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ABSTRACT Approximatemessage passing (AMP) is a low-cost iterative signal recovery algorithm for linear
system models. When the system transform matrix has independent identically distributed (IID) Gaussian
entries, the performance of AMP can be asymptotically characterized by a simple scalar recursion called
state evolution (SE). However, SE may become unreliable for other matrix ensembles, especially for ill-
conditioned ones. This imposes limits on the applications of AMP. In this paper, we propose an orthogonal
AMP (OAMP) algorithm based on de-correlated linear estimation (LE) and divergence-free non-linear
estimation (NLE). The Onsager term in standard AMP vanishes as a result of the divergence-free constraint
on NLE. We develop an SE procedure for OAMP and show numerically that the SE for OAMP is accurate
for general unitarily-invariant matrices, including IID Gaussian matrices and partial orthogonal matrices.
We further derive optimized options for OAMP and show that the corresponding SE fixed point coincides
with the optimal performance obtained via the replica method. Our numerical results demonstrate that
OAMP can be advantageous over AMP, especially for ill-conditioned matrices.

INDEX TERMS Compressed sensing, approximatemessage passing (AMP), replicamethod, state evolution,
unitarily-invariant, IID Gaussian, partial orthogonal matrix.

I. INTRODUCTION
Consider the signal recovery problem for the following linear
model:

y = Ax+ n, (1a)
xj ∼ PX (x), ∀j, (1b)

where A ∈ RM×N is a channel matrix (for communication
applications) or a sensing matrix (for compressed sensing),
x ∈ RN×1 the signal to be recovered, n ∈ RM×1 a vector
of additive white Gaussian noise (AWGN) samples with zero
mean and variance σ 2, and PX (x) a probability distribution
with E{xj} = 0 and E{x2j } = 1. We assume that {xj} are
independent identically distributed (IID). Our focus is on
systems with large M and N .
Except when PX (x) is Gaussian or for very small M

and N , finding the optimal solution to (1) (under, e.g., the
minimum mean-squared error (MMSE) criterion [1]) can
be computationally prohibitive. Approximate message pass-
ing (AMP) [2] offers a computationally tractable option.
AMP involves the iteration between two modules: one for
linear estimation (LE) based on (1a) and the other for symbol-
by-symbol non-linear estimation (NLE) based on (1b).
An Onsager term is introduced to regulate the correlation
problem during iterative processing.

When A contains zero-mean IID Gaussian (or sub-
Gaussian) entries, the dynamical behavior of AMP can be
characterized by a simple scalar recursion, referred to as
state evolution (SE) [2]–[4]. The latter bears similarity to
density evolution [5] (including EXIT analysis [6]) for mes-
sage passing decoding algorithms. However, the underlying
assumptions are different: density evolution requires sparsity
in A [5] while SE does not [3]. When A is IID Gaussian, it is
shown in [7] that the fixed-point equation of the SE for AMP
coincides with that of the MMSE performance for a large
system. (The latter can be obtained using the replica method
[8]–[11].) This implies that, when A is IID Gaussian, AMP is
Bayes-optimal provided that the fixed-point of SE is unique.

The SE framework of AMP works with any PX (x). Such
PX (x) can be the distribution of, e.g., amplitude or phase
modulation that is widely used in signal transmission. For this
reason, AMP is also suitable for communication applications
such as massive MIMO detection [12], [13] and millimeter
wave channel estimation [14] (in which A represents a chan-
nel matrix). AMP has also been investigated for decoding
sparse regression codes [15], [16], which have theoretically
capacity approaching performances.

The IID assumption for A is crucial to the SE of
AMP [3], [4]. When A is not IID (especially when A is
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ill-conditioned), the accuracy of SE is not warranted and
AMPmay perform poorly [17]. Various algorithms have been
proposed to handlemore general matrices [17]–[23], but most
of the existing algorithms lack accurate SE characterization.
An exception is the work in [24], which considers a closely
related problem and uses a method different from this paper.

The work in this paper is motivated by our observation that,
the SE for AMP is still relatively reliable for a wider family
of matrices other than IID Gaussian ones when the Onsager
term is small. Our contributions are summarized below.
• We propose a modified AMP algorithm consisting of a
de-correlated LE and a divergence-free NLE.1 The pro-
posed algorithm allows LE structures beyond MF, such
as pseudo-inverse (PINV) and linear MMSE (LMMSE).
OAMP extends and provides new interpretations of our
previous work in [26] and [27].

• We derive an SE procedure for OAMP, which is accurate
if the errors are independent during the iterative process.
Independency, however, is a tricky condition. We will
show that the use of a de-correlated LE and a divergence-
free NLE makes the errors statistically orthogonal,
hence the name orthogonal AMP (OAMP). Intuitively,
such orthogonality partially satisfies the independency
requirement. Our numerical results indicate that the SE
predictions are reliable for various matrix ensembles
(e.g., IID Gaussian, partial orthogonal and some ill-
conditioned ones for which AMP does not work well)
and also for various LE structures as mentioned above.
Thus OAMP may have wider applications than AMP.

• Wederive optimal choiceswithin theOAMP framework.
We find that the fixed-point characterization of the SE
is consistent with that of the optimal MMSE perfor-
mance obtained by the replica method. This implies the
potential optimality of OAMP. Compared with AMP,
our result holds for the more general unitarily-invariant
matrix ensemble.

We will provide numerical results to show that, compared
with AMP, OAMP can achieve better MSE performance as
well as faster convergence speed for ill-conditioned matrices.
We will demonstrate the excellent performance of OAMP in
communication systems with non-sparse binary phase shift
keying (BPSK) signals as well as conventional sparse signals.

After we posted the preprint of this work [28], proofs were
given for the state evolution of OAMP [45] and a related algo-
rithm [29] in systems involving unitarily-invariant matrices.

Part of the results in this paper have been published in [30].
In this paper, we provide more detailed analysis and numeri-
cal results.
Notations: Boldface lowercase letters represent vectors

and boldface uppercase symbols denote matrices. 0 for a
matrix or a vector with all-zero entries, I for the identity
matrix with a proper size, aT for the conjugate of a, ‖a‖
for the `2-norm of the vector a, tr(A) for the trace of A,

1The name is from [25], although the discussions therein are irrelevant to
this paper.

(η (a))j ≡ η
(
aj
)
. diag{A} for the diagonal part ofA,N (µ,C)

for Gaussian distribution with mean µ and covariance C,
E{·} for the expectation operation over all random variables
involved in the brackets, except when otherwise specified.
E{a|b} for the expectation of a conditional on b, var{a} for
E
{
(a− E{a})2

}
, var{a|b} for E

{
(a− E{a|b})2 |b

}
.

II. AMP
A. AMP ALGORITHM
Following the convention in [2], assume that A is column
normalized, i.e., E{‖A:,j‖2} ≈ 1 for each j. Approximate
message passing (AMP) [2] refers to the following iterative
process (initialized with s0 = r0Onsager = 0)2:

LE: rt = st + AT (y− Ast)+ rtOnsager (2a)

NLE: st+1 = ηt
(
rt
)
, (2b)

where ηt is a component-wise Lipschitz continuous function
of rt and rtOnsager an ‘‘Onsager term" [2] defined by

rtOnsager=
N
M
·

(
1
N

N∑
j=1

η′t−1(r
t−1
j )

)
·

(
rt−1 − st−1

)
. (2c)

The final estimate is st+1.
The use of the Onsager term is the key to AMP. It regu-

lates correlation during iterative processing and ensures the
accuracy of SE when A has IID entries [2], [3].

