cell and a link is added between two
points if and only if their associated cell is adjacent.
In this way the configuration space is converted to a
graph, G = (P, L), where P and N represent the set of
points and links, respectively. An example of this graph
is illustrated in Figure 4.

2) Energy Consumption Calculator: The second phase of
G-Ant approach is one of our main contributions where
UGV energy consumption is calculated and considered
in UGV path planning procedure. As mentioned ear-
lier, the energy consumption is estimated via the lin-
ear regression model (Equation 7). Since UGV related
variables are time dependent, the required time byUGV
for traveling from origin to destination is divided into

FIGURE 4. Planning graph.

time intervals which are indexed by k = 1, 2, . . ., n to
consider the dynamic aspect of these variables. This
issue is represented in Figure 5 where R represents
remaining distance to destination, 1t and Tend = n1t
indicate sampling interval and end time of travelling,
respectively.
When RSL prediction is utilized, the regression model
variables can adjust to small shifts and drifts in the
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FIGURE 5. UGV travelling from origin to destination considering time
intervals.

energy consumption. However, this adjustment can be
slow if an unexpected event such as transition from one
road segment to another happens. EWMA control chart
must be utilized to solve this issue. EWMA controls
the estimation residuals based on the study in [63].
The EWMAmonitoring statistics, z(k), is computed by
Equation 9.

z(k) = λuê(k)+ (1− λu)z(k − 1) (9)

where,

ê(k) = y(k)− ŷ(k)

ŷ(k) = E[y(k)|x(k), Ĉ(k − 1), b̂(k − 1)]

where λu and ŷ(k) are the weight of EWMA, and
response estimation at k, respectively. Ĉ(k − 1) and
b̂(k − 1) are the predicted variables at k-1. It is worth
noting that the RLS covariance matrix is reset to its
primitive value if an out-of-control signal is identified.
The total energy consumption (Equation 8) can be pre-
dicted by Equation 10.

Êc(k) = Et (k)+ Êrc(k) (10)

where Et (k) and Êrc(k) are the consumed energy until
time t = k1t , and the anticipated required energy to
traverse the rest of the path, respectively. By consider-
ing Equations 8 and 10, Equations 11 and 12 can be
used for estimation of the anticipated overall energy
consumption as well as the corresponding variance at
k, respectively. More details can be found in [53].

Êc(k) = (
k∑
j=1

P(j)+
n̂−k∑
j=1

P̂(k + j|k))1t

= Et (k)+ (n̂− k)(Wv̂(k + 1|k)Ĉ(k)

+ b̂(k))1t (11)

var(Êc(k)) = (
n̂−k∑
j=1

var(P(k + j|k)))(1t)2 (12)

where P̂(k + jâ"Ćk) is the j-step-ahead estimation of
response andWv̂(k+1â"Ćk) is one-step-ahead estima-
tion of predictor. The predicted energy consumption is
utilized in next phases.

3) Map Exploration: There are two types of ants in
G-Ant, namely Forward ANT (FANT) and Backward
ANT (BANT). FANTs are utilized in map exploration
phase, while BANTs are used in the next phase, i.e.
path planning phase. Based on the gathered data in

two previous phases, FANTs are placed on start point
and explore the configuration space to find the shortest
collision-free green path to the destination by selecting
probabilistically the next point to move. The path is
green due to considering energy consumption in path
finding procedure. FANTs utilize Equation 13 as prob-
ability function, PFij, to select the next point on their
path.

PFij =
α(τij)+β(ηij)∑

h/∈tabuk α(τih)+β(ηih)
× (

Nj
Nj + 1

) (13)

Nj reflects the number of neighbors for next point j
and increases the selection probability of the point with
more neighbors to become a next point in the path.
τij is the pheromone intensity on link (i, j) computed by
BANT via Equation 15. ηij indicates the instant state of
the UGV speed, vij, and the link length, llij. The effect
and importance of τij and ηij are controlled by weight
factors, α and β, respectively. Equation 14 is utilized
for ij calculation.

ηij =
1
llij
+
vij
ϕ

(14)

Equation 14 represents that probability function has
direct relationship with UGV speed, while, it has
inverse relationship with travel distance or link length.
ϕ is the maximum speed for UGVs and set to 7.2 km/h
(≈ 2m/s) based on a scaled EPA US06 [46], [47] to
normalize this equation.

4) Path Planning: At final phase, when a FAN arrives
its destination, it becomes a BANT and comes back
to the start point by utilizing its memory. Equation
15 is used via BANTs for updating pheromone inten-
sity of the links. This equation is named pheromone
update rule and either increment or reduce the
pheromone trail intensities. The pheromone value is
increased on the links that traversed by BANTs, called
pheromone reinforcement, while the pheromone inten-
sity of the other links is reduced, called pheromone
evaporation.

