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ABSTRACT This paper investigates the reduced-order observer-based consensus problem of multi-agent
system with time delay and event trigger strategy. First, a multi-step algorithm is presented to construct a
reduced-order observer for each agent. Then, a novel push-based event-triggered control strategy, which
based on the reduced-order observer and the relative outputs of neighboring agents is proposed. Under this
control strategy, a sufficient condition for the consensus of multi-agent systems is obtained by using the
integral inequality technique and matrix theory. Moreover, the estimation value of the output time delay is
also obtained and the Zeno-behavior of triggering time sequences is excluded. Finally, two simulations about
the multi-agent system are provided to illustrate the correctness of theoretical results.

INDEX TERMS Reduced-order observer-based, output time delay, push-based distributed event-triggered,
multi-agent systems consensus.

I. INTRODUCTION
Recently, the cooperative control of multi-agent
systems (MASs) has received attractive attentions due to
its wide applications, such as congestion control in sen-
sor networks, robot control, distributed computation and so
on [1]–[4]. One of the major problems in cooperative control
of MAS is to design control strategy such that the state of
all agents reach a common value. This problem is called
consensus. Up to now, researchers have proposed a number of
consensus control protocols to solve the consensus problem
for multi-agent system with and without time delay [5], [6].

In many practical systems, due to the cost and other
factors, the state cannot be obtained directly, which means
the control protocol based on the state is not available.
In order to obtain the agent state, observer is proposed,
which can construct the state based on the input and output.
Consequently, there are many works to investigate the
observer design [7]–[10]. In [7], the authors design two types
of distributed observer and observer-based consensus proto-
cols for leader-following discrete-time multi-agent systems.
In [8], the authors investigate distributed observer-based
stabilization problem of multi-agent systems. In [9], by
considering two logic switches, the authors propose a new

general functional observer scheme for three linear systems
with unknown inputs. In [10], the authors improve the general
functional observers for two linear systems by reducing the
observer order.

Based on the proposed observers, numerous consensus
protocols for multi-agent system are designed [11]–[16].
In [11], the authors investigate the consensus problem of lin-
ear multi-agent systems based on centralized and distributed
observer-based control strategies. In [12], the authors present
an algorithm which can construct a full-order observer to
guarantee the consensus of multi-agent systems. In [13], by
using the relative outputs and inputs of neighboring agents,
the authors establish distributed and truncated reduced-
order observer which can be applicable to continuous-time
and discrete-time multi-agent systems. In [14], the authors
investigate the tracking consensus problem of linear multi-
agent systems under a networked detectability condition with
reduced-order protocols. In [15], the authors study the multi-
agent consensus problem with general linear dynamics via
the distributed reduced-order observer-based protocols under
directed switching topology. In [16], the authors investigate
the consensus problem of linear multi-agent systems with
reduced-order observer-based protocols.
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From the above literatures, it can be seen there are two
type observers: the full-order observer and the reduced-order
observer. Comparedwith the full-order observer, the reduced-
order observer only need local information to construct the
agent state, which implies it needs less computational cost
than full-order observer. That is to say, the computational
complexity of the observer is reduced while the conserva-
tiveness of the multi-agent system is improved. However,
all existing control strategies for reduced-order observer-
based multi-agent system are continuous. Continuous
control strategies lead to frequent communication among
nodes, which cause the network congestion and waste the
network resources. In order to overcome the conservative-
ness of continuous strategies, the event-triggered scheme
is proposed [17]–[25], where updates are only determined
by certain events that triggered depending on the nodes
dynamic behaviors. In [17], the authors propose a distributed
event-triggered control strategy for first order multi-agent
system. In [18], by using event-triggered strategy, the authors
study the consensus problem of multiple double-integrator
multi-agent systems under fixed topology and switching
topology. In [19]–[23], the consensus problems of general
linear multi-agent system with different event-triggered con-
trol strategy are investigated. In [24], the authors investi-
gate event-triggered sampled-data consensus problem for
distributed multi-agent system with directed graph. In [25],
the authors model the switching of network topologies as a
Markov process and propose a novel event-triggered strategy.
However, there are few works on the reduced-order observer-
based consensus problem of multi-agent system with event
trigger strategy and output time delay. So the observation
provides us the motivation of this paper to design a
new reduced-order observer-based event-triggered consensus
strategy for multi-agent system with output time delay.

