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ABSTRACT In this paper, a measurement campaign for massive multiple-input multiple-output (MIMO)
channel characterization in both line-of-sight (LoS) and non-LoS outdoor environments is introduced. The
measurements are conducted at the center frequency of 15 GHz with a bandwidth of 4 GHz. A virtual
40 × 40 planar antenna array formed by stepping a vertically-polarized bi-conical omni-directional
antenna (ODA) along regularly-spaced grids is used in the receiver (Rx). The transmitter is equipped with
a single ODA. To investigate channel variations over the Rx array, this 1600-element Rx array is split
into multiple 7 × 7 sub-arrays, and a maximum-likelihood parameter estimation algorithm implemented
using the space-alternating generalized expectation-maximization principle is applied to extractingmultipath
components (MPCs) from sub-array outputs. The spatial variability of K -factor, composite channel spreads
in delay, azimuth, and elevation of arrival are investigated. Based on the estimated MPCs’ parameters,
multipath clusters are identified and associated across the array to find the so-called spatial-stationary (SS)
clusters. From several hundreds of SS-clusters extracted, we establish a stochastic model for their life
distances in horizontal and vertical directions, two-dimensional (2-D) life region, and variations of cluster
spreads. These findings are important for massive MIMO channel modeling in the cases, where 2-D large-
scale arrays are considered.

INDEX TERMS Massive MIMO channel measurement and characterization, spatial stationarity, composite
channel parameters, clusters of multipath, cluster life distance, and cluster life region.

I. INTRODUCTION
Massive multiple-input multiple-output (MIMO) transmis-
sion by using large-scale antenna arrays is a key technology
in the fifth generation (5G) wireless communications [1]–[6].
Massive MIMO techniques have been shown to achieve
the benefits of spectral efficiencies, transmit diversity by
using space-time coding, and high-data-rate through spatial
multiplexing [7]–[10]. Characterization of massive MIMO
channels becomes highly demanded especially for high-
speed-railway scenarios [11], [12], crowded scenarios [13]
and local area scenarios [14] where multiuser transmission is
needed. In addition, the 5G communications require a wide
bandwidth ranging from 500 MHz up to 2 GHz. Higher fre-
quency bands (HFBs) beyond 6 GHz become preferable for
signal transmissions due to the abundant spectrum resources

available there [15]–[18]. Channel measurement campaigns
in HFBs, such as 15 GHz [19]–[21], 28 GHz [22], [23],
60 GHz [24], [25], and 70-73 GHz [26], [27] have been
conducted. Recently, the NTT DoCoMo has announced their
experimental results, which show that the 15GHz band can be
adopted to reach the requirement of the transmitting data rate
in the 5G systems [28]. Furthermore, air and rain attenuation
at 15 GHz is relatively small compared to the millimeter-
wave frequency bands [19]. These works reveal the promis-
ing feature of adopting centimeter-wave frequency bands for
wireless communications in a variety of 5G applications.

Many researches conducted recently demonstrate that mas-
sive MIMO techniques are appropriate solutions for meeting
the wideband communication demands of 5G in numerous
scenarios. Similar with the conventional MIMO systems,
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communications using massive MIMO are performed via
antenna selection for hybrid maximum-ratio-combining and
equal-gain-combining [29], [30]. Considering the large num-
ber of antennas available and flexible deployments of the
array, realistic stochastic channel models are important for
generating channel realizations in massive MIMO scenarios
where large-scale antenna arrays are used [31].

Massive MIMO channels are different with the conven-
tional MIMO channels due to the fact that the antennas in
massive MIMO are widely distributed in a larger spatial
region in such a way that the small-scale-characteristic (SSC)
assumption [32] does not apply. As a result, the parameters
of propagation paths observed through different antennas
fluctuate due to the spatial displacement of these antennas,
and the channel exhibits a significant spatial non-stationarity.
Conventionally, the temporal non-stationarity of a channel
represented by e.g. the birth-and-death processes of multi-
path clusters has been investigated in [33]–[35]. By anal-
ogy, spatial non-stationarity is referred to the birth-and-death
behavior of clusters across the antenna array, and the closer
the two antennas are set, the more common scatterers they
share [36]. Thus, the observed clusters can be divided into
two categories: wholly visible clusters that exist in the chan-
nels observed from the entire array, and partially visible
clusters that appear only to a part of the array [37]. The
results reported in [37] show that the non-stationarity from
the cluster partial visibility increases the channel capacity,
which motivates the research of the spatial non-stationarity
in massive MIMO scenarios.

Conventional measurement-based stochastic channel mod-
els, such as the 3rd Generation Partner Project (3GPP)
spatial channel model (SCM) [38], Wireless World Ini-
tiative New Radio (WINNER) II SCM-enhanced (SCME)
model [39], and European Cooperation in Science and Tech-
nology (COST) family of models [40]–[43] are all con-
structed for concentrated MIMO scenarios where the SSC
assumption applies. These models were established based on
the parameter estimates of multipath components (MPCs)
extracted using the high-resolution parameter estimation
algorithms, such as the maximum-likelihood estimation uti-
lized in practise through the Space-Alternating Generalized
Expectation-maximization (SAGE) procedure [44] and the
Richter’s MAXimum likelihood estimation (RiMAX) tech-
nique [45]. The modeling process does not take into account
the channel spatial-variability across the antenna array as
the constant channel is assumed regardless of exact trans-
mitter (Tx) and receiver (Rx) antennas. Furthermore, since
it is impossible to extend the existing SCMs and SCMEs to
the massive MIMO scenarios with satisfactory fidelity to the
reality [46], [47], channel sounding dedicated for massive
MIMO channel characterization is needed although it takes
tremendous efforts in both on-field measurements and data
post-processing.