τ newij = (1− ρ)τ oldij +

n∑
k=1

1τ kij (15)

ρ is pheromone evaporation coefficient and has con-
stant value between 0 and 1. n indicates the number of
points in configuration space. The amount of 1τ kij is
calculated by Equation 16.

1τ kij

=


1

TT kij
+

1

Êc(ij)k
if the link (i,j) passed by ant k,

0 otherwise,

(16)

TT kij and Êc(ij)k are travel time and predicted UGV
energy consumption. Hence, if a link belongs to a
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planned path by an ant, its pheromone intensity is
updated according to its travel time and UGV energy
consumption rate. Path planning table is created based
on these obtained data.
The algorithm should be stopped or completed when
a predefined situation(s) is reached. Some examples of
stopping criteria are as follows: predefined execution
time, number of iterations, maximum visited hops and
the pheromone value remaining constant for a number
of successive iterations. However, G-Ant executes for
an infinite number of cycles. In G-Ant each cycle ends
by finding a path from origin to destination or reaching
a predefined number of visited points or predefined
number of iterations. In two last conditions, ant is
dropped before reaching its destination. This concept
is also useful for algorithm loop prevention.

V. PERFORMANCE EVALUATION
In this section the performance of G-Ant in two and three
dimensional configuration space under known environment is
evaluated through simulation. MATLAB R2015b processing
under Windows 7 is utilized for conducting simulation exper-
iments. G-Ant is implemented on a PC with Intel Core i7
processor running 3.5 GHz, RAM of 8 GB. The experiments
are conducted on several environmental scenarios including
different number of obstacles, different population size and
different number of iterations. The performance of ant based
approaches is very sensitive to its various variables. Finding
a proper value for these variables may result in faster cost
function convergence as well as mitigating local minimum
problem. Hence, this stage is one of main tasks in G-Ant.
We adopted these values from the study in [64] where various
simulation experiments were conducted to investigate the
impact of these variables and to find proper value for them.
Moreover, Equation 4 is utilized for generating power data
of UGVs. Aggressive EPA US06 driving cycle, illustrated
in Figure 6, is used for indicating the velocity of UGVs.
Moreover, the standard deviation of error term in Equation 4
is near to 10% of the mean consumed power during travelling
from origin to destination according to the values from the
UGV dynamic model.

The required energy (consumed energy) that UGV needs to
travel from origin to destination is estimated and updated via
Equations 11 and 12. Table 3 summarizes the variables and
their values used in G-Ant to finding the shortest collision-
free green path from origin to destination for UGVs. These
values are adopted from experimental results in [46] and [64].

The G-Ant performance is validated by comparing it with
ant colony optimization (ACO) [27] (i.e. G-Ant without
energy consumption model), Genetic Algorithm (GA) [32]
and Particle Swarm Optimization (PSO) [27], [38]
approaches. These approaches were selected due to their
popularity as well as their usage in most of the existing
UGV/robot path planning approaches. Various scenarios
were simulated to evaluate G-Ant performance in terms of
UGV travel time, travel length, computational time by taking

FIGURE 6. Drive cycle based on a scaled EPA US06.

TABLE 3. Configuration parameters and their values in G-Ant.

into account different number of iterations, different number
of obstacle, and different population size.

Firstly, the effectiveness of G-Ant has been verified
through simulation environment by considering various num-
ber of iterations and population size in terms of travel length
(distance) and computation time. The configuration space
that is used in this stage is represented in Figure 7. Green cells
represent start and end points of the path. Their coordina-
tion is (0.5,0.5) and (9.5,9.5), respectively. The configuration
space size is 10Ã-10 and includes 100 cells, where 16 of them
contain obstacle. The orange cells represent obstacles.

Table 4 shows the obtained results for G-Ant considering
various number of iterations and population size ranging from
10 to 100 by step 30 (i.e. 10, 40, 70, 100). Since the G-Ant
is meta-heuristic approach, every time it is executed it may
lead to different trajectory convergence. Hence, the algorithm
was executed for 10 times and the average of the obtained
results is represented in Table 4. The obtained results indi-
cate that although increasing both the number of iterations
and population size increase the chance of finding shortest
collision-free path, it also increases the algorithm computa-
tion time. Therefore, there should be a trade-off between these
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FIGURE 7. Configuration Space to verify effectiveness of G-Ant.

TABLE 4. The simulation results for the configuration space using G-Ant.

values and computation time of the algorithm. It is worth
noting that the number of iterations has more impact than
population size on finding shortest collision-free path. For
instance, the found path by considering 40 for both number of
iterations and population size variables (i.e. length= 16.661)
is better than considering 10 and 40 as the values for num-
ber of iterations and population size variables, respectively,
(i.e. length = 19.2409).