In this paper, we investigate the reduced-order observer-
based consensus problem of multi-agent system with output
time delay and event trigger strategy. The primary contribu-
tions of this paper as following : (I) A multi-step algorithm
is designed to construct a reduced-order observer for
multi-agent systemswith output time delay. (II) A novel push-
based event-triggered function is designed. Under this control
strategy, a sufficient condition for the consensus of multi-
agent systems is obtained by using the integral inequality
technique and matrix theory.

The rest of this paper is organized as follows. Some
necessary definitions, preliminary results of graph theory
and model description are given in Section 2. In Section 3,
the main results of this paper are presented. Two simulation
examples about the multi-agent system are given to illustrate
the effectiveness of the analytical result in Section 4.
Notations: Throughout this paper, Rn and Rm×n denote the

n-dimensional Euclidean space and the set of real m × n
dimensions matrix, respectively. ‖χ‖ indicates the Euclidean

norm for vector χ . Denote ‖A‖ =
√
λmax

(
ATA

)
the induced

2-norm for matrix A, where λmax (·) denotes the maximum

eigenvalue of matrix (·) and the superscript T means trans-
pose for real matrices. ⊗ represents the Kronecker product.
Im denotes them×m dimensional identity matrix. Let 1n (0n)
be a column vector with n elements being 1 (0). For a square
non-singular matrix X , X−1 denotes its inverse matrix, XT

and XH represent its transport matrix and conjugate transpose
matrix, respectively.

II. PRELIMINARIES
A. ALGEBRAIC GRAPH THEORY
The communication topology among these agents is intro-
duced by an interaction digraph (directed graph). Let ζ =
(ν, ε,1) represent a digraph with set of vertices ν =
{1, 2, . . . ,N } and the set of edges ε ⊆ ν × ν. 1 =

(
aij
)
N×N

is the adjacency matrix where aij represents weight of
edge (i, j), there aij > 0 if (i, j) ∈ ε and aij = 0, otherwise.
When refers to aij > 0, it denotes that agent i can receive
the information from agent j, but not vice versa. For an
edge (i, j), node i is called parent node, node j is child node,
and i is a neighbor of j. In this paper, we also assume that there
are not exist self-loops or parallel edges in the communication
topology. Then, the Laplacian matrix L =

(
lij
)
∈ RN×N is

defined, where lij = −aij ≤ 0, i 6= j; lii =
∑N

j=1,j 6=i aij ≥ 0.
The in-degree of agent is defined as di =

∑N
j=1 aij, as

we can obtain the Laplacian matrix is L = D − 1 where
D = diag (d1, d2, . . . , dN ). If there exist a sequence of edge
of form (i, j1) , (j1, j2) , . . . , (jm, j) in a directed graph which
beginning with i and ending with j, then the node j is said to be
reachable from node i in directed graph. Especially, if there is
a directed path to any different nodes in the directed graph,
as we can say that the directed graph is strongly connected.
In addition, the Laplacian matrix L has a simple zero eigen-
value and all the other eigenvalues have positive real parts if
and only if the directed graph associated with L has a directed
spanning tree [26].

B. MODEL DESCRIPTION
The multi-agent system is described as follows:{

ẋi (t) = Axi (t)+ Bui (t)
yi (t) = Cxi (t − τ) , i = 1, 2, . . . ,N ,

(1)

where xi (t) ∈ Rn, ui (t) ∈ Rp, yi (t) ∈ Rq are the state,
control and output of the ith agent, respectively. A ∈ Rn×n,
B ∈ Rn×p and C ∈ Rq×n are constant matrices and C is
assumed to have full row rank, τ > 0 is the output time delay.
The controller is designed as follows:

ui (t) = cKQ1

∑
j∈Ni

aij
(
yi
(
t ik
)
− yj

(
t jk ′
))

+ cKQ2

∑
j∈Ni

aij
(
x̂i
(
t ik
)
− x̂j

(
t jk ′
))
, (2)

where x̂i (t) ∈ Rn−q is the observer state, Q1 ∈ Rn×q, Q2 ∈

Rn×(n−q) are given by
[
Q1 Q2

]
=

[
C
T

]−1
and K ∈ Rp×n
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is the feedback gain matrix to be designed, c is a coupling
strength.