B. STATE EVOLUTION FOR AMP
Define

qt ≡ st − x and ht ≡ rt − x. (3a)

After some manipulations, (2) can be rewritten as
[3, eq. (3.3)] (with initialization q0 = −x and h0Onsager = 0):

LE: ht =
(
I − ATA

)
qt + ATn+ htOnsager, (4a)

NLE: qt+1 = ηt
(
x+ ht

)
− x, (4b)

where

htOnsager =
N
M
·

(
1
N

N∑
j=1

η′t−1

(
xj + h

t−1
j

))
·

(
ht−1 − qt−1

)
(4c)

Strictly speaking, (4) is not an algorithm since it involves x
that is to be estimated. Nevertheless, (4) is convenient for the
analysis of AMP discussed below.

The SE for AMP refers to the following recursion:

LE: τ 2t =
N
M
· v2t + σ

2, (5a)

NLE: v2t+1 = E
{
[ηt (X + τtZ )− X ]2

}
, (5b)

where Z ∼ N (0, 1) is independent of X ∼ PX (x), and
v20 = E{X2

}.

2The formulation here is different to the standard form in [2], but they can
be shown to be equivalent.
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When A has IID Gaussian entries, SE can accurately
characterize AMP, as shown in [3, Th. 1] below.
Theorem 1 [3, Th. 2]: Let ψ : R2

7→ R be a pseudo-
Lipschitz function.3 For each iteration, the following holds
almost surely when M ,N →∞ with a fixed ratio

1
N

N∑
j=1

ψ
(
htj , xj

)
→ E {ψ (τtZ ,X)} , (6)

where τt is given in (5).
To see the implication of Theorem 1, let ψ(h, x) ≡

[ηt (x + h)− x]2 in (6). Then, Theorem 1 says that the empir-
ical mean square error (MSE) of AMP defined by

1
N

∥∥ηt (x+ ht)− x∥∥2 (7)

converges to the predicted MSE (where τt is obtained
using SE) defined by

E
{
[ηt (X + τtZ )− X ]2

}
. (8)

C. LIMITATION OF AMP
The assumption that A contains IID entries is crucial to
theorem 1. For other matrix ensembles, SEmay become inac-
curate. Here is an example. Consider the following function
for the NLE in AMP4

ηt
(
rt
)
= η̂t

(
rt
)
− (1− β) ·

(
1
N

N∑
j=1

η̂′t

(
r tj
))
· rt , (9)

where η̂t is the thresholding function (which is commonly
used in sparse signal recovery algorithms [31]) given in (47)
with γt = 1. A family of ηt is obtained by changing β.
In particular, ηt reduces to the soft-thresholding function η̂t
when β = 1. We define a measure of the SE accuracy (after
a sufficient number of iterations) as

E ≡
|MSEsim −MSESE|

MSEsim
, (10)

where MSEsim and MSESE are the simulated and predicted
MSEs in (7) and (8). Here, as the empirical MSE is still
random for large but finite M and N , we average it over
multiple realizations.

By changing β from 0 to 1, we obtain a family of ηt . The
solid line in Fig. 1 shows E defined in (10) against β for A
being IIDGaussian.We can see that SE is quite accurate in the
whole range of β shown (withE < 10−2), which is consistent
with the result in Theorem 1.

However, as shown by the dashed line, SE is not reliable
when A is a partial DCT matrix. The partial DCT matrix

3The function ψ is said to be pseudo-Lipschitz (or order two) [3] if there
exists a constant L > 0 such that for all x, y, |ψ(x)− ψ(y)| ≤ L(1+ ‖x‖ +
‖y‖)‖x − y‖.

4Strictly speaking, ηt in (9) is not a component-wise function as required
in AMP. However, if Theorem 1 holds,

∑N
j=1 η̂

′
t (r

t
j )/N will converge to a

constant independent of each individual r tj . In this case, ηt is an approximate

component-wise function and
∑N

j=1 η
′
t (r

t
j )/N ≈ β ·

∑N
j=1 η̂

′
t (r

t
j )/N .

FIGURE 1. State evolution prediction error for AMP with a partial DCT
matrix. N = 8192. M = 5734(≈ 0.7N). SNR = 53 dB. ρ = 0.4. (See the
signal model in Section V.) The simulated MSE is averaged over
100 independent realizations. The number of iterations is 50.

is obtained by uniformly randomly selecting the rows of a
discrete cosine transform (DCT) matrix, and it is widely used
in compressed sensing. To see the problem, let us ignore the
Onsager term. Suppose that qt consists of IID entries with
E
{
(qtj )

2
}
= v2t , and q

t is independent of A and n. It can be
verified that

τ 2t ≡
1
N
E
{
‖ht‖2

}
=
N −M
M

· v2t + σ
2. (11)

Clearly, this is inconsistent with the SE in (5a). The problem
is caused by the discrepancy in eigenvalue distributions: (11)
above is derived from the eigenvalue distribution of a partial
DCT matrix while (5a) from that of an IID Gaussian A.
How about replacing (5a) by (11) for the partial DCT

matrix? This is shown by the solid line with triangle markers
in Fig. 1. We can see that E is still large for β > 0, which
can be explained by the fact the Onsager term was ignored
above. Interestingly, we can see that E is very small at β = 0,
where the Onsager term vanishes for the related ηt in (9). This
observation motivates the work presented below.

III. ORTHOGONAL AMP
In this section, we first introduce the concepts for de-
correlated and divergence-free structures for the LE andNLE.
We then discuss the OAMP algorithm and its properties.

A. DE-CORRELATED LINEAR ESTIMATOR
Return to (1a): y = Ax+n. Let s be an estimate of x. Assume
that s has IID entries with E{(sj − xj)2} = v2. Consider the
linear estimation (LE) structure below [1] for x

r = s+W (y− As), (12)

which is specified by W . Let the singular value decompo-
sition (SVD) of A be A = V6UT. Throughput this paper,
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we will focus on the following structure forW

W = UGVT. (13)

Definition 1 (Unitarily-Invariant Matrix): A = V6UT

is said unitarily-invarint [32] if U , V and 6 are mutually
independent, and U , V are Haar-distributed (i.e., istropically
random).5

Assume that A is unitarily-invariant. We will say that the
LE (or W in (13)) is a de-correlated one if tr(I −WA) = 0.
Given an arbitrary Ŵ that satisfies (13), we can constructW
with tr(I −WA) = 0 as follows

W =
N

tr(ŴA)
Ŵ . (14)

The following are some common examples [1] of such Ŵ

matched filter (MF):

Ŵ
MF
= AT, (15a)

pseudo-inverse (PINV)6:

Ŵ
PINV
=

{
AT(AAT)−1 if M < N(
ATA

)−1
AT if M > N ,

(15b)

linear MMSE (LMMSE):

Ŵ
LMMSE

= v2AT(v2AAT
+ σ 2I)−1. (15c)

We will discuss the properties of de-correlated LE in
Section III-F later.