Recently, channel non-stationarity properties observed
with large-scale arrays considering massive MIMO scenarios
have been reported in literature. For example, in [48]–[51],

measurements at 2.6 GHz frequency bands by using both a
virtual linear array with 128 antenna elements and a physical
cylindrical array in outdoor scenarios demonstrated that the
angles of arrival of MPCs and the clusters’ powers evolve
along with horizontal locations of antennas. The birth-and-
death process of multipath clusters are observed in angular
domains with respect to antenna locations in the large-scale
array [49], [50]. These findings reveal the degrees of freedom
involved in the model frameworks for non-stationary chan-
nels inmassiveMIMO scenarios.Many open issues are raised
when conducting massive MIMO channel characterization,
such as how to select the types of large-scale arrays, how to
effectively model non-stationary channels, and what are the
parameters of interest in the model. To find clues or solutions
to these problems, more measurement campaigns and results
of massive MIMO channel characterizations are required,
especially in the scenarios where complex-structured large-
scale arrays, such as two-dimensional (2-D) planar array, or
three-dimensional (3-D) arrays with hundreds of antennas are
implemented.

In this work, a measurement campaign is introduced for
analyzing the channels observed via a large-scale antenna
array in both line-of-sight (LoS) and non-LoS cases for a
roof-top environment. A virtual planar antenna array with
40×40 positions regularly distributed on a plane perpendicular
to the horizontal ground is used in the receiver. The selected
environment is analogous to that observed in an open hall
where a large-scale antenna array is installed in its center,
and metallic or concrete structures exist in the premise. A
vector network analyzer (VNA)measures the channels within
13 to 17 GHz. To investigate channel variations over the
apertures of the Rx array, the 40×40 planar array is divided
into multiple sub-arrays, and the maximum likelihood esti-
mation implemented using the SAGE procedure is applied to
extracting MPCs observed from individual sub-arrays. The
spatial variability of composite channel parameters, such as
K -factor, channel delay spread, azimuth of arrival (AoA)
spread and elevation of arrival (EoA) spread, is analyzed.
Moreover, we introduce the so-called spatial-stationary (SS)
MPC clusters and extract them from the measurement data.
The statistics of SS-cluster life distance (CLD), and 2-D life
region (LR), are investigated.1 The main objective of those
studies is to verify the applicability of the methods adopted
for massiveMIMO channel characterization with the roof-top
measurement campaign as an example.

The rest of the paper is organized as follows. Section II
describes the measurement equipment and environment.
Section III elaborates the variations of channel parameters

1It is worth mentioning that the cluster LR defined in this work refers
to a surface of a large-scale 2-D antenna array where an MPC cluster is
observable in the channel. Such an MPC cluster is different from the cluster
of physical scatterers. Compared to the scatterer cluster, an MPC cluster
may be visible in a channel in a short distance that the observer moves, due
to the destructive superposition of MPCs. The results reported in this work
demonstrate that most of the MPC clusters, particularly those belonging to
non-LoS category, have their LRs significantly less than the overall aperture
of the 40×40 antenna array.
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and cluster number identified from sub-arrays across the
large-scale Rx array. In Section IV, the definition and the
identification procedure of SS clusters are explained, and
the statistics extracted for the parameters characterizing
these clusters are elaborated. Finally conclusive remarks are
addressed in Section V.

FIGURE 1. Measurement environment and the photographs of the Tx1 in
a LoS scenario and Rx antenna installed on a positioner. (a) Measurement
environment on the roof-top of a building. (b) Tx antenna in the
location ‘‘Tx1’’ in Fig. 1(a). (c) Rx antenna installed in a positioner.

II. MEASUREMENT EQUIPMENT, ENVIRONMENT
AND DATA PROCESSING METHOD
The measurement campaign was conducted in an outdoor
environment on top of Telecom building, Tongji University.
Fig. 1 (a) depicts the environment where the measurements
were carried out. The objects in the premises include a con-
crete attic, external units of air-conditioners, metal handrails,
and air vent fans. A VNA of type ‘‘Agilent 5233’’ config-
ured in a single-Tx and single-Rx mode was applied in the
measurements. The Tx was allocated at a LoS position and
a NLoS position marked with ‘‘Tx1’’ and ‘‘Tx2’’ in two
separate measurements respectively. The environment was
kept stationary without humans moving during the measure-
ments. The measurement system was triggered by remote
control.

A vertically-polarized bi-conical omni-directional
antenna (ODA) was installed in the Tx side at a height of
0.6 m above the ground, as illustrated in Fig. 1 (b). Fig. 1 (c)
shows a virtual Rx antenna planar array mounted in a 40×40
grids on a vertical plane. The lowest position in the virtual

array was 0.5 m above the ground. The neighboring positions
in the array were separated by 0.5λ where λ represents the
wavelength calculatedwith the highest frequency, i.e. 17GHz
considered in the measurements. An ODA similar to the Tx
antenna was attached to a mast connected with a movable
handle on the positioner. The positioning error of the system
is less than 2.5 µm which coincides with the minimum
displacement along the guide rail obtained when the stepping
motor rotates a complete circle.

After the positioner reaches a desired sounding location,
the measurement starts after additional 5 seconds in order for
residual vibration to dissipate completely before data acqui-
sition starts. Two phase-stable cables were used to connect
the Tx and Rx ports from the VNA panel to the Tx and
Rx antenna respectively. The cables were connected to the
antennas through the feeding ports at bottom and drooped
naturally to the ground. The VNA is adopted to measure the
channel transfer functions with total bandwidth of 4 GHz
at center frequency of 15 GHz for 40× 40 = 1600 Rx
positions. The channel impulse responses (CIRs) are obtained
by devolving the responses of the cables and connectors
measured in a calibration campaign. It took about 5 hours
to complete the measurements of all 1600 spatial channels
once. It is worth mentioning that when the cable is bent due
to the motion of the antenna in the Rx array, the fluctuation
of the phases of the cable responses is found to remain less
than 1◦, which introduces some errors in the MPC parameter
extraction by using the high-resolution parameter estimation
method. Table 1 lists the important parameter settings applied
in the measurements.

The 2-D planar array is specifically considered here,
because the deployment of such an array is convenient on
walls in indoor hot-spot scenarios, such as railway stations,
shopping malls, and auditorium in stadiums. A 3-D array
can have more flexible choices for antenna locations which
are hard to emulate in our measurements. Furthermore, it
is important to emphasize that in our measurements, both
the Tx and the Rx antennas are vertically polarized, which
leads to a limitation of our results that only the vertical-to-
vertical polarized components in a channel can be acquired
and analyzed.