C. OBSERVER DESIGN
Compared with full-order observer, the reduced-order
observer only need local information to construct the agent
state, which means it need less computational cost. Inspired
by [16], the reduced-order observer of the system (1) is given
by:

˙̂xi (t) = Fx̂i (t)+ Gyi (t)+ TBui (t) , (3)

where x̂i (t) ∈ Rn−q is the observer state, F ∈ R(n−q)×(n−q)

is Hurwitz and has no eigenvalues in common with those
of A, G ∈ R(n−q)×q, T ∈ R(n−q)×n is the unique solution
to the following Sylvester equation: TA− FT = GC .
Definition 1 [27]: For system (1), if there exist ui (t) ∈ U

such that for any initial value xi (0),

lim
t→∞

∥∥xj (t)− xi (t)∥∥ = 0, i, j = 1, 2, . . . ,N , (4)

then we say the system (1) is consensusable with respect
to U .

III. MAIN RESULT
In this section, we give the main result of this paper. First, we
give the algorithm to construct the reduced-order observer.
Then, consensus analysis of the multi-agent systems is
presented.
Assumption 1:Matrix F ∈ R(n−q)×(n−q) is Hurwitz which

has no eigenvalues in common with A and matrix T ∈
R(n−q)×n is the unique solution to the following Sylvester
equation:

TA− FT = GC . (5)

In the following, we give the algorithm to construct the
reduced-order observer.
Algorithm 1: Under the Assumption 1 that A,C,T ,F and

G satisfy the Sylvester equation: TA − FT = GC and that
(A,B,C) is controllable and observable, the reduced-order
observer-based consensus protocol (2) can be designed as
follows:

(1) Choose a Hurwitz matrix F having no eigenvalues
in common with those of A. Select G such that (F,G) is
stabilizable.

(2) Solve Sylvester equation (5) to get a solution T , which

satisfies that
[
C
T

]
is nonsingular. Then, computematricesQ1

and Q2 by
[
Q1 Q2

]
=

[
C
T

]−1
.

(3) Solve the following algebraic Riccati equation (ARE):

ATP+ PA− PBBTP = −Qc, Qc > 0 (6)

to get one solution P > 0 where the Qc must be symmetric.
Then, choose the matrix K = −BTP.

(4) Select the coupling strength c≥1/
(
2minλi 6=0 {Re(λi)}

)
,

where λi is the ith eigenvalue of Laplacian matrix L.

(5) Choose γ > 0 and k ≥ 1 to satisfy the equation:
τ < [γ − k (α3 + α4)]/k (α1 + α2).
Before giving consensus analysis of the multi-agent

systems, some Lemmas are presented in the following.
Lemma 1 [28]: The Kronecker product has the following

properties: for any matrices A, B and C with appropriate
dimensions,

(1) (A+ B)⊗ C = A⊗ C + B⊗ C ;
(2) (A⊗ B) (C ⊗ D) = (AC)⊗ (BD).
Lemma 2 [30]: Zero is an eigenvalue of L with 1 and a

nonnegative vector rT ∈ R1×N , respectively, as the corre-
sponding right and left eigenvectors, and all nonzero eigen-
values have positive real parts. Furthermore, zero is a simple
eigenvalue of L if and only if the graph ζ has a directed
spanning tree.
Lemma 3 [29]: For any t > t0, there exist constants k ≥ 1

and ρ > 0 when all the eigenvalues of J are in the open
left-half plane, such that∥∥∥eJ(t−t0)∥∥∥ ≤ ke−ρ(t−t0), t ≥ t0 (7)

By defining the original measurement error function of
each agent i as

ei (t) = xi
(
t ik
)
− xi (t) , t ∈

[
t ik , t

i
k+1

)
,

êi (t) = x̂i
(
t ik
)
− x̂i (t) , t ∈

[
t ik , t

i
k+1

)
,

the control strategy (2) can be rewritten as

ui (t) = cKQ1C
∑
j∈Ni

aij
(
xi (t − τ)− xj (t − τ)

+ ei (t − τ)− ej (t − τ)
)

+ cKQ2

∑
j∈Ni

aij
(
x̂i (t)− x̂j (t)+ êi (t)− êj (t)

)
(8)

Let ηi (t) =
[
xTi (t) x̂

T
i (t)

]T
, δi (t) =

[
eTi (t) , ê

T
i (t)