B. DIVERGENCE-FREE ESTIMATOR
Consider signal estimation from an observation corrupted by
additive Gaussian noise

R = X + τZ , (16)

where X ∼ PX (x) is the signal to be estimated and is
independent of Z ∼ N (0, 1). For this additive Gaussian noise
model, we define divergence-free estimator (or a divergence-
free function of R) as follows.
Definition 2 (Divergence-Free Estimator): We say η:

R 7→ R is divergence-free (DF) if

E
{
η′ (R)

}
= 0. (17)

A divergence-free function η can be constructed as

η (r) = C ·
(
η̂ (r)− E

R

{
η̂′ (R)

}
· r
)
, (18)

where η̂ is an arbitrary function and C an arbitrary constant.

C. OAMP ALGORITHM
Starting with s0 = 0, OAMP proceeds as

LE: rt = st +W t
(
y− Ast

)
, (19a)

NLE: st+1 = ηt
(
rt
)
, (19b)

5It turns out that the distribution of V does not affect the average per-
formance of OAMP. The reason is that OAMP implicitly estimates x based
on VTy, and VTn has the same distribution as n for an arbitrary orthogonal
matrix V due to the unitary-invariance of Gaussian distribution [32].

6We assume that A has full rank.

where W t is de-correlated and ηt is divergence-free. In the
final stage, the output is(

st+1
)out
= ηoutt

(
rt
)
, (20)

where ηoutt is not necessarily divergence-free.
OAMP is different from the standard AMP in the following

aspects:
• In (19a), W t is restricted to be de-correlated, but it still
has more choices than its counterpart AT in (2a).7

• In (19a), the function ηt is restricted to be divergence-
free. Consequently, the Onsager term vanishes.

• A different estimation function ηoutt (not necessarily
divergence-free) is used to produce a final estimate.

We will show that, under certain assumptions, restrictingW t
to be de-correlated and ηt to be divergence-fee ensure the
orthogonality between the input and output ‘‘error’’ terms for
both LE and NLE. The name ‘‘orthogonal AMP’’ comes from
this fact.

D. OAMP ERROR RECURSION AND SE
Similar to (3), define the error terms as ht ≡ rt − x and qt ≡
st − x. We can write an error recursion for OAMP (similar to
that for AMP in (4)) as

LE: ht = Btqt +W tn (21a)

NLE: qt+1 = ηt (x+ ht )− x, (21b)

where Bt ≡ I −W tA. Two error measures are introduced:

τ 2t ≡
1
N
· E
{
‖ht‖2

}
, (22a)

v2t+1 ≡
1
N
· E
{
‖qt+1‖2

}
. (22b)

The SE for OAMP is defined by the following recursion

LE: τ tt =
1
N
E
{
tr(BtBT

t )
}
v2t +

1
N
E
{
tr(W tWT

t )
}
σ 2

(23a)

NLE: v2t+1 = E
{
[ηt (X + τtZ )− X ]2

}
, (23b)

where X ∼ PX (x) is independent of Z ∼ N (0, 1). Also, at
the final stage, the MSE is predicted as

E
{[
ηoutt (X + τtZ )− X

]2}
. (24)

E. RATIONALES FOR OAMP
It is straightforward to verify that the SE in (23) is consistent
with the error recursion in (21), provided that the following
two assumptions hold for every t .
Assumption 1: ht in (21a) consists of IID zero-mean

Gaussian entries independent of x.
Assumption 2: qt+1 in (21b) consists of IID entries

independent of A and n.

7When the entries of A are IID with zero mean and variance 1/M (as
considered in [2]), N/tr(ATA) ≈ 1, and soW t = AT satisfies the condition
in (13) and (14).
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According to our earlier assumption below (1), x is IID and
independent ofA and n. In OAMP, q0 = −x, so Assumption 2
holds for t = −1. Thus the two Assumptions will hold if we
can prove that they imply each other in the iterative process.
Unfortunately, so far, we cannot.

Assumptions 1 and 2 are only sufficient conditions for the
SE. Even if they do not hold exactly, the SEmay still be valid.
In Section V, we will show that the SE for OAMP is accurate
for a wide range of sensing matrices using simulation results.
In the following two subsections, we will see that, with a
de-correlated W t and a divergence-free ηt , Assumptions 1
and 2 can partially imply each other. We emphasize that the
discussions below are to provide intuition for OAMP, which
are by no means rigorous.

F. INTUITIONS FOR THE LE STRUCTURE
Eqn. (19a) performs linear estimation of x from y based
on Assumption 2 (for qt ). We first consider ensuring
Assumption 1 based on Assumption 2. The independence
requirements in Assumption 1 are difficult to handle. We
reduce our goal to remove the correlation among the vari-
ables involved. This is achieved by restricting W t to be
de-correlated, as shown below.
Proposition 1: Suppose that Assumption 2 holds and A is

unitarily-invariant. IfW t is de-correlated, then the entries of
ht are uncorrelated with those of x. Furthermore, the entries
of ht in (21a) are mutually uncorrelated with zero-mean and
identical variances.

Proof: See Appendix A.
Some comments are in order.

(i) The name ‘‘de-correlated’’ LE comes from
Proposition 1.

(ii) Under the same conditions as Proposition 1, the input
and output error vectors for LE are uncorrelated,
namely, E

{
ht
(
qt
)T}
= 0.

(iii) A key condition to Proposition 1 is that the sensing
matrix A is unitarily invariant. Examples of such A
include the IID Gaussian matrix ensemble and the
partial orthogonal ensemble [10]. Note that there is
no restriction on the eigenvalues of A. Thus, OAMP
is potentially applicable to a wider range of A than
AMP.

(iv) We can meet the de-correlated constraint using (14),
in which Ŵ t can be chosen from those in (15). Thus
OAMP has more choices for the LE than AMP, which
makes the former potentially more efficient.

G. INTUITIONS FOR THE NLE STRUCTURE
We next consider ensuring Assumption 2 based on
Assumption 1. From (21), if qt+1 is independent of ht , then
it is also independent of A and n, which can be seen from the
Markov chain A,n → ht → qt+1. Thus it is sufficient to
ensure the independency between qt+1 and ht . Similar to the
discussion in Section III-F, we reduce our goal to ensuring
orthogonality between qt+1 and ht .

Suppose that Assumption 1 holds, we can construct an
approximate divergence-free function ηt according to (18):

ηt
(
rt
)
= Ct ·

(
η̂t
(
rt
)
−

(
1
N

N∑
j=1

η̂′t
(
r tj
))
· rt
)
. (25)

All the numerical results about OAMP shown in Section V
are based on (19) and (25).

