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ABSTRACT In order to mimic the capability of human listeners identifying speech in noisy environments,
this paper proposes a phoneme classification technique using simulated neural responses from a physio-
logically based computational model of the auditory periphery instead of using features directly from the
acoustic signal. The 2-D neurograms were constructed from the simulated responses of the auditory-nerve
fibers to speech phonemes. The features of the neurograms were extracted using the Radon transform and
used to train the classification system using a deep neural network classifier. Classification performance
was evaluated in quiet and under noisy conditions for different types of phonemes extracted from the
TIMIT database. Based on simulation results, the proposed method outperformed most of the traditional
acoustic-property-based phoneme classification methods for both in quiet and under noisy conditions.

The proposed method could easily be extended to develop an automatic speech recognition system.

INDEX TERMS Auditory-nerve model, DNN, FDLP, MFCC, neurogram, phoneme classification.

I. INTRODUCTION

State-of-the-art algorithms for automatic speech recogni-
tion (ASR) systems suffer from poorer performance when
compared to the ability of human listeners to detect, analyze,
and segregate the dynamic acoustic stimuli, especially in
complex and under noisy environments [ 1]—[3]. Performance
of ASR systems can be improved by using additional levels
of language and context modelling, provided that the input
sequence of elementary speech units is sufficiently accu-
rate [4]. To achieve a robust recognition of continuous speech,
both sophisticated language-context modeling and accurate
predictions of isolated phonemes are required. Indeed, most
of the inherent robustness of human speech recognition
occurs before and independently of context and language
processing [2], [5]. For phoneme recognition, human auditory
system’s accuracy is already above chance level, at a signal-
to-noise ratio (SNR) of —18 dB [2]. Also, several studies have
demonstrated the superior performance of human speech
recognition compared to machine performance both in quiet
and under noisy conditions [6], [7], and thus the ultimate
challenge for an ASR is to achieve recognition performance
that is close to the performance of human auditory system.

Recently, speech recognition communities have shown
a tremendous interests in deep neural networks (DNNs)
which were popular during late 80’s and early 90’s [8], [9].
A neural network becomes a high-quality acoustic model due
to some factors: a) they can be made powerful by making
the network deeper, b) using a much faster hardware and
initializing the weights sensibly, deep neural networks can be
trained effectively, and c) the performance can be improved
by using a larger number of output units [9].

The perceptual linear prediction (PLP) [10], relative
spectra (RASTA) [11], and Mel-frequency cepstral coeffi-
cients (MFCCs) [12] are some examples of the preferred tra-
ditional features for ASR system. These features are derived
by computing the short-term magnitude spectra of speech,
and then the nonlinear transformation is applied to model the
processing of human auditory system. However, a moderate
level of signal distortion due to additive noise or linear fil-
tering may cause a significant departure of feature distribu-
tion from the features of the signal in clean condition [13].
As a result, the performance of ASR systems based on these
features is far below compared to human performance in
adverse conditions [1], [3]. During past years, efforts have
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been made to design a robust ASR system motivated by audi-
tory processing. For example, Holmberg et al. incorporated a
synaptic adaptation into their feature extraction methods and
found that the performance of the system improved substan-
tially [14]. Similarly, Strope and Alwan [15] used a model
of temporal masking and Perdigao and S4 [16] employed a
physiologically-based inner ear model for developing a robust
ASR system. However, these models did not include most
of the nonlinearities observed at the level of the auditory
periphery and thus were not physiologically-accurate.

This study proposes a novel phoneme classification
technique in which the features were extracted from the
simulated neural responses of a physiologically-accurate
model of the auditory system. The responses of this model
were successfully used in several speech intelligibility
metrics [17], [18], speaker identification system [19] and
phoneme classification [20]. Substantial improvements in
performances were achieved over conventional systems
using the neural-response-based feature instead of employ-
ing acoustic-signal-based features. The proposed approach
is also expected to improve the robustness of the phoneme
classification system by mimicking the response properties
observed in the peripheral auditory system in the feature
extraction technique. It has been reported in the literature
that the auditory-nerve (AN) fiber responds preferentially
at a certain phase of the input stimulus, referred to as the
phase-locking property, even when the input signal becomes
noisy, i.e., neural responses are robust against noise [20].
In the proposed method, the neural responses were simu-
lated using a well-known physiologically-based model of the
auditory periphery [21]. This auditory- nerve (AN) model
successfully incorporates most of the nonlinear properties
observed at the peripheral level of the auditory system such
as nonlinear tuning, compression, two-tone suppression, and
adaptation in the inner-hair-cell-AN synapse as well as some
other nonlinearities observed only at very high sound pressure
levels (SPLs) [22], [23]. The model simulates the discharge
timings (spike train sequence) of an AN fiber for a given
characteristic frequency (CF), and thus a 2-D representation
(neurogram) was constructed by simulating the responses of
AN fibers over a wide range of CFs. The features for classifi-
cation (training and testing) were provided by computing the
parallel-beam projections (discrete Radon transform, DRT)
of the 2-D neurogram image for a wide range of angles.
The extracted features were used to train a discriminative
classifier, deep neural network (DNN) [8], [9], to classify
phonemes for both in quiet and under noisy environments.
The performance of the proposed system was compared to
the performance of phoneme classification systems based on
the widely used features such as the MFCC and the frequency
domain linear prediction (FDLP) coefficients [24].

This paper is organized as follows. Section II describes
the computational procedure of the proposed phoneme clas-
sification technique. The performance of the proposed and
traditional methods is provided in section III, and finally the
conclusion of this study is presented in section IV.
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Il. METHODOLOGY

The block diagram of the proposed neural-response-based
phoneme classification method is shown in Fig. 1. The block
diagram consists of two stages: training and testing. In the
training stage, the clean phoneme signal was applied to the
AN model to generate the corresponding neural responses.
Neural responses for a range of CFs were simulated to
construct the neurogram (2D time-frequency representation).
The proposed features were then extracted from the neuro-
gram using the DRT. The features of each phoneme were
trained using the framework of the DNN. In the testing
stage, either the clean or the noisy/distorted phoneme signal
(unknown) was applied to the AN model to generate the
neurogram responses, and the features were extracted using
the DRT. The extracted features of the testing signal were
used as an input to the DNN model to predict the class of
the phoneme (label).

Training

Training AN Neurogram| | Radon DNN || DNN
i Model ™ (ENV) $Transform* Training model
Testing v
Testing AN
phoneme Model

v
v

Neurogram N Radon N Feature | | /Classification
(ENV) Transform| | Matching Matrix

FIGURE 1. Block diagram of the proposed phoneme classifier.

A. AN MODEL AND NEUROGRAM

A physiologically-accurate model of the auditory periphery
was employed in this study to simulate the responses at
different stages of the peripheral auditory system. The input
to the model is an instantaneous pressure waveform of speech
signals taken from the TIMIT database [25], and the final
output is the spike times from the discharge generator. The
schematic diagram and detail description of the employed
AN model can be found in [21] and [23]. Each block in the
diagram represents a phenomenological description of major
components in the auditory periphery from the middle ear to
the auditory nerve.

In the AN model, the acoustic signal is passed through a
middle-ear filter