]T ,
define a sequence of triggering time instants

{
t ik
}
,

k = 1, 2, . . ., for each agent i, which can be expressed as:

t ik+1 = inf
{
t : t > t ik , fi (t) > 0

}
, (9)

where 1 > β1 > 0, β2 > 0, γ > 0 and trigger function

fi (δi (t) , ηi (t) , t) =

∥∥∥∥∑N

j=1
aij
(
δi (t)− δj (t)

)∥∥∥∥
−β1

∥∥∥∥∑N

j=1
aij
(
ηi

(
t ik
)
− ηj

(
t jk ′
))∥∥∥∥

−β2e−γ (t−t0). (10)

Using the Kronecker product of matrix, the multi-agent
systems (1) with respect to the control (2) can be rewritten
as follows:

η̇ (t) = M1η (t)+M2η (t − τ)+ V1δ (t)+ V2δ (t − τ) ,

(11)
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where η (t) =
[
ηT1 (t) , . . . , η

T
N (t)

]T ,
δ (t) =

[
δT1 (t) , . . . , δ

T
N (t)

]T
,

M1 =

(
IN ⊗ A cL ⊗ BKQ2

0 (IN ⊗ F)+ (cL ⊗ TBKQ2)

)
,

M2 =

(
cL ⊗ BKQ1C 0

(IN ⊗ GC)+ (cL ⊗ TBKQ1C) 0

)
,

V1 =
(
0 cL ⊗ BKQ2
0 cL ⊗ TBKQ2

)
,

V2 =
(
cL ⊗ BKQ1C 0
cL ⊗ TBKQ1C 0

)
.

Theorem 1: Assume that the communication topology of
these agents has a directed spanning tree, the pair (A,B) is
controllable and the pair (A,C) is observable, the consensus
of the multi-agent systems with output time delay is achieved
if the parameters in (2) and (3) are selected according to
Algorithm 1 and the triggering function is designed as (10)
where β1 ∈ (0, 1), β2 > 0, ρ > γ > 0. Furthermore, the
Zeno-behavior is excluded in the closed-loop system.

Proof: For (11), using the Newton-Leibnitz formula
η (t − τ) = η (t)−

∫ t
t−τ η̇ (s) ds, system (11) can be rewritten

as:

η̇ (t) = (M1 +M2) η (t)

−M2

∫ t

t−τ

M1η (s)+M2η (s− τ)

+V1δ (s)+ V2δ (s− τ)

 ds
+V1δ (t)+ V2δ (t − τ) . (12)

Because ζ contains a directed spanning tree, it follows from
Lemma 2 that zero is a simple eigenvalue of L and all other
eigenvalues have positive real parts. Let U ∈ RN×N be a

unitary matrix such that UTLU = 3 =

[
0 0
0 1

]
, where

the diagonal entries of 1 are the nonzero eigenvalues of L.
Since the right and left eigenvectors corresponding to the
zero eigenvalue of L are, respectively, 1 and rT , we can

choose U =
[

1
√
N
Y1
]
, UT

=

[
rT

Y2

]
, with Y1 ∈ RN×(N−1),

Y2 ∈ R(N−1)×N , rT ∈ RN is a nonnegative vector such that
rTL = 0 and rT 1 = 1. Let υ̇ (t) = (M1 +M2) υ (t) and
ε ,

[
εT1 , ε

T
2 , . . . , ε

T
N

]T
=
(
UT
⊗ I2n−q

)
υ. Then υ̇ (t) =

(M1 +M2) υ (t) can be rewritten as:

ε̇ (t) =
(
c1 c3
c2 c4

)
ε (t) , (13)

where

c1 = IN ⊗ A+ c (3⊗ BKQ1C) ,

c2 = (IN ⊗ GC)+ c (3⊗ TBKQ1C) ,

c3 = c (3⊗ BKQ2) , c4 = (IN ⊗ F)+ c (3⊗ TBKQ2) .

Equivalently, for i = 2, . . . ,N , system (13) can be rewritten
as follows:

ε̇i (t) =
(

A+ cλiBKQ1C cλiBKQ2
GC + cλiTBKQ1C F + cλiTBKQ2

)
εi (t) .