There is an inherent orthogonality property associated with
divergence-free functions.
Proposition 2: If η is a divergence-free function, then

E {τtZ · η (X + τtZ )} = 0. (26)

Proof: From Stein’s Lemma [3], [33], we have

E {Z · ϕ (Z )} = E
{
ϕ′ (Z )

}
, (27)

for any ϕ : R 7→ R such that the expectations in (27) exist.
Applying Stein’s lemma in (27) with ψ(Z ) ≡ ηt (X + τtZ ),
we have

E {τtZ · ηt (X + τtZ )} (28a)

= τt · E
X

{
E
Z |X
{Z · ηt (X + τtZ )}

}
(28b)

= τ 2t · E
X

{
E
Z |X

{
η′t (X + τtZ )

}}
(28c)

= τ 2t · E
{
η′t (X + τtZ )

}
, (28d)

where η′t (X + τtZ ) ≡ η′t (R)|R=X+τtZ . Combining (28) with
Definition 2, we arrive at (26).
Noting that E{ZX} = 0, (26) is equivalent to

E
{(
Rt − X

)
·
[
ηt
(
Rt
)
− X

]}
= 0, (29)

where Rt ≡ X + τtZ . In (29), Rt − X and ηt (Rt ) − X
represent, respectively, the error terms before and after the
estimation. Eqn. (29) indicates that these two error terms are
orthogonal. (They are also uncorrelated as Rt − X has zero
mean.) Thus the divergence-free constrain on the NLE is to
establish orthogonality between qt+1 and ht .

H. BRIEF SUMMARY
If the input and output errors of the LE and NLE are inde-
pendent of each other, Assumptions 1 and 2 naturally hold.
However, independency is generally a tricky issue. We thus
turn to orthogonality instead. The name ‘‘orthogonal AMP’’
comes from this fact. Propositions 1 and 2 are weaker than
Assumptions 1 and 2. Nevertheless, our extensive numerical
study (see Section V) indicates that the SE in (23) is indeed
reliable for OAMP.

Also note that each of Propositions 1 and 2 depends on one
assumption, so they do not ensure orthogonality in the overall
process. Nevertheless, we observed from numerical results
that the orthogonality property is accurate for with unitarily-
invariant matrices.
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I. MSE ESTIMATION
The MSEs v2t ≡ E{‖qt‖2}/N and τ 2t ≡ E{‖ht‖2}/N can be
used as parameters ofW t and ηt . An example is the optimized
W t and ηt given in Lemma 1 in Section IV. We now discuss
empirical estimators for v2t and τ

2
t .

We can adopt the following estimator [34, eq. (71)] for v2t

v̂2t =

∥∥y− Ast∥∥ 2
−M · σ 2

tr
(
ATA

) . (30)

Note that v̂2t in (30) can be negative. We may use max(v̂2t , ε)
as a practical estimator for v2t , where ε is a small positive
constant. (Setting ε = 0 may cause a stability problem.)
Given v̂2t , τ

2
t can be estimated using (23a):

τ̂ tt =
1
N
tr(BtBT

t ) · v̂
2
t +

1
N
tr(W tWT

t ) · σ
2. (31)

In certain cases, Eqn. (31) can be simplified to more concise
formulas. For example, (31) simplifies to τ̂ 2t = (N −M) /M ·
v̂2t +N/M

2
· tr
{(
AAT)−1}

·σ 2 whenW t is given by the PINV
estimator in (15b) together with (14). Also, simple closed-
form asymptotic expression exists for (31) for certain matrix
ensembles. For example, (23a) converges to (42a), (42b) and
(42c) for IID Gaussian matrices withMF, PINV and LMMSE
linear estimators, respectively.

The numerical results presented in Section V are obtained
based on approximations in (30) and (31).

IV. OPTIMAL STRUCTURES FOR OAMP
In this section, we derive the optimal LE and NLE structures
for OAMP based on SE. We show that OAMP can potentially
achieve optimal performance, provided that its SE is reliable.

A. ASYMPTOTIC EXPRESSION FOR SE
Recall that A = V6UT and B = I −W tA. From
(13) and (14), we have W t = N/tr(Ŵ tA) · Ŵ t and
Ŵ t = UĜtVT. With these definitions, we can rewrite the
right hand side of (23a) as follows

8t (v2t ) ≡

 1
N

∑N
i=1 ĝ

2
i λ

2
i(

1
N

∑N
i=1 ĝiλi

)2 − 1

 v2t

+

 1
N

∑N
i=1 ĝ

2
i(

1
N

∑N
i=1 ĝiλi

)2
 σ 2, (32)

where λi and ĝi (i = 1, . . . ,M ) denote the ith diagonal entries
of6 (M×N ) and Ĝt (N×M ), respectively. In (32), we define
λi = ĝi = 0 for i = M + 1, . . . ,N ).

In (32), 8t (v2t ) is for fixed {λi} and {ĝi}. Now, follow-
ing [35], assume that the empirical cumulative distribution
function (cdf) of {λ21, . . . , λ

2
N }, denoted by

F̂ATA(λ
2) =

1
N

N∑
i=1

I(λ2i ≤ λ
2) (33)

converges to a limiting distribution when M ,N → ∞ with
a fixed ratio. Furthermore, assume that ĝi can be generated
from λi as ĝi = ĝt (v2t , λi) with ĝt a real-valued function.
Then, (32) converges to

8t (v2t )→
(

E{ĝ2t λ
2
}

(E{ĝtλ})2
− 1

)
· v2t +

E{ĝ2t }
(E{ĝtλ})2

· σ 2, (34)

where the expectations (assumed to exist) are taken over the
asymptotic eigenvalue distribution ofATA (including the zero
eigenvalues) and ĝt stands for ĝt (v2t , λ).

We further define

9t (τ 2t ) ≡ E
{
[ηt (X + τtZ )− X ]2

}
, (35)

where ηt (r) ≡ Ct ·
[
η̂t (r)− E{η̂′t (X + τtZ )} · r

]
and X is

independent of Z ∼ N (0, 1). Then, from (32), (23b) and (35),
the SE for OAMP is given by (with v20 = E{X2

})

LE: τ 2t = 8t (v2t ), (36a)

NLE: v2t+1 = 9t (τ 2t ). (36b)

The estimate for x in OAMP is generated by ηoutt rather
than ηt . Thus, the MSE performance of OAMP, measured by
‖ηoutt (rt )− x‖2/N , is predicted as

9out
t (τ 2t ) ≡ E

{[
ηoutt (X + τtZ )− X

]2}
. (37)

B. OPTIMAL STRUCTURE OF OAMP
We now derive the optimalW t , ηt and ηoutt that minimize the
MSE at the final iteration.

Let 8?t , 9
?
t , and (9out

t )? be the minimums of 8t , 9t , and
9out
t respectively (the minimizations are taken over W t , ηt ,

and ηoutt ). Lemmas 1 and 2 below will be useful to prove
Theorem 2.
Lemma 1: The optimal W t and ηt that minimize 8t and

9t in (32) and (35) are given by

W ?
t =

N

tr(Ŵ
LMMSE
t A)

Ŵ
LMMSE
t , (38a)

η?t (R
t ) = C?t ·

(
ηMMSE
t (Rt )−

mmseB
(
τ 2t
)

τ 2t
· Rt

)
, (38b)

where

C?t ≡
τ 2t

τ 2t − mmseB
(
τ 2t
) , (38c)

ηMMSE
t (Rt ) = E

{
X |Rt = X + τtZ

}
, (38d)

mmseB
(
τ 2t

)
≡ E

{(
ηMMSE
t − X

)2}
. (38e)

Furthermore, the optimal (ηoutt )? that minimizes9out
t is given

by ηMMSE
t .
Proof: The optimality of (ηoutt )? is by definition. The

optimality of W ?
t and η?t are not so straightforward, due to

the de-correlated constraint on W t and the divergence-free
constraint on ηt . The details are given in Appendix B.
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Substituting W ?
t , η