A. MPCs EXTRACTION
To extract MPCs from the observed CIRs, a square window
of 7× 7 grids is slid across the 40× 40 Rx array, which
results in totally 34×34 = 1156 sub-arrays. The outputs of
each 49-element virtual sub-array are used as the observations
for channel parameter estimation [52]. Under the assumption
that the environment is static, the baseband representation of
received signals at the output of the antenna at the nth position
in the sub-array is written as

yn(t) =
L∑
`=1

α`cn(�`)u(t − τ`)+ wn(t), t ∈ [0,T ) (1)
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TABLE 1. Specifications of the underlying antenna, the settings of
antenna and of the VNA used in the measurements.

where T represents the sounding duration, L denotes the total
number of specular propagation paths, cn(�) represents the
antenna response when the underlying ODA is located at the
nth position in the sub-array, u(t) is the transmitted signal,
α`, τ`, and �` denote respectively the complex attenuation,
the delay and the DoA of the `th path, and wn(t) represents
circularly symmetric white Gaussian noise components. The
direction vector � is a unite vector e(φ, θ) uniquely deter-
mined by its spherical coordinates (φ, θ) ∈ [−π, π)× [0, π]
according to the relation [53]

� = e(φ, θ) = [sin(θ ) cos(φ) sin(θ ) sin(φ) cos(θ )]T (2)

with [·]T denoting the transpose operation. Notice that
for simplicity, the assumption that the MPCs’ parameters
are constant in the bandwidth considered is applied here.
We denote the unknown parameters in the signal model (1)
as

2 = [α`, τ`, φ`, θ`; ` = 1, . . . ,L]. (3)

The maximum likelihood (ML) estimator 2̂ML(y) of2 given
the observation y = [yn(t); n = 1, . . . ,N ] can be derived
based on (1). Since the estimates of complex attenuations
can be expressed as a function of other parameter estimates,
the calculation of 2̂ML(y) requires solving a 3L-dimensional
optimization problem, which is computationally prohibitive
in practice. As an alternative, the parameter estimates can
be updated iteratively by using the SAGE principle [44].
Typical examples of such algorithms for channel parame-
ter estimation are the Improved Searching and Initializa-
tion (ISI)-SAGE introduced in [32] and the RiMAX in [45].
The performance of these algorithms is subject to the influ-
ences of incomplete and inaccurate signal models [54]. The
readers are referred to these works for detailed explanation
of algorithm derivation, implementation procedures, and per-
formance assessment.

A problem when implementing the SAGE algorithm is
that converging to the global maximum of the likelihood
function is hard to guarantee. In our case, two approaches
are adopted to assist localizing the global maximum: i) when
initializing parameter estimates, the Bartlett beamforming
technique [55] is used, and the local maxima of the delay-
DoA power spectrum are identified to determine the estimates
of path parameters; ii) the iteration number is set to 30.
Furthermore, it is worth mentioning that in our case,
the 7× 7 sub-array has horizontal and vertical dimensions
equal to 5.3 cm. Since the inverse signal bandwidth multi-
plied with the speed of light equals 7.5 cm, the narrow-band
assumption that the array aperture should be much less than
the speed of light multiplied with the inverse signal band-
width does not hold strictly. As a consequence, the estimation
accuracy of parameter estimation method derived based on
the signal model (1) is reduced to a certain extent, espe-
cially when estimating the parameters of paths which own
incident directions close to the plane where the 2-D array is
located.

Fig. 2(a) illustrates an example the scatter-plot of estimated
100 MPCs for a sub-array in the LoS scenario, where the
color of spots codes path power in dB. In the SAGE algorithm
implemented, the searching step is set to 0.025 ns in delay
and 1◦ in the angular domains respectively. It can be observed
from Fig. 2(a) that the path with the strongest power has the
AoA of 90◦, EoA of 0◦, and delay of 58 ns. These parameters
are consistent with those of the LoS path calculated with the
real Tx and Rx locations shown in Fig. 1(a). Figs. 2(a) to 2(d)
depict the AoA-delay power spectra (PSs) of, respectively,
original CIRs, reconstructed CIRs calculated based on the
SAGE estimation result, and residuals of CIRs obtained
by subtracting the reconstructed CIRs from the original
ones. It is obvious that the PS of the reconstructed CIRs
is close to that of the original CIRs, and the PS for the
residuals contain components which have power 30 dB
less than the maximum spectral height of the PS of the
original CIRs.

In general, we found that when the SAGE algorithm is
applied to estimate 100 and 300 paths in the LoS and NLoS
scenarios respectively, the maximum power of the residuals
computed by subtracting the CIRs reconstructed based on
estimated MPCs from the original CIRs is decreased by at
least 30 dB compared with the maximum power of the origi-
nal CIRs. It is obvious that such numbers of paths are signif-
icantly larger than that considered when analyzing channels
below 6 GHz [56]. We postulate that this is due to the follow-
ing reasons: i) more paths are resolved due to higher delay
resolution of 0.25 ns in our measurements; ii) the richness of
scattering is more significant in 13-17 GHz frequency bands
than in below 6 GHz; iii) the assumption that the antenna
radiation pattern is frequency independent is not strictly valid;
iv) the narrow-band assumption that the time span for a planar
wave propagating across the sub-array is much less than
the inverse of the sounding signal bandwidth does not hold
strictly.
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FIGURE 2. Comparison among the SAGE estimation results, and the
power spectra of original CIRs, the reconstructed CIRs and the residuals.
(a) MPCs estimated by using SAGE. (b) AoA-delay PS of the original CIRs.
(c) AoA-delay PS of the reconstructed CIRs. (d) AoA-delay PS of the
residuals.

TABLE 2. Parameter settings for the KPowerMeans-based clustering
algorithm used in the study.

B. CLUSTER-INTERACTING-OBJECT MAPPING
The estimated MPCs are further grouped as clusters by using
theKPowerMeansmethod introduced in [57], with parameter
settings reported in Table 2. It is worth mentioning that some
of the identified clusters include only a single path. This is
because the channel is static, and as a result, only a single

snapshot of channel is obtained in the measurement.With one
realization of path constellation, the KPowerMeans method
considers the paths isolated significantly as single-path
clusters.