(14)

Multiplying the left and right sides of the matrix in (14) by

Q =
[

I 0
−T I

]
and Q−1 =

[
I 0
T I

]
, respectively, we can

obtain:

Q
(

A+ cλiBKQ1C cλiBKQ2
GC + cλiTBKQ1C F + cλiTBKQ2

)
Q−1

=

(
A+ cλiBK cλiBKQ2

0 F

)
. (15)

Form steps (3) and (4) in Algorithm 1, we can obtain that
there exists a P > 0 satisfying

P (A+ cλiBK )+ (A+ cλiBK )T P

= PA+ ATP− 2cλiPBBTP

≤ AP+ PAT − PBBTP

< 0, i = 2, . . . ,N . (16)

That is, A+cλiBK , i = 2, . . . ,N are Hurwitz. Therefore, the
N − 1 systems in (14) are exponentially stable, implying that
system υ̇ (t) = (M1 +M2) υ (t) is exponentially stable,
i.e., the consensus problem is solved.
Then, by (13), (14), (15) and (16), then we can obtain that

all the eigenvalues ofM1+M2 are in the open left-half plane.
Then, using the variation of parameter formula, we can get

η (t)

= e(M1+M2)(t−t0)η (t0)

−

∫ t

t0
e(M1+M2)(t−θ)

×

{
M2

∫ θ

θ−τ

M1η (s) ds+M2η (s− τ) ds+V1δ (s) ds

+ V2δ (s− τ) ds +V1δ (θ)+ V2δ (θ − τ)
}
dθ.

(17)

Since (A,B) is stabilizable and the communication topology
has a directed spanning tree, we can obtain:

‖η (t)‖ ≤ ke−ρ(t−t0) ‖η (t0)‖

+ k
∫ t

t0
e−ρ(t−θ)

×

{
‖M2‖

∫ θ

θ−τ

‖M1‖ ‖η (s)‖ ds

+ ‖M2‖ ‖η (s− τ)‖ ds+ ‖V1‖ ‖δ (s)‖ ds

+ ‖V2‖ ‖δ (s− τ)‖ ds+ ‖V1‖ ‖δ (θ)‖

+ ‖V2‖ ‖δ (θ − τ)‖
}
dθ. (18)
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From event trigger condition (10) and notice it can always
guarantee fi (δi (t) , ηi (t) , t) ≤ 0, we can obtain

‖L ⊗ δ (t)‖≤
β1

1− β1
‖L ⊗ η (t)‖+

Nβ2
1− β1

e−γ (t−t0). (19)

That is to say,

‖δ (t)‖ ≤
β1

1− β1
‖η (t)‖ +

Nβ2
‖L‖ (1− β1)

e−γ (t−t0). (20)

By (18) and (20), one can obtain:

‖η (t)‖ ≤ ke−ρ(t−t0) ‖η (t0)‖

+ k
∫ t

t0
e−ρ(t−θ)

×

{∫ θ

θ−τ

[α1 ‖η (s)‖ + α2 ‖η (s− τ)‖] ds

+α3 ‖η (θ)‖ + α4 ‖η (θ − τ)‖

}
dθ

+ kα5
[
e−γ (t−t0) − e−ρ(t−t0)

]
. (21)

where

α1 = ‖M1‖ ‖M2‖ +
‖M2‖ ‖V1‖β1

1− β1
,

α2 = ‖M2‖ ‖M2‖ +
‖M2‖ ‖V2‖β1

1− β1
,

α3 =
‖V1‖β1
1− β1

, α4 =
‖V2‖β1
1− β1

α5 =

(
‖V1‖Nβ2
1−β1

−
‖M2‖‖V1‖Nβ2
γ ‖L‖(1−β1)

)
(ρ − γ )

+

e2γ τ
(
‖M2‖‖V2‖Nβ2
γ ‖L‖(1−β1)

)
(ρ − γ )

+

eγ τ
(
‖V2‖Nβ2
1−β1

+
‖M2‖‖V1‖Nβ2
γ ‖L‖(1−β1)

−
‖M2‖‖V2‖Nβ2
γ ‖L‖(1−β1)

)
(ρ − γ )

.