?
t and (ηoutt )? into (32), (35) and (37),

and after some manipulations, we obtain

LE: 8?(v2t ) =
(

1

mmseA(v2t )
−

1

v2t

)−1
, (39a)

NLE: 9?(τ 2t ) =
(

1

mmseB(τ 2t )
−

1

τ 2t

)−1
, (39b)

NLE:
(
9out)? (τ 2t ) = mmseB(τ 2t ), (39c)

where mmseA(v2t ) ≡
1
N

∑N
i=1

σ 2·v2t
v2t ·λ

2
i +σ

2 and mmseB(τ 2t ) is

given in (38e). The derivations of (39a) are omitted, and the
derivations for (39b) are shown in Appendix C-A. In (39),
the subscript t has been omitted for the functions8?,9? and
(9out)? as they do not change across iterations.
Lemma 2: The functions 8?, 9?, and (9out)? in (39) are

monotonically increasing.
Proof: The monotonicity of (9out)? follows directly

from the monotonicity of MMSE for additive Gaussian noise
models [36]. The monotonicity of 8? and 9? are proved in
Appendix C-B.
According to the state evolution process, the finalMSE can

be expressed as

9out
t

(
8t

(
9t−1

(
8t−1

(
· · ·

(
80

(
v20
))
· · ·

))))
. (40)

From Lemmas 1 and 2, replacing any function (i.e., {8t ′},
{9t ′}, and9out

t ) in (40) by its optimum reduces the finalMSE.
This leads to the following theorem.
Theorem 2: For the SE in (36), the final MSE in (40)

is minimized by {W ?
0, . . . ,W

?
t }, {η

?
0, . . . , η

?
t−1} and (ηoutt )?

given in Lemma 1.
Theorem 2 gives the optimal LE and NLE structures for the

SE of OAMP. To compute η?t and (ηoutt )? in (38), we need to
know the signal distribution PX (x). In practical applications,
such prior information may be unavailable. To approach the
optimal performance for OAMP, the EM learning frame-
work [34] or the parametric SURE approach [37] developed
for AMP could be applicable to OAMP as well [38].

C. POTENTIAL OPTIMALITY OF OAMP
Note that the de-correlated constraint on W t and the
divergence-free constraint on ηt are restrictive. We next show
that, provided that the SE in (36) is valid, OAMP is poten-
tially optimal when the optimal W ?

t , η
?
t and (ηoutt )? given in

Lemma 1 are used.
Theorem 3: When the optimal {W ?

t } and {η
?
t } in Lemma

1 are used, {v2t } and {τ 2t } are monotonically decreasing
sequences. Furthermore, the stationary value of τ 2t , denoted
by τ 2∞, satisfies the following equation

1
τ 2∞
=

1
σ 2 · RATA

(
−

1
σ 2 · mmseB

(
τ 2∞

))
, (41)

where RATA denotes the R-transform [32, p. 48] w.r.t. the
eigenvalue distribution of ATA.

Proof: See Appendix D.

Eqn. (41) is consistent with the fixed-point equation char-
acterization of the MMSE performance for (1) (with A being
unitarily-invariant) via the replica method [10, q. (17)] [21,
eq. (30)]. This implies that OAMP can potentially achieve the
optimal MSE performance. We can see that the de-correlated
and divergence-free constraints on LE and NLE, though
restrictive, do not affect the potential optimality of OAMP.

V. NUMERICAL STUDY
The following setups are assumed unless otherwise stated.
The optimalW ?

t , η
?
t and (η

out
t )? given in Lemma 1 are adopted

for OAMP. Furthermore, the approximation mmseB(τ 2t ) ≈∑N
j=1 var

{
xj|r tj

}
/N is used for (38e). Following [17], we

define SNR ≡ E
{
‖Ax‖2

}
/E {‖n‖2}.

A. IID GAUSSIAN MATRIX
We start with an IID Gaussian matrix where Ai,j ∼
N (0, 1/M ). Fig. 2 compares simulated MSE with SE predic-
tion for OAMP and AMP. We first assume that the entries
of x are independently BPSK modulated, so x is not sparse.
This is a typical detection problem in massive MIMO appli-
cations. Fig. 2 compares simulated MSEs with SE prediction
for OAMP and AMP. In Fig. 2, OAMP-MF, OAMP-PINV
andOAMP-LMMSE refer to, respectively, OAMP algorithms
with the MF, PINV and LMMSE estimators given in (15) and
the normalization in (14). The asymptotic SE formula in (34)
becomes, respectively,

8MF
t

(
v2t
)
=

N
M
· v2t + σ

2, (42a)

8PINV
t

(
v2t
)
=


N −M
M

· v2t +
N

N −M
· σ 2 if M < N

M
M − N

· σ 2 if M > N

(42b)

8LMMSE
t

(
v2t
)
=
σ 2
+ c · v2t +

√(
σ 2 + c · v2t

)2
+ 4σ 2v2t

2
,

(42c)

where c ≡ (N − M )/M . Comparing (42a) and (42b), we
see that OAMP-PINV has better interference cancellation
property than OAMP-MF (but less robust to noise). This is
consistent with the observation in Fig. 2 (which represents
a high SNR scenario) that OAMP-PINV can outperform
OAMP-MF.

From Fig. 2, we observe good agreement between the sim-
ulated and predicted MSE for all curves. Furthermore, we see
that AMP has the same convergent value as OAMP-LMMSE
for IID Gaussian matrices, while the latter converges faster.
Following the approach in [39], we can prove this observation
but the details are omitted due to space limitation.

B. GENERAL UNITARILY-INVARIANT MATRIX
We next turn our attention to more general sensing matrices.
Following [17], let A = V6UT, where V and U are inde-
pendent Haar-distributed matrices (or isotropically random
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FIGURE 2. Simulated and predicted MSEs for OAMP with an IID Gaussian
matrix and BPSK signals. N = 8192. M = 5324(≈ 0.65N). SNR = 14 dB.
The simulated MSEs are averaged over 100 realizations.

orthogonal matrices [32]). The nonzero singular values are
set to be [17] λi/λi+1 = κ1/M for i = 1, . . . ,M − 1, and∑M

j=1 λi = N Here, κ ≥ 1 is the condition number of A. We
consider sparse signals, generated according to a Bernoulli-
Gaussian distribution:

PX (x) = ρ ·N (x; 0, ρ−1)+ (1− ρ) · δ(x), (43)

where ρ ∈ (0, 1] is s sparsity level and δ(·) is the Dirac delta
function.

FIGURE 3. Simulated and predicted MSEs for OAMP with general unitarily
invariant matrices. ρ = 0.2. N = 4000. M = 2000. The condition number κ
is 5. SNR = 60 dB. The simulated MSEs are averaged over 100 realizations.

Fig. 3 shows the simulated and predicted MSEs for OAMP
for the above ill-conditioned sensing matrix. The SE of
OAMP is based on the empirical form in (32) as {λi} are fixed
in this example. We can make the following observations.
• The performances of AMP and OAMP-MF deteriorate
in this case. The SE prediction for AMP is not shown in

Fig. 3 since it is noticeably different from the simulation
result. (See Fig. 1 for a similar issue.)