In order to verify whether the MPCs estimated and the
clusters identified are reasonable, a cluster-interacting-object
mapping procedure is conducted. The propagation paths are
reconstructed based on the clusters’ center of gravity (CoG)
parameters by using a simple ray-tracing approach introduced
in [58]. In the SIMO case considered here, path reconstruc-
tion starts by launching a ray from the center of an Rx sub-
array along the direction determined by the mean cluster AoA
and EoA. If an object in the environment exists along the ray,
we then connect the Rx antenna with the object, and further
with the Tx. If the path length is approximately equal to the
average delay of the cluster multiplied with the speed of light,
the identified interacting objects are considered to be the last-
hops of paths within the cluster.

Notice that since a planar array consisting of ODAs is used
in our measurements, there exists ambiguity that the esti-
mated AoA, say φ̂ within the range [0◦, 180◦], is in fact −φ̂
within the range [−180◦, 0◦]. Here the normal direction of the
array plane has azimuth of 90◦ and elevation 90◦. This cre-
ates problems when mapping clusters to interacting objects.
A practical solution used in our case is that for an estimated
DoA with spherical coordinate (φ̂, θ̂ ), two rays are launched
from the array center, pointing towards a forward direction
e(φ̂, θ̂ ) and a backward direction e(−φ̂, θ̂ ) respectively. The
objects existing along these two rays are used to construct
single-bounce paths. The path that provides similar delay to
the estimated value is selected, and the other is discarded.
By using this method, we found that in most cases, only one
cluster can be mapped to the attic in the backward side of the
Rx array, and the other clusters are mapped to the objects in
the forward side of the array.

Fig. 3 illustrates as an example, a cluster-interacting-object
mapping result obtained for the channel observed through
a 7 × 7 sub-array by using the aforementioned method.
It can be observed that the locations ofmost identified clusters
are close to the objects in the environment, such as the air
conditioner, stainless-steel handrail, and air vent. This implies
that most clusters are generated via single-bounce paths,
and moreover, the parameter estimation algorithm and the
clustering technique can bring reasonable results in the case
considered.

III. SPATIAL VARIATIONS OF CHANNEL PARAMETERS
In this section, we investigate the variations of K -factors,
the composite channel root-mean-square (rms) delay,
AoA and EoA spreads, as well as the number of clus-
ters, calculated based on the MPCs’ parameter estimates
extracted from the CIRs observed by individual Rx sub-
arrays across the large-scale 2-D array aperture. In order to
find the analytical representation of the parameters’ distri-
butions, the Kolmogorov-Smirnov (KS) testing method is
adopted to assess the ‘‘goodness-of-fit’’ between an empirical

2130 VOLUME 5, 2017



J. Chen et al.: Measurement-Based Massive MIMO Channel Modeling for Outdoor LoS and NLoS Environments

FIGURE 3. The clusters obtained in a 7 × 7 sub-array by using a
ray-tracing-alike method in a LoS scenario.

cumulative density function (cdf) graph and the cdf of
an existing distribution with known expressions. Without
being specifically mentioned, the KS-test shows that the
null-hypothesis is non-rejectable for analytical cdfs and the
empirical graphs shown in this section. This implies that
the fitted probability density function (pdf) with selected
parameters is an appropriate expression of the empirical
distributions.

A. K-FACTOR
As a measure of the fading severity for narrowband chan-
nels [59], K -factor is defined to be the power ratio of LoS
components to NLoS components. For notational conve-
nience, we usePi,j(τ ) to denote a channel power delay profile,
where i, j ∈ [1, . . . , 34] represent the 2-D indices of the
sub-array, and τ is the delay of the path. The power of LoS
component is represented with PLoSi,j which is the maximum
among all estimated MPCs, and the power of the NLoS com-
ponent PNLoSi,j (τ ) is calculated by accumulating the powers of
the other paths. The K -factor K [i,j] in the linear scale for the
channel observed by the [i, j]th antenna can be calculated as
K [i,j]

= PLoSi,j /P
NLoS
i,j .

Fig. 4 depicts K [i,j], i, j = [1, . . . , 34] represented in dB
calculated for the LoS scenario. The ticks along the x- and
y-axes denote respectively the horizontal and vertical loca-
tions of the centers of the sub-arrays in wavelength. It can
be observed that the K -factor varies dramatically within
the range [−2, 8] dB, and it gradually changes across the
large-scale Rx array aperture. Specifically, the K -factor first
decreases when the antenna’s height increases from the bot-
tom of the array, and then rises again when the antenna height
is above 14λ. The largest K -factor can be found at the height
of 3λ above the lowest position. An explanation for observing
largest K -factor at this specific height is that the antenna
radiation pattern has a narrow beam-width in elevation, and
due to this reason, when the sub-array is 3λ above the bottom
of the virtual array, the Tx and Rx antennas are aligned.
Consequently, the power of the LoS component increases
significantly, and a larger K -factor is obtained.

FIGURE 4. K -factor K [i,j ] of channels observed at sub-arrays across the
2-D aperture of Rx array for LoS scenarios.

B. COMPOSITE RMS DELAY SPREAD σ
[i,j ]
τ

Fig. 5 depicts the contour plots of the rms delay spreads

σ
[i,j]
τ of channels for both LoS and NLoS scenarios. The

method applied to calculate the rms delay spread is the same
as adopted for WINNER II SCME modeling [39]. It can be
observed from Fig. 5 that σ [i,j]

τ , i, j ∈ [1, . . . , 34] in the
NLoS scenario are significantly larger than those in the LoS
scenario. Furthermore, it is apparent from Fig. 5(a) that the
distribution of σ [i,j]

τ over the array aperture exhibits block-like
patterns which have clear boundaries in both horizontal and
vertical directions for the LoS scenario. In the areas close to
the boundaries, σ [i,j]

τ changes more abruptly with a difference
up to 2 ns. In the NLoS scenario, σ [i,j]

τ is randomly distributed
in most parts of the array aperture except for a rectangular
region of 10λ × 5λ to the bottom where σ [i,j]

τ fluctuates
dramatically. These observations of rms delay spread varying
significantly can be due to several reasons: i) the paths gener-
ated by scatterers experience birth and death processes from
a sub-array to the next [49]; ii) shadow fading occurs across
the array in such a way that the paths experience significant
attenuation when being observed at a different location.