Assume that γ < ρ (the same way holds for γ > ρ),
by (21), one has

‖η (t)‖ ≤ k (‖η (t0)‖+α5) e−γ (t−t0)

+ k
∫ t

t0
e−γ (t−θ)

×

{∫ θ

θ−τ

α1 ‖η (s)‖ ds+ α2 ‖η (s− τ)‖ ds

× α3 ‖η (θ)‖ + α4 ‖η (θ − τ)‖

}
dθ. (22)

In the following, we show that if there is a λ ∈ (0, γ )
satisfying

k
[(
α1 + α2eλτ

) (
eλτ − 1

)
+ λα3 + λα4eλτ

]
λ (γ − λ)

< 1. (23)

Such that the following inequality holds for any ξ > 1

‖η (t)‖ < ξk (‖η (t0)‖ + α5) e−λ(t−t0) , v (t) , t ≥ t0.

(24)

First, we prove the existence of λ in (24). Let f (λ) =
k
(
α1 + α2eλτ

) (
eλτ − 1

)
+kα3λ+kλα4eλτ+λ2−λγ , we can

obtain f (0) = 0 and f ′ (0) = k (α1 + α2) τ+k (α3 + α4)−γ .
When τ < [γ − k (α3 + α4)]/k (α1 + α2) = τ0, which
implies that there is a λ ∈ (0, γ ) such that f (λ) < 0, that
is to say, (23) holds on.
Second, we prove the (24).
If (24) does not set up for any t ∈

[
t0 − τ, t∗), there must

exist a t∗ > t0 such that ‖η (t∗)‖ = v (t∗) and ‖η (t)‖ < v (t).
Then, by (21), we can get

v
(
t∗
)
=
∥∥η (t∗)∥∥

< ξk (‖η (t0)+ α5‖)

×

{
e−γ (t

∗
−t0) + k

∫ t∗

t0
e−γ (t

∗
−θ)

×

[(
α1 + α2eλτ

) (
eλτ − 1

)
λ

+ α3 + α4eλτ
]

× e−λ(θ−t0)dθ

}
= ξk (‖η (t0)+ α5‖)

×

{
e−γ (t

∗
−t0)

+
k
[(
α1+ α2eλτ

) (
eλτ− 1

)
+ λα3+ λα4eλτ

]
λ (γ − λ)

×

(
e−λ(t

∗
−t0) − e−γ (t

∗
−t0)

)}
< ξk (‖η (t0)+ α5‖) e−λ(t

∗
−t0) = v

(
t∗
)

(25)

The contradiction of (25) shows that (24) is valid for any
ξ > 1, Let ξ → 1, one has

‖η (t)‖ ≤ e−γ (t−t0), t ≥ t0 (26)

which implies the reduced-order observer-based output
feedback push-based event-triggered consensus for multi-
agent systems with output time delay can be achieved
exponentially.

In the following, we eliminate Zeno-behavior in the closed-
loop systems. Compute the upper-right-hand Dini derivative
of ‖δi (t)‖ over interval

[
t ik , t

i
k+1

)
, we derive that

D+
∥∥δ̇i (t)∥∥ ≤ ∥∥δ̇i (t)∥∥ ≤ ‖η̇ (t)‖

= ‖M1‖ ‖η (t)‖ + ‖M2‖ ‖η (t − τ)‖

+ ‖V1‖ ‖δ (t)‖ + ‖V2‖ ‖δ (t − τ)‖ (27)

Noticing that (20), one can obtain that

‖δ (t − τ)‖ ≤
β1

1− β1
‖η (t − τ)‖

+
Nβ2

‖L‖ (1− β1)
e−γ (t−τ−t0). (28)

By (26), (27) and (28), one can obtain that

D+ ‖δi (t)‖ ≤ α6e−γ (t−t0) + α7e−γ (t−τ−t0), (29)
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where α6 = ‖M1‖ +
β1

1−β1
‖V1‖ +

Nβ2
‖L‖(1−β1)

‖V1‖, α7 =

‖M2‖ +
β1

1−β1
‖V2‖ +

Nβ2
‖L‖(1−β1)

‖V2‖.

For (20) and δi
(
t ik
)
= 0 that ‖δi (t)‖ ≤

α6
γ

[
e−γ

(
t ik−t0

)
− e−γ (t−t0)

]
+
α7
γ

[
e−γ

(
t ik−τ−t0

)
− e−γ (t−τ−t0)

]
,

t ∈
[
t ik , t

i
k+1

)
.