• The performance of OAMP is strongly affected by the
LE structure. OAMP-PINV and OAMP-LMMSE signif-
icantly outperform OAMP-MF.

• The most interesting point is that the SE in (36) can
accurately predict the OAMP simulation results for all
the LE structures in Fig. 3. We observed in simulations
that such good agreement also holds for LEs beyond the
three options shown in Fig. 3.

FIGURE 4. Comparison of OAMP and AMP for general unitarily invariant
matrices. ρ = 0.2. N = 500. M = 250. SNR = 60 dB. The number of
iteration for OAMP is 50. The number of iterations for AMP and
AMP-damping are 1000. For ADMM-GAMP, both the number of inner and
outer iterations are set to be 50, and the damping parameter is selected
to be 1. The simulated MSEs are averaged over 100 realizations. The MSEs
above 1 are clipped [13].

Fig. 4 compares the MSE performances of AMP, OAMP
and genie-aided MMSE (where the positions of the non-zero
entries are known) as the condition number of A varies. AMP
with adaptive damping (AMP-damping) [17] (based on the
Matlab code released by its authors8 and the parameters used
in [17, Fig. 1]) andGAMP-ADMM[19] are also shown. From
Fig. 4, we can see that the performance of OAMP-LMMSE
is significantly better than those of AMP, AMP-damping
and ADMM-GAMP for highly ill-conditioned scenarios.
(ADMM-GAMP slightly outperforms OAMP-LMMSE for
κ ≤ 100 since the former involves more iterations in this
example.) OAMP-PINV has worse performance than AMP
when κ ≥ 10 but performs reasonably well for large κ .
OAMP-MF does not work well and thus not included.

For the schemes shown in Fig. 4, AMP have the lowest
complexity. OAMP-PINV requires one additional matrix
inversion, but it can be pre-computed as it remains unchanged
during the iterations. Both OAMP-LMMSE and ADMM-
GAMP require matrix inversions in each iteration. As pointed
out in [19], it may be possible to replace the matrix inversion

8Available at http://sourceforge.net/projects/gampmatlab/
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in ADMM-GAMP using an iterative method such as
conjugate gradient [40]. Similar approximation should be
possible for OAMP as well.

C. PARTIAL ORTHOGONAL MATRIX
In the examples used above, matrix inversion is involved for
Ŵ

PINV
and Ŵ

LMMSE
in (15b) and (15c), so their complexity

per iteration can be higher than that of AMP. (Note that the
overall complexity also depends on the convergence speed,
for which AMP and OAMP behave differently as seen in
Fig. 4.) In the following, we will consider partial orthogonal
matrices characterized by AAT

= N/M · I (here N/M is
a normalization constant). Then inversion operation is not
necessary. For example, in this case Ŵ

LMMSE
is given by

Ŵ
LMMSE

= v2t A
T
(
v2t AA

T
+ σ 2I

)−1
(44a)

=
v2t

N/M · v2t + σ 2
· AT. (44b)

Therefore, the complexity of OAMP-LMMSE is the same as
AMP.

Unitarily invariant matrices with the partial orthogonal-
ity constraint becomes partial Haar-distributed matrices (i.e.,
uniformly distributed among all partial orthogonal matrices).
We next consider the following partial orthogonal matrix

A =

√
N
M
SUT, (45)

where S consists of M uniformly randomly selected rows of
the identity matrix and U is an Haar-distributed orthogonal
matrix. We will also consider deterministic orthogonal matri-
ces, which are important in compressed sensing and found
applications in, e.g., MRI [41]. For a partial orthogonal A, the
three approaches in Fig. 2, i.e., OAMP-MF,OAMP-PINV and
OAMP-LMMSE, become identical. The related complexity
is the same as AMP. In this case, the SE equation in (32)
becomes

8t

(
v2t
)
=
N −M
M

· v2t + σ
2. (46)

Fig. 5 compares OAMPwithAMP in recovering Bernoulli-
Gaussian signals with a partial DCT matrix. Following [34],
we will use the empirical phase transition curve (PTC) to
characterize the sparsity-undersampling tradeoff. A recov-
ery algorithm ‘‘succeeds" with high probability below the
PTC and ‘‘fails" above it. The empirical PTCs are generated
according to [34, Sec. IV-A]. We see that OAMP consider-
ably outperforms AMP when both algorithms are fixed to
50 iterations. Even when the number of iterations of AMP
is increased to 500, OAMP still slightly outperforms AMP at
relatively high sparsity levels.

Fig. 6 shows the accuracy of SE for OAMP with partial
orthogonal matrices. Three matrices are considered: a partial
Haar matrix, a partial DCT matrix and a partial Hadamard
matrix. From Fig. 6, we see that the simulated MSE perfor-
mances agree well with state evolution predictions for all the

FIGURE 5. Noiseless empirical phase transition curves for
Bernoulli-Gaussian signals with a partial DCT matrix. N = 8192. The
simulated MSEs are averaged over 100 realizations. Other settings follow
those of [34, Fig. 3]. Here, K ≈ N · ρ is the average number of nonzero
components in x.

FIGURE 6. Simulated and predicted MSEs for OAMP with partial
orthogonal matrices. ρ = 0.1. M = round(0.35 N). SNR = 50 dB. The
simulated MSEs are averaged over 2000 realizations.

three types of partial orthogonal matrices when N is suffi-
ciently large (N = 8192 in this case). It should be noted that,
when M/N is larger, a smaller N will suffice to guarantee
good agreement between simulation and SE prediction.

The NLEs used in Figs. 2-6 are based on the optimized
structure given in Lemma 1. Fig. 7 shows the OAMP SE
accuracy with the following soft-thresholding function [31]:

η̂t
(
r t
)
= max

(∣∣r t ∣∣− γt , 0) · sign (r t) , (47)

where γt ≥ 0 is a threshold and sign(r t ) is the sign
of r t . According to (25), the divergence-free function ηt is
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FIGURE 7. Simulated and predicted MSEs for OAMP with the
soft-thresholding function. The threshold is set to be γt = τt . A partial
DCT matrix is used. ρ = 0.1. N = 8192. M = 2867(≈ 0.35N). The simulated
MSEs are averaged over 1000 realizations.

constructed as

ηt
(
rt
)
= Ct ·

(
η̂t
(
rt
)
−

(
1
N

N∑
j=1

I
(
|r tj | > γt

))
· rt
)
,

(48)

where I(·) is the indicator function. Further, we set ηoutt = η̂t
for simplicity. The function in (47) is not optimal under the
MMSE sense in Lemma 1. However, it is near minimax for
sparse signals [42] and widely studied in compressed sensing.
The optimal Ct is different from that given in Lemma 1 in
this case. We will not discuss details in optimizating Ct here.
Rather, to demonstrate the accuracy of SE, three arbitrarily
chosen values forCt are used in Fig. 7.We see that simulation
and SE predictions agreewell for all cases. In particular, when
Ct = 3, SE is able to predict the OAMP behavior even when
iterative processing leads to worse MSE performance.

VI. CONCLUSIONS
AMP performs excellently for IID Gaussian transform matri-
ces. The performance of AMP can be characterized by SE in
this case. However, for other matrix ensembles, the SE for
AMP is not directly applicable and its performance is not
warranted.