Fig. 6 illustrates the empirical cdfs P(σ [i,j]
τ < abscissa)

of the composite rms delay spread σ [i,j]
τ in LoS and NLoS

scenarios. It can be observed by comparing these cdfs that
in general, the delay spreads obtained in the LoS scenario
are about one order of magnitude less than those observed
in the NLoS scenario. Both cdfs can be well fitted by using
normal distributions with appropriately chosen parameters
reported in the figure legend, where N (µ, σ ) denotes the
normal distribution with µ and σ being mean and standard
deviation respectively.

C. COMPOSITE AoA SPREAD σ
[i,j ]
φ

Figs. 7(a) and 7(b) depict σ [i,j]
φ of the channels observed for

LoS and NLoS scenarios respectively. It is evident that σ [i,j]
φ

in the NLoS scenario is significantly larger than that observed
in the LoS scenario. Furthermore, the variation pattern of
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FIGURE 5. Composite delay spreads σ [i,j ]
τ of channels observed by

sub-arrays across the 2-D aperture of array for LoS and NLoS scenarios.
(a) Rms delay spread in LoS scenario. (b) Rms delay spread in NLoS
scenario.

FIGURE 6. Empirical cdfs P(σ [i,j ]
τ < abscissa) for channels observed by

sub-arrays across the 2-D aperture of array for LoS and NLoS scenarios.

σ
[i,j]
φ in the LoS scenario looks the same as for σ [i,j]

τ . Even
the blocks’ borders are identical. Fig. 8 demonstrates the
empirical cdfs P(σ [i,j]

φ < abscissa) in LoS and NLoS
scenarios. The fitted curves obtained by using lognormal

FIGURE 7. Composite AoA spreads of channels observed by sub-arrays
across the 2-D aperture of array for LoS and NLoS scenarios.
(a) Composite AoA spread in LoS scenario. (b) Composite AoA
spread in NLoS scenario.

distributions with selected parameters reported in the legends
are also illustrated in Fig. 8. It can be observed that the
distributions of the composite AoA spreads are completely
separated along the abscissa. The mean σ [i,j]

φ represented
in log10([

◦]) equals 0.97, i.e. 100.97 ≈ 9.3◦ and 1.61, i.e.
101.61 ≈ 40.74◦ for the LoS andNLoS scenarios respectively.
The standard deviation of σ [i,j]

φ in log10([
◦]) is observed to be

small, i.e. equal to 0.06 (≈ 1.2◦) and 0.03 (≈ 1.1◦) for LoS
and NLoS scenarios respectively, which implies that although
the values of σ [i,j]

φ exhibit block-like pattern as illustrated in
Fig. 7, the composite AoA spread can be considered approx-
imately identical across the array.

D. COMPOSITE EoA SPREAD σ
[i,j ]
θ

Fig. 9 depicts the contour plots of the composite EoA spreads

σ
[i,j]
θ calculated for LoS and NLoS scenarios. It is observed
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FIGURE 8. Empirical cdfs of composite AoA spreads σ [i,j ]
φ

of channels
observed by sub-arrays across the 2-D aperture of array for LoS and
NLoS scenarios.

that in general, σ [i,j]
θ is larger in NLoS than in LoS scenarios.

We postulate that this is due to the significant richness of
MPCs in the NLoS case. However, by comparing the varia-
tions behavior of σ [i,j]

θ versus the height of sub-array centers,
we observe that in the LoS case, σ [i,j]

θ increases, and in the
NLoS case, σ [i,j]

θ decreases as the sub-array height increases.
Specifically, the average σ [i,j]

θ reduces from 15◦ to 2◦ with
clearly separated stages observed at the height of 6λ, 8λ
and 10λ, respectively. Our conjecture is that the birth-and-
death processes of MPCs occur more regularly in the vertical
dimension than in the horizontal dimension. In the NLoS
scenario, the values of the EoA spreads are either quite small
or very large, which results in the standard deviation of the
NLoS scenario being higher than that in the LoS scenarios.

Fig. 10 illustrates the empirical cdfs P(σ [i,j]
θ < abscissa)

in both scenarios. It can be observed that σ [i,j]
θ ’s are con-

centrated within [0◦, 2◦] in the LoS scenario, and are widely
spread within [0◦, 20◦] in the NLoS scenario. Furthermore,
as illustrated in Fig. 10, the distribution of σ [i,j]

θ is fitted
approximately by using a normal cdf in the LoS scenario. For
the NLoS scenario, the empirical pdf exhibits multi-modal
behavior, and cannot be fitted by a single distribution with a
uni-modal pdf. This effect is consistent with the observation
of stage-like variations of σ [i,j]

θ in the NLoS scenario illus-
trated in Fig. 9(b), implying that σ [i,j]

θ varies deterministically
rather than randomly in the vertical dimension in our case.

By comparing the variation patterns of K -factor, delay
spread, AoA spread, and EoA spread in the LoS scenario,
as illustrated in Figs. 4, 5(a), 7(a), and 9(a) respectively, it is
obvious that the variations ofK -factor, delay spread, andAoA
spread are highly correlated: when the K -factor increases in a
certain area, the delay spread and the AoA spread in the same
area are observed to decrease. However, the variations of the
EoA spread is independent of the variations of the others.
We postulate that these observations are due to the fact that
the scatterers are distributed more horizontally in the open
roof-top environment than in the vertical direction.

FIGURE 9. Composite EoA spreads σ [i,j ]
θ

of channels observed by
sub-arrays across the 2-D aperture of array for LoS and NLoS scenarios.
(a) Composite EoA spreads σ [i,j ]

θ
in LoS scenario. (b) Composite EoA

spreads σ [i,j ]
θ

in NLoS scenario.

E. NUMBER OF CLUSTERS IN CHANNEL OBSERVED
BY INDIVIDUAL SUB-ARRAYS
From the MPCs estimated by using the outputs of individual
sub-arrays, theKPowerMeans clustering algorithm described
in [57] and [60] is applied to extract multiple clusters of
MPCs. For massive MIMO scenarios, the variations of the
cluster characteristics across the array is important for under-
standing the evolving behavior of small-scale channel char-
acteristics observed by using a large-scale antenna array.