The next event will not be triggered until function (6)
crosses zero, i.e.,

β1

(1− β1)N

∥∥∥ηi (t ik+1)∥∥∥+ β2

‖L‖ (1− β1)
e−γ

(
t ik+1−t0

)
=

∥∥∥δi (t ik+1)∥∥∥
≤
α6

γ

[
e−γ

(
t ik−t0

)
− e−γ

(
t ik+1−t0

)]
+
α7

γ

[
e−γ

(
t ik−τ−t0

)
− e−γ

(
t ik+1−τ−t0

)]
. (30)

Denote T ik = t ik+1 − t
i
k , by (30), we have

α8e−γT
i
k ≤

α6

γ

[
1− e−γT

i
k

]
+
α7

γ
eγ τ

[
1− e−γT

i
k

]
, (31)

where α8 =
β2

‖L‖(1−β1)
and γ ∈ (0, λ).

By (31), we can get

T ik ≥ ln
(
α6

γ
+
α7

γ
eγ τ

/
α8 +

α6

γ
+
α7

γ
eγ τ

)/
−γ . (32)

Obviously, α6
γ
+

α7
γ
eγ τ

/
α8 +

α6
γ
+

α7
γ
eγ τ < 1 and

ln
(
α6
γ
+

α7
γ
eγ τ

/
α8 +

α6
γ
+

α7
γ
eγ τ

)
< 0, we can easily

derive that T ik > 0 by (32) for any i. which implies that
the Zero-behavior is exclude for any agent i. The proof of
Theorem 1 is completed.#
Remark 1: Compare with some existing works, the model

and consensus algorithm in this paper are more general,
especially suitable for practical applications. For τ = 0, the
system (1) can be rewritten as{

ẋi (t) = Axi (t)+ Bui (t)
yi (t) = Cxi (t) , i = 1, 2, . . . ,N ,

which is same as the model of [16]. So, the model of [16]
can be considered as a special case of our model. Moreover,
that method used in [16] cannot solve the consensus problem
of the system (1). For Q1 = 0, Q2 ∈ Rn×n, then (2) can be
rewritten as full order observer control protocol:

ui (t) = aKQ2

∑
j∈Ni

aij
(
x̂i (t)− x̂j (t)

)
,

which is proposed in [12]. So, our protocol can be regarded
as an extension of [12].

IV. SIMULATION EXAMPLE
In this section, we provide two examples about the robotic
system to illustrate the theoretical result.
Example 1: Consider the network of multi-agent sys-

tems (1) with six agents, the topology of this netwrok is
shown in Fig.1.

FIGURE 1. The directed communication topology of six agents.

The dynamic of each robot is as follows:
ẋi (t) =

[
−2 1
−0.5 −1

]
xi (t)+

[
1
1

]
ui (t)

yi (t) =
[
1 0.9

]
xi (t − τ) , i = 1, 2, . . . ,N .

It is easy to see A =
[
−2 1
−0.5 −1

]
, B =

[
1
1

]
, C =

[
1 0.9

]
.

Now, we construct the reduced order observer based on the
Algorithm 1, which is as follows:
(1) According to step (1), we choose F = −2. It is

obviously that F is a Hurwitz matrix and have no
eigenvalues in common with A. Select G = −1 such
that (F,G) =

[
−2 −1

]
is stabilizable.

(2) According to step (2), by solving the Sylvester equa-
tion (5), we can get T =

[
−2.9 2

]
, Q1 =[

0.4338 0.6291
]T and Q2 =

[
−0.1952 0.2169

]T ,
respectively.

(3) By using LMI toolbox in MATLAB, we can solve
the algebraic Riccati equation (ARE) to get one solu-
tion P and choose the matrix K = −BTP =[
−0.2249 −0.3905

]
according to step (3).

(4) We choose coupling strength c = 1 according to
step (4).

(5) By simple calculation based on step (5), we can obtain
α1 = 8.85, α2 = 39.30, α3 = 1.07, α4 = 12.09,
β1 = 0.8, β2 = 20, γ = 40.15, k = 1 and τ0 = 0.56.

(6) Finally, the reduced-order observer about the robotic
system is as follows:

˙̂xi (t) = −2x̂i (t)− yi (t)+
[
−2.9 2

]
×

[
1
1

]
ui (t) .