In order to compare the performance of G-Ant with
PSO and ACO algorithms a configuration space, which is
illustrated in Figures 8 to 13, is utilized. The orange cells
represent obstacles. The coordination of start and end points
are (0.5, 0.5) and (8.5, 8.5) In this evaluation, the popula-
tion size is considered constant and equal to 200, while, the
number of iterations is assigned to various values includes
200, 400, 600, 800, 1000, and 1200. The obtained results
are illustrated through Figures 8 to 13. With the increase
of the number of iterations, all approaches find better path,
while, when the value of this variable exceed 800, G-Ant,
ACO and PSO trapped in local optimum. Although the
length of the found path by ACO and PSO is increased
after falling in local optimum, this value remains unchanged

FIGURE 8. Simulation results under 200 iterations.

FIGURE 9. Simulation results under 400 iterations.

for G-Ant approach which indicates its robustness against
this phenomenon. Moreover, G-Ant outperforms the other
approaches considering various number of iterations in terms
of travel distance between origin and end points. It is worth
noting that PSO provide the smoothest path among the others
by eliminating the turns in the found path.

In order to compare the performance of G-Ant with genetic
algorithm, three different configuration spaces with differ-
ent complexities, namely simple, moderate and complex,
are designed and illustrated in Figures 14 to 16, respec-
tively. The size of these three configuration spaces are iden-
tical and equal to 500×500. The orange cells represent the
obstacles.

In all above designed configuration spaces, three different
origin and destination points are considered for UGV path
planning via genetic algorithm, ACO and G-Ant, and the
length of the obtained collision-free path by each approach
for three designed configuration spaces is summarized
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TABLE 5. Performance evaluation of GA, ACO and G-Ant considering path length.

FIGURE 10. Simulation results under 600 iterations.

FIGURE 11. Simulation results under 800 iterations.

in Table 5. Based on the obtained results G-Ant outperforms
the other approaches due to considering travel time, travel
distance, travel speed and energy consumption, simultane-
ously, in its path planning procedure. These results prove that
ant-based approaches (i.e. ACO and G-Ant) are more robust
and suitable for UGV path planning.

These approaches are also evaluated and compared
in terms of computation time and number of iterations.

FIGURE 12. Simulation results under 1000 iterations.

FIGURE 13. Simulation results under 1200 iterations.

The obtained results are summarized in Table 6. Ant-based
approaches utilize the state transition rules (i.e. probabil-
ity function and pheromone update rule) that make these
approaches perform more intelligence than genetic-based
approaches. In other words, ant-based approaches select the
next point via probability function which help the ant agents
to select the point near the optimal points and decline unfeasi-
ble points. While, genetic-based approaches choose the next
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TABLE 6. Performance evaluation of GA, ACO and G-Ant considering computation time, number of iterations and population size.

FIGURE 14. Simple configuration space.

FIGURE 15. Moderate configuration space.

point via random approaches which lead genetic algorithm to
perform the selection and remove process repeatedly through
path planning procedure. Thus as shown in Table 6, ant-
based approaches are able to compute the collision-free path
quicker with small number of iterations compare to genetic
algorithm. As it can be seen, G-Ant has higher computation
time compared to ACO. The reason for this is that G-Ant
utilizes various factors including travel time, travel distance,
travel speed and energy consumption, simultaneously, in its
path planning procedure which lead to higher computation
time compared to ACO which uses only one route cost
(e.g. travel distance, travel time) in its path planning proce-
dure. It is worth noting that the computation time and number
of iterations for all approaches increase as the complexity of
the configuration space increases.

FIGURE 16. Complex configuration space.

VI. CONCLUSION
In this paper, a new path planning approach, G-Ant, that
combines ant-based algorithm with energy consumption pre-
diction model is proposed and discussed. G-Ant considers the
consumed energy in its path planning for UGVs which is one
of the challenging issues in UGVs. G-Ant is implemented in
MATLAB. The performance of G-Ant was evaluated by com-
paring it with other existing approaches (i.e. ACO, GA and
PSO) under different conditions including different number
of iterations, different number of obstacle, and different pop-
ulation size. Travel length, computation time are considered
as evaluation metrics. Moreover, three different configuration
spaces with different complexities, namely simple, moderate
and complex, are designed and utilized in order to compare
the performance of G-Ant with genetic algorithm. Based on
the obtained results, ant-based approaches (i.e. ACO and
G-Ant) find the optimal path much faster than GA in vari-
ous configuration spaces due to lower computation time as
well as number of iterations. Further studies might focus on
comparing the consumed energy via various approaches for
UGV path planning. In addition, G-Ant should be evaluated
in dynamic environment and a method for avoiding collision
between UGV and dynamic obstacles should be proposed.
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