Figs. 11(a) and 11(b) depict the distribution of the total
number of clusters identified from individual sub-array across
the large-scale Rx array for the LoS and NLoS scenarios,
respectively. It can be observed from Fig. 11(a) that for the
LoS scenario, the number of clusters existing in the channel
observed by a 7×7 sub-array is less than 30 for most sub-
arrays. It is interesting to observe that the number of clusters
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FIGURE 10. Empirical cdfs P(σ [i,j ]
θ

< abscissa) of composite EoA spreads

σ
[i,j ]
θ

of channels observed by sub-arrays across the 2-D aperture of array
for LoS and NLoS scenarios.

TABLE 3. Empirical statistics of channel parameters.

maintains the same level about 30 across the array with small
variance in the LoS scenario. This phenomenon is caused
by the fact that many MPCs estimated with strong powers
remain observable across the array. Such a high consistency in
propagation constellations leads to similar cluster distribution
and constant number of clusters. For the NLoS scenario
illustrated in Fig. 11(b), the number of clusters is observed
to fluctuate randomly with a larger standard deviation across
the array than in the LoS scenario. The rapid fluctuation of
cluster number is due to the frequent birth and death of paths
across the array aperture. We postulate that in HFBs, scatter-
ing effects can be more significant than in the band below
6 GHz, and many objects not involved in the propagation
below 6 GHz began to interact with waves. Furthermore,
for the large bandwidth adopted, hundreds of paths can be
resolved in delay with high resolution, which increases the
randomness of the observations across the array to a certain
extent. From Fig. 11, it can be observed that the number of
clusters observed by individual sub-arrays can be modeled
as a random process across the array in both LoS and NLoS
scenarios with different standard deviations.

In summary, Table 3 reports the empirical statistics of the
composite channel parameters. The observation that com-
posite delay, AoA and EoA spreads vary in both scenarios
implies that the massiveMIMO transmission technique needs
to be adaptive when different sub-arrays are utilized. Further-
more, the antenna selection techniques which gained research

FIGURE 11. Number of clusters in LoS and NLoS scenarios. (a) Number of
clusters in the LoS scenario. (b) Number of clusters in the NLoS scenario.

attentions for massive MIMO applications [31], should take
into account the exact variations of channels across the array
aperture.

IV. SPATIAL-STATIONARY CLUSTER CHARACTERIZATION
Inspired by the COST 2100 channel models where the vis-
ibility of cluster is probabilistic across snapshots [42], we
introduce the so-called ‘‘spatial-stationary (SS) clusters’’
to characterize the channels in massive MIMO scenarios.
An SS-cluster refers to a cluster which exists in the chan-
nels observed via more than one sub-arrays. Such a cluster
can be generated by the same interacting object(s) in the
environment. However, due to the spatial displacement of
the sub-arrays, the cluster’s parameters may slightly change
with respect to individual sub-arrays, particularly in the
case where interacting objects are close to the array. These
changes are sufficiently small, so the cluster’s parameters
can be viewed as wide sense stationary processes in spatial
domains. Furthermore, an SS-cluster exists in a so-called
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cluster LR, referring to a 2-D surface in the array plane.
Only when an antenna is within a LR for a certain clus-
ter, the channels obtained through these antenna locations
contain realizations of the cluster. It is important to note
that the cluster LR defined here differs from the visibility
region (VR) defined in COST 2100 channel models: the
VR specifies the probability for a cluster being visible by
a user equipment, and the LR is a region in the Rx array
aperture where a cluster exists in the channels observed.
With slight abuse of notations, the parameters characterizing
SS-cluster may include i) the ‘‘CLD’’, i.e. the horizontal and
vertical extension of the LR; ii) the area of ‘‘cluster LR’’
represented in λ2, and iii) the statistics of rms spreads of an
SS cluster in its LR.

The SS-clusters can be identified using a simple approach
based on the extracted multipath clusters for channels
observed with individual sub-arrays. First, a criterion for
determining the stationarity of a cluster is specified. The
parameters of any cluster, say the ith cluster, are organized
as a vector, ζm = [τ̄c,m, φ̄c,m, θ̄c,m, στ,c,m, σφ,c,m, σθ,c,m],
which contains the CoG of the cluster, represented by mean
delay τ̄c,m, mean AoA φ̄c,m, mean EoA θ̄c,m of the ith cluster,
and rms delay spread στ,c,m, AoA spread σφ,c,m and EoA
spread σθ,c,m of the cluster. To verify whether the ith and
jth clusters belong to the same group, the difference vector
1ζ ab = ζ a − ζ b is calculated. If and only if the absolute
values of all entries in 1ζ ab are less than their respective
pre-determined thresholds, we may consider these clusters
with the same wide sense stationarity. The exact procedure
for searching clusters with same stationarity is as follows.
We select the cluster with maximum power from the set
of clusters as a reference cluster. Then the other clusters
with the same stationarity as the reference cluster are iden-
tified. It is possible that these clusters, including the refer-
ence cluster, may not be found from neighboring sub-arrays.
In such a case, these clusters are gathered intomultiple groups
which are separated in the array aperture. Although these
separated clusters still share the same wide sense stationar-
ity, in order to maintain tractable modeling complexity we
decide to view them as different SS-clusters. The number of
SS-clusters exhibiting the same stationarity may be consid-
ered as a random variable, and its statistics extracted can be
included into the model established. Those clusters assigned
to the SS-clusters already identified are removed from the
set of clusters valid for SS-cluster association. Then a new
SS-cluster is extracted from the valid cluster set updated. This
operation iterates until all clusters observed in individual sub-
arrays are assigned to certain SS-clusters.