Moreover, the initial state of each agent is randomly
generated in the interval [−3, 3].
Choosing τ = 0.5 < τ0 = 0.56, from the Fig.2 it can

be observed the multi-agent systems consensus is achieved.
Choosing τ = 0.6 > τ0 = 0.56, from the Fig.3 it can be
observed the multi-agent systems consensus is not achieved.
Fig.4 shows the control inputs of all agents. Fig.5 shows the
event triggering times of six agents.
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FIGURE 2. The evolution of every agent’s observer states using Theorem1
with τ = 0.5.

FIGURE 3. The evolution of every agent’s observer states using Theorem1
with τ = 0.6.

FIGURE 4. The control inputs update by Theorem 1.

Example 2: Comparing with Example 1 , we change
more parameters in Example 2. Consider the network of
multi-agent systems (1) with the following topology, which

is shown in Fig.1. Let A =
[
−2 1
−0.5 −1

]
, B =

[
1
1

]
,

C =
[
1 0.9

]
.

Based on Algorithm1, corresponding parameters of the
multi-agent system are determined and the specific steps are
as follows:
(1) According to step (1), we choose F = − (28/9),

G = − (10/9). It is obviously that F is a
Hurwitz matrix and have no eigenvalues in common
with A. Select G = − (10/9) such that (F,G) =[
− (28/9) − (10/9)

]
is stabilizable.

(2) According to step solve Sylvester equation (5), we
can get T = [−1 0 ], Q1 =

[
0 1.2

]T , and Q2 =[
−1 1

]T , respectively.

FIGURE 5. Event time instants for every agent.

FIGURE 6. The evolution of every agent’s observer states using Theorem 1
with τ = 0.20.

FIGURE 7. The comparison state of agent 1 and observer state of agent 1
using Theorem 1 with = 0.20.

(3) By using LMI toolbox in MATLAB, we can solve
the algebraic Riccati equation (ARE) to get one solu-
tion P and choose the matrix K = −BTP =[
−0.2249 −0.3905

]
according to step (3).

(4) We choose coupling strength c = 1 according to
step (4).

(5) By simple calculation based on step (5), we can obtain
α1=5.503, α2=1.689, α3=2.660, α4=7.785, β1 = 0.4,
β2=10, γ=12.20, k = 1 and τ0 = 0.24.

(6) Finally, the reduced-order observer about the robotic
system is as follows:

˙̂xi (t) = Fx̂i (t)+ Gyi (t)+ TBui (t)

= − (28/9) x̂i (t)− (10/9) yi (t)+
[
−1 0

]
×

[
1
1

]
ui (t) .
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FIGURE 8. The evolution of the every agent states using Theorem 1 with
τ = 0.28.

where

ui (t) =
[
−0.2249 −0.3905

]
×

[
0
1.2

]
×

∑
j∈Ni

aij
(
yi
(
t ik
)
− yj

(
t jk ′
))

+

[
−0.2249 −0.3905

]
×

[
−1
1

]
×

∑
j∈Ni

aij
(
x̂i
(
t ik
)
− x̂j

(
t jk ′
))

Moreover, the initial state of each agent is randomly
generated in the interval [−3, 3].
Choosing τ = 0.20 < τ0 = 0.24, from the Fig.6 it can

be observed the multi-agent systems consensus is achieved.
Fig.7 shows the state and observer state of robot 1. Choosing
τ = 0.28 > τ0 = 0.24, from the Fig.8 it can be observed the
multi-agent systems consensus is not achieved.

V. CONCLUSION
Compared with the full-order observer, the reduced-order
observer only need local information to construct the agent
state, which means it need less computational cost than
full-order observer. In this paper, the consensus problem of
the reduced-order observer-based consensus in multi-agent
systems with output time delay and event trigger strategy
is investigated. First, a multi-step algorithm is presented to
construct a reduced-order observer for each agent. Then,
a novel push-based event-triggered control strategy based
on the reduced-order observer and the relative outputs of
neighboring agents is proposed. A sufficient condition is
derived for reaching global consensus in multi-agent sys-
tems by using the integral inequality technique and matrix
theory. The obtained results should be of great significance
to the multi-agent system equipped with microprocessors,
which have less computation and storage resources than con-
tinuously broadcasting information and frequently updating
controllers. Moreover, the estimation value of the output
time delay is also obtained and the Zeno-behavior of trig-
gering time sequences is excluded. Finally, two multi-agent

system simulations are provided to illustrate the correctness
of theoretical results.
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