In this paper, we proposed an OAMP algorithm based on a
de-correlated LE and a divergence-free NLE. Our numerical
results indicate that OAMP could be characterized by SE
for general unitarily-invariant matrices with much relaxed
requirements on the eigenvalue distribution and LE structure.
This makes OAMP suitable for a wider range of applications
than AMP, especially for applications with ill-conditioned
transform matrices and partial orthogonal matrices. We also
derived the optimal structures for OAMP and showed that
the corresponding SE fixed point potentially coincides with
that of the Bayes-optimal performance obtained by the replica
method.

APPENDIX A
PROOF OF PROPOSITION 1
It is seen from (21b) that qt generated by the NLE is generally
correlated with x, which may lead to the correlation between
x and ht . We will see below that a de-correlated LE can
suppress this correlation.

From A = V6UT, W t = UGtVT and B = I −W tA =
U(I − Gt6)UT, so

E
U

{
(Bt )i,j

}
=

N∑
m=1

E
{
Ui,mUj,m

}
· (1− gmλm), (49)

where gm and λm denote the (m,m)th diagonal entries of
Gt and 6, respectively. (We define gm = λm = 0 for
m = M + 1, . . . ,N ). For a Haar distributed matrix U , we
have [43, Lemma 1.1 and Proposition 1.2]

E{Ui,mUj,m} =

{
0 if i 6= j,
N−1 if i = j.

(50)

Therefore,

E
U

{
(Bt )i,j

}
=

{
0 if i 6= j,
N−1tr(Bt ) if i = j.

(51)

From the discussions in Section III-A, when W t is de-
correlated, tr(Bt ) = tr(I −W tA) = 0. Together with (51),
this further implies E{Bt } = 0.

From Assumption 1, qt is independent of A (and so Bt ).
Then,

E{ht } = E{Btqt } + E{W tn} (52a)

= E{Bt }E{qt } + E{W t }E{n} (52b)

= 0. (52c)

From (21a), to prove x is uncorrelated with ht , we only need
to prove x is uncorrelated withBtqt sinceW tn is independent
of x. This can be verified as

E
{
BtqtxT

}
= E{Bt }E{qtxT} = 0. (53)

Following similar procedures, we can also verify that (i)
the entries in ht are uncorrelated, and (ii) the entries of ht

have identical variances. We omit the details here.

APPENDIX B
PROOF OF LEMMA 1
A. OPTIMALITY OF W?

t
We can rewrite 8t (v2t ) in (32) as

8t

(
v2t
)
=

 1
N

∑N
i=1 ĝ

2
i (v

2
t λ

2
i + σ

2)(
1
N

∑N
i=1 ĝiλi

)2
− v2t . (54)

We now prove that W ?
t in Lemma 1 is optimal for (54). To

this end, define ai ≡ ĝi
√
v2t λ

2
i + σ

2, bi ≡ λi/

√
v2t λ

2
i + σ

2.
Applying the Cauchy-Schwarz inequality

1
N

∑N
i=1 a

2
i(

1
N

∑N
i=1 aibi

)2 ≥
(
1
N

N∑
i=1

b2i

)−1
(55)
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leads to

1
N

∑N
i=1 ĝ

2
i (v

2
t λ

2
i + σ

2)(
1
N

∑N
i=1 ĝiλi

)2 ≥

(
1
N

N∑
i=1

λ2i

v2t λ
2
i + σ

2

)−1
, (56)

where the right hand side of (56) is invariant to {ĝi}. The
minimum in (56) is reached when

ĝ?i

√
v2t λ

2
i + σ

2 = C

√
λ2i

v2t λ
2
i + σ

2
, (57)

where C is an arbitrary constant. From (57),

ĝ?i = C
λi

v2t λ
2
i + σ

2
. (58)

Recall that {λi} are the singular values of A. Setting C = v2t ,
we can see that {ĝ?i } obtained from (58) are the singular values

of Ŵ
LMMSE
t ≡ v2t A

T(v2t AA
T
+σ 2I)−1 in (15c). Therefore the

optimalW ?
t can be obtained by substituting Ŵ

?

t = Ŵ
LMMSE
t

into (14):

W ?
t =

N

tr(Ŵ
LMMSE
t A)

Ŵ
LMMSE
t . (59)

B. OPTIMALITY OF η?t
The SE equation in (35) are obtained based on the following
signal model

Rt = X + τtZ . (60)

The following identity is from [44, eq. (123)]

dηMMSE
t

dRt
=

1

τ 2t
· var

{
X |Rt

}
, (61)

where ηMMSE
t ≡ E

{
X |Rt

}
(see (38d)). Using (61) and noting

mmseB(τ 2t ) = E{var{X |Rt }}, we can verify that η?t in (38b) is
a divergence-free function (see (18)).

Lemma 3 below is the key to prove the optimality of η?t .
Lemma 3: The following holds for any divergence-free

function ηt

E
{
ηt ·

(
ηMMSE
t − η?t

)}
= 0. (62)

Proof: We can rewrite (38b) as

η?t = C?t · η
MMSE
t +

(
1− C?t

)
· Rt . (63)

First,

ηMMSE
t −η?t = η

MMSE
t −

[
C∗t · η

MMSE
t +

(
1−C∗t

)
·Rt
]

(64a)

=
(
1− C?t

)
·

(
ηMMSE
t − Rt

)
. (64b)

Therefore, to prove Lemma 3, we only need to prove

E
{
ηt ·

(
ηMMSE
t − Rt

)}
= 0. (65)

Substituting Rt = X + τtZ into (65) yields

E
{
ηt ·

(
ηMMSE
t − X − τtZ

)}
= 0. (66)

Since ηt is a divergence-free function of Rt , we have the
following from (26)

E {ηt · Z } = 0. (67)

Substituting (67) into (66), proving Lemma 3 becomes
proving

E
{
ηt ·

(
ηMMSE
t − X

)}
= 0. (68)

Note that ηt and ηMMSE
t are deterministic functions of Rt .

Then, conditional on Rt , we have

E
{
ηt ·

(
ηMMSE
t − X

)
|Rt
}

= ηt ·
(
ηMMSE
t − E

{
X |Rt

})
(69a)

= ηt ·
(
ηMMSE
t − ηMMSE

t

)
(69b)

= 0, (69c)

where (69b) is from the definition of ηMMSE
t in (38d).

Therefore,

E
{
ηt ·

(
ηMMSE
t − X

)}
= E

Rt

{
E
{
ηt ·

(
ηMMSE
t − X

)
|Rt
}}

= 0, (70)

which concludes the proof of Lemma 3.
We next prove the optimality of η?t based on Lemma 3.