It is obvious that by changing the threshold values applied
to verify stationarity, SS-clusters may have different exten-
sions and quantities. Practically, we set the thresholds as
follows. First, for mean cluster delay and rms cluster delay
spread, a same threshold τth is applied, and for mean angles
(i.e. azimuth and elevation) and angular spreads, another
threshold ψth is specified. These thresholds are determined
by the criterion that most of the identified SS-clusters should

FIGURE 12. An example of extracted SS-clusters and the objects which
may generate these clusters in the environment. (a) LR of an SS-cluster
generated by LoS path. (b) LR of two SS-clusters generated by reflection
from the ground and attic, respectively. (c) The propagation paths
reconstructed and objects identified which jointly generate the clusters
shown in Fig. 12(a) and Fig. 12(b).

exist in a region with certain spatial extension across the
array. By applying this criterion, we found τth = 2/B with
B representing the total signal bandwidth and ψth = 2◦.
Fig. 12(a) and Fig. 12(b) illustrate three examples of
SS-clusters identified based on the aforementioned method
with τth = 2/B and ψth = 2◦ in the LoS scenario. It can
be observed that these SS-clusters exhibit different exten-
sions across the large-scale array. The SS-cluster shown in
Fig. 12(a) is observable through the whole 34×34 sub-arrays
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across the Rx array. The other two SS-clusters in Fig. 12(b)
exhibit less power and smaller LRs than the aforementioned
one. It can be observed that the LR of the extracted LoS SS-
cluster seems to have a similar varying pattern with that of the
K -factors illustrated in Fig. 4. We postulate that this is due to
the following reasons: In the LoS scenario, the power of the
LoS cluster is much higher than that of the NLoS clusters, and
the power of the NLoS clusters observed across the subarrays
is approximately equal. Thus, the pattern of the K -factors is
determined by the power of the LoS components.

Fig. 12(c) illustrates the reconstructed paths for three
SS-clusters whose LRs are shown in Fig. 12(a) and Fig. 12(b).
It can be observed that the SS-cluster which can be observed
across the whole array was generated by the LoS path, and the
other two NLoS SS-clusters are generated by the reflections
on the ground and on the surface of the attic to the left
respectively. Notice that the interaction locations marked as
‘‘o’’ on the objects in Fig. 12(c) may change slightly when an
SS-cluster is observed at different sub-arrays. In general, we
may consider the extension of an SS-cluster as illustrated in
Fig. 12(b) as the LR of the SS-cluster confined in a vertical
planar array.

By using the SS-cluster identification method proposed,
totally 138 and 331 SS-clusters are extracted for the LoS
and NLoS scenarios respectively. These numbers appear to
be much larger than the cluster number per channel, usually
in the level of dozens, specified in the 3GPP spatial channel
models. This is reasonable since in the case considered here,
we have taken into account the channels observed from a total
of 1156 sub-arrays. After merging the clusters that appear
repetitively in channel observations from different sub-arrays
into SS-clusters, it is still possible to observe hundreds of
clusters throughmultiple portions of a large-scale array.More
specifically, in the LoS scenario, about 5 SS-clusters exhibit
LRs covering the whole Rx array, which according to the
analysis by using the ray-tracing method, are generated by
either the LoS path, or strong reflections on the ground close
to the Tx. There also exists the case where the LR of a
SS-cluster contains only a small number of sub-arrays, with
an area less than λ2. Practically, these SS-clusters exhibit
power more than 30 dB less than the maximum cluster power.
Therefore, the contributions of these clusters to the overall
channel are small and thus negligible for channel modeling.

To characterize a massive MIMO channel, it is important
to analyze the properties of LR for the identified SS-clusters
and examine the dependence of these properties on e.g. LoS
and NLoS scenarios under the influences of environments.
In the following, parameters characterizing the SS-clusters
are calculated, and their statistics extracted based on the
measurement data are presented.

A. CLD IN VERTICAL AND HORIZONTAL
DIRECTIONS - dh AND dv

The CLD in the vertical direction refers to the LR extension
which is calculated to be (N − 1)λ/2 with N being the
number of consecutive sub-arrays in the vertical direction,

FIGURE 13. Empirical cdfs P(dh < abscissa) and P(dv < abscissa) of
cluster life distance dh and dv respectively, for LoS and NLoS scenarios.

and similar definition applied to the CLD in the horizontal
direction. In the case considered here, we use dh and dv to
denote the CLD of an SS-cluster in horizontal and vertical
dimensions respectively. Fig. 13 depicts the empirical cdfs
P(dh < abscissa) and P(dv < abscissa) calculated based
on 138 and 331 SS-clusters for LoS and NLoS scenarios
respectively. It is worth mentioning that we found about 4%
of the SS-clusters in the LoS and NLoS scenarios to have
LRs covering the whole aperture of Rx array. Since these
SS-clusters’ CLDs are limited by the aperture of the under-
lying large-scale array, the cdfs shown in Fig. 13 were calcu-
lated without considering these clusters. It can be observed
from Fig. 13 that dh and dv follow approximately lognormal
distributions, within the support from 0.63λ (calculated from
10−0.2λ according to Fig. 13) to 5λ (calculated with 100.7λ).
The parameters of the fitted pdfs are reported in the legend
of Fig. 13. The CLDs’ cdfs in the LoS scenario are slightly
shifted towards the larger value abscissa compared with cdfs
in the NLoS scenario, indicating that the longer CLD is
observed with higher probabilities in LoS than in NLoS. The
average of the CLD dv is larger than that of dh in average
by 0.5 dB in LoS scenario, and the contrary can be observed
for the NLoS scenario. In average, the SS-clusters maintain
1.2 to 1.5λ CLD in average in both horizontal and vertical
directions. We also observed from Fig. 13 that 90% of CLDs
are less than 5λ (calculated from 100.7λ). In the case where
the carrier frequency equals 15 GHz, this implies that most of
the mean extension of LR in vertical or horizontal dimensions
is less than 10 cm in the antenna array aperture.

B. SS-CLUSTER LR
The channels observed through the Rx antennas confined
in an SS-cluster LR contain the realizations of the same
SS-cluster. In other words, a cluster can be considered to be
‘‘alive’’ only in this 2-D LR. As illustrated in Fig. 12(b), a
realistic SS can have diverse shapes which are difficult to
be fitted with regular shapes. Therefore, we use the area sLR
of the 2-D LR as a metric to quantify the ‘‘alive’’ area of
an SS-cluster in the large-scale array. It is worth mentioning
that in our case, the LoS cluster is observed to exhibit a very
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FIGURE 14. Empirical cdfs P(sLR < abscissa) for LoS and NLoS scenarios.

large LR which covers all antennas in the large-scale array as
illustrated in Fig. 12(b), thus, it is necessary to investigate
the distributions of the LR of NLoS SS-clusters. Fig. 14
depicts the empirical cdfs P(sLR < abscissa) for the NLoS
clusters identified in LoS and NLoS scenarios. The abscissa
represents sLR in log10(sLR/λ

2). It can be observed from
Fig. 14 that the largest sLR is up to 63λ2, which is approx-
imately equal to 1.8 represented in log10(sLR/λ

2) in the LoS
scenario. The median value of sLR is observed to be 0.45 and
0.50, i.e. 2.8λ2 in the NLoS scenario and 3.2λ2 in the LoS
scenario respectively. This indicates that half of the NLoS SS-
clusters are only visible within an area less than a 4×4 planar
sub-array with neighboring antenna elements spaced by λ/2.
Furthermore, only 8% of the SS-cluster have sLR larger 10λ2

in both LoS and NLoS scenarios, which indicates that the
majority of SS-clusters are visible within the region less than
the area of 6×6 planar array. These results clearly illustrate
that the channel observed across a large-scale array in the
outdoor scenarios experiences significant changes in small-
scale. Except for about 4% of the SS-clusters that exhibit
LRs coincident with the whole aperture of the Rx array, other
SS-clusters are only alive in small portions of the large-scale
array.

Fig. 14 also illustrates the cdfs of an estimate ŝLR of the
SS-cluster LR, which is calculated as ŝLR = dv · dh for
both LoS and NLoS scenarios. This estimate may closely
approximate the true sLR in the case where the distributions
of the LR along vertical and horizontal axes are independent,
i.e. the LR exhibits square or rectangular shapes without
being tilted. It can be observed from Fig. 14 that compared
with P(sLR < abscissa), the cdf of ŝLR is more shifted
to the left of abscissa in both LoS and NLoS scenarios.
This indicates that the distributions of LR in vertical and
horizontal dimensions are correlated, and as a result, the
LRs exhibit certain tilted shapes, leading to the effect that
sLR ≥ ŝLR.

C. CLUSTER-LEVEL SPREAD FOR SS-CLUSTERS
The intra-cluster path distribution in parameter space is
necessary when generating paths randomly for individual
clusters. In our case, the statistics of the spreads of each

TABLE 4. Statistical parameters for SS-clusters identified.

SS-cluster in the delay, AoA and EoA domains, as well as
the dependence among the spreads in these domains are of
interest for establishing GBSCMs in massive MIMO scenar-
ios. In individual SS-clusters identified, many clusters are
included which may have slightly different spreads. In such a
case, we calculate the averageµσ(a) and the standard deviation
δσ(a) of the spreads of SS-cluster observed at multiple points
through its LR, where a can be replaced by τ , φ and θ .
With slight abuse of notations, these parameters are called as
‘‘SS-cluster spread’’ and ‘‘SS-cluster spread deviation’’, and
used to characterize the spread of an SS-cluster when it
is alive in the LR. Table 4 reports the mean and standard
deviation of µσ(a) and δσ(a) for a being τ , φ and θ for the LoS
and NLoS scenarios. It can be observed from Table 4 that the
SS-clusters are more concentrated and the spreads are less
variant in LoS scenarios than in NLoS scenarios.

D. DEPENDENCE OF CLUSTER SPREADS IN MULTIPLE
DOMAINS FOR INDIVIDUAL SS-CLUSTERS
The dependence of cluster spreads among delay, AoA and
EoA domains can be represented by the cross-correlation
coefficients of the spreads, which is valuable for understand-
ing the variations of an SS-cluster in its LR. By introducing
vector ζ σ = [σc,τ , σc,φ, σc,θ ]T with (·)T being the trans-
pose operation to denote the spread vector of a cluster, the
cross-correlation coefficients among the spreads for a specific
SS-cluster in its LR are obtained by calculating the covari-
ance matrix of ζ σ based on the observations of ζ σ across
the LR. Fig. 15 illustrates the cdfs of cross-correlation
coefficients ραβ , with α 6= β, α, β ∈ ζ σ for 138 and
331 SS-clusters in LoS and NLoS scenarios respectively. It
can be observed that the mean ραβ ’s are close to 0 in both
scenarios, and the spreads of ραβ are wider in NLoS than in
LoS scenario. Since the lager the absolute value of ραβ , the
higher is the dependence among the cluster’s spreads across
the LR, the observation of wider spread of ραβ in the NLoS
scenario indicates that the variations of the spreads of an
SS-cluster across its LR can have more complex modes in
NLoS than in LoS. Specifically, with ραβ > 0, an SS-cluster
may shrink or expand in a and b domains at the same time
with higher probablility; for ραβ = 0, the spreads of an
SS-cluster change independently, and with ραβ < 0, the
cluster may have an increasing spread in a when its spread in
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FIGURE 15. The empirical cdfs of the correlation coefficients among
cluster-level delay spread, AoA spread and EoA spread in LoS and NLoS
scenarios.

b decreases.

V. CONCLUSIONS
In this contribution, we introduced a recently conducted
measurement campaign for characterizing channels observed
with a 40×40 planar receiver (Rx) array at frequencies from
13 to 17 GHz in outdoor environments. The variations of
channel parameters calculated by using sliding 7×7 planar
sub-arrays were investigated. The results demonstrated that
the K -factor, composite delay spread, azimuth of arrival and
elevation of arrival spreads of the channel, as well as the num-
ber of multipath clusters vary in blocks with clear boundaries,
which is more evident in the line-of-sight (LoS) than in non-
line-of-sight (NLoS) scenarios. We introduced the concept of
‘‘spatial-stationary (SS)-cluster’’ to represent a cluster visible
to multiple elements across the underlying large-scale Rx
array. Statistics extracted based on hundreds of SS-clusters
demonstrated that the average life distance of SS-cluster is
about 1.5 wavelengths in both vertical and horizontal dimen-
sions, and the average area of life region (LR) of SS-cluster
is about 3 wavelengths squared in LoS and NLoS scenarios.
The variations of SS-clusters in LR is more complicated
in NLoS than LoS scenarios. From these observations, we
may conclude that i) the spatial variations of channel char-
acteristics are significant in massive channel modelling for
2-D array structures, and ii) introducing SS clusters in mas-
sive MIMO channel modeling is necessary to characterize
the spatial non-stationarity of channels across antennas arrays
with reduced model complexity. The analysis approaches and
the model structure for massive MIMO channels presented
here can also be applied to the channel measurements in other
scenarios.
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