Again, let ηt be an arbitrary divergence-free function of Rt .
The estimation MSE of ηt reads

9t (τ 2t ) ≡ E
{
(ηt − X)2

}
(71a)

= E
{(
ηt − η

MMSE
t + ηMMSE

t − X
)2}

(71b)

= E
{(
ηt − η

MMSE
t

)2}
+E

{(
ηMMSE
t − X

)2}
(71c)

= E
{(
ηt − η

MMSE
t

)2}
+ mmseB

(
τ 2t

)
, (71d)

where the cross terms in (71c) disappears due to the orthog-
onality property of MMSE estimation [1] (recall that ηMMSE

t
is the scaler MMSE estimator). We see from (71) that find-
ing ηt that minimizes E

{
(ηt − X )2

}
is equivalent to finding

ηt minimizing E
{(
ηt − η

MMSE
t

)2}
. We can further rewrite

E
{(
ηt − η

MMSE
t

)2}
as

E
{(
ηt − η

MMSE
t

)2}
(72a)

= E
{(
ηt − η

?
t + η

?
t − η

MMSE
t

)2}
(72b)

= E
{(
ηt − η

?
t
)2}
+ E

{(
η?t − η

MMSE
t

)2}
+2 · E

{(
ηt − η

?
t
) (
η?t − η

MMSE
t

)}
. (72c)
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From Lemma 3, we have E
{
ηt ·

(
η?t − η

MMSE
t

)}
= 0 and

E
{
η?t ·

(
η?t − η

MMSE
t

)}
= 0 (since η?t is itself a divergence-

free function). Then, (72) becomes

E
{(
ηt − η

MMSE
t

)2}
(73a)

= E
{(
ηt − η

?
t
)2}
+ E

{(
η?t − η

MMSE
t

)2}
. (73b)

≥ E
{(
η?t − η

MMSE
t

)2}
, (73c)

where the equality is obtained when ηt = η?t , and the right
hand side of (73c) is a constant invariant of ηt . Hence, ηt = η?t
minimizes E

{(
ηt − η

MMSE
t

)2}
and so 9t ≡ E

{
(ηt − X )2

}
.

This completes the proof.

APPENDIX C
PROOF OF LEMMA 2
C. DERIVATION OF 9? IN (39b)
Using (63), we have

9?
(
τ 2t

)
(74a)

= E
{(
η?t − X

)2} (74b)

= E
{[
C?t · η

MMSE
t +

(
1− C?t

)
· Rt − X

]2}
(74c)

=
(
C?t
)2 E{(ηMMSE

t − X
)2}
+
(
1− C?t

)2 E {(Rt − X)2}
+2C?t

(
1− C?t

)
E
{(
ηMMSE
t − X

)
τtZ

}
(74d)

=
(
C?t
)2
· mmseB

(
τ 2t

)
+
(
1− C?t

)2
· τ 2t

+2C?t
(
1− C?t

)
· mmseB

(
τ 2t

)
(74e)

=

(
1

mmseB
(
τ 2t
) − 1

τ 2t

)−1
, (74f)

where (74e) is from the fact that E{XZ } = 0, Stein’s lemma
and (61), (74f) from the definition of C?t in (38).

D. MONOTONICITY OF 8? AND 9?

We first verify the monotonicity of 8?. From (39a) and after
some manipulations, we obtain

d8?

dv2t
=

(
v2t
)2
·
dmmseA

(
v2t
)

dv2t
−
[
mmseA

(
v2t
)]2

[
v2t − mmseA

(
v2t
)]2 . (75)

To show the monotonicity of 8?, we only need to show that

dmmseA
(
v2t
)

dv2t
≥

(
mmseA

(
v2t
)

v2t

)2

. (76)

The derivative of mmseA
(
v2t
)

can be computed based
on the definition below (39). After some manipulations,

the inequality in (76) becomes the inequality below

1
N

N∑
i=1

(
σ 2

v2t λ
2
i + σ

2

)2

≥

(
1
N

N∑
i=1

σ 2

v2t λ
2
i + σ

2

)2

, (77)

which holds due to Jensen’s inequality.
The monotonicity of 9? can be proved in a similar way.

Again, we only need to prove that

dmmseB
(
τ 2t
)

dτ 2t
≥

(
mmseB

(
τ 2t
)

τ 2t

)2

. (78)

Note that mmseB
(
τ 2t
)
= E

{[
X − E

{
X |Rt = X + τtZ

}]2}.
From [36, Proposition 9], we have

dmmseB
(
τ 2t
)

dτ 2t
=

E
{
var

{
X |Rt

}2}(
τ 2t
)2 . (79)

Applying Jensen’s inequality, we have

E
{
var

{
X |Rt

}2}
≥
[
E
{
var

{
X |Rt

}}]2
=

[
mmseB

(
τ 2t

)]2
,

(80)

which, together with (79), proves (78).

APPENDIX D
PROOF OF THEOREM 3
E. MONOTONICITY OF {v2

t } AND {τ2
t }

We first show that {v2t } decrease monotonically. From (39b),

lim
τ 2→∞

9?(τ 2) = lim
τ 2→∞

τ 2 · mmseB(τ 2)
τ 2 − mmse(τ 2)

(81a)

= lim
τ 2→∞

mmseB(τ 2) (81b)

= E{X2
} (81c)

= v20, (81d)

where (81d) is from the initialization of the SE. Since
8?(v20) <∞ and 9? is a monotonically increasing function,
we have v21 = 9

?
(
8?(v20)

)
< v20.

We now proceed by induction. Suppose that v2t < v2t−1.
Since both8? and9? are monotonically increasing, we have
9?

(
8?(v2t )

)
< 9?

(
8?(v2t−1)

)
, which, together with the SE

relationship v2t+1 = 9
?
(
8?(v2t )

)
, leads to v2t+1 < v2t . Hence,

{v2t } is a monotonically decreasing sequence.
The monotonicity of the sequence {τ 2t } follows directly

from the monotonicity of {v2t }, the SE τ
2
t = 8

?(v2t ), and the
fact that 8? is a monotonically increasing function.

F. FIXED POINT EQUATION OF SE
Similar to (34),

mmseA
(
v2t
)
≡

1
N

N∑
i=1

v2t · σ
2

v2t · λ
2
i + σ

2
→ E

{
v2t · σ

2

v2t · λ2 + σ 2

}
,

(82)
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where the expectation is w.r.t. the asymptotic eigenvalue
distribution of ATA. From the definition of the η-transform
in [32, p. 40], we can write

v2t · ηATA

(
v2t
σ 2

)
= E

{
v2t · σ

2

v2t · λ2 + σ 2

}
, (83)

where ηATA denotes the η-transform. For convenience, we
further rewrite (83) as

γ · ηATA (γ ) =
1
σ 2 · mmseA

(
v2t
)
. (84)

where γ ≡ v2t /σ
2. Note the following relationship between

the η-transform and the R-transform [32, eq. (2.74)]

RATA
(
−γ · ηATA (γ )

)
=

1
γ · ηATA (γ )

−
1
γ
. (85)

Substituting (84) into (85) yields

RATA

(
−

1
σ 2mmseA

(
v2t
))
=

σ 2

mmseA
(
v2t
) − σ 2

v2t
= σ 2 1

τ 2t
,

(86)

where the second equality in (86) is from (36a) and (39a). We
can rewrite the SE equations in (39a) and (39b) as follows

mmseA
(
v2t
)
=

(
1

τ 2t
+

1

v2t

)−1
, (87a)

mmseB
(
τ 2t

)
=

(
1

v2t+1
+

1

τ 2t

)−1
. (87b)

At the stationary point, we have

mmseA
(
v2∞
)
= mmseB

(
τ 2∞

)
. (88)

Substituting (88) into (86), we get the desired fixed point
equation

1
τ 2∞
=

1
σ 2 · RATA

(
−

1
σ 2 · mmseB

(
τ 2∞

))
. (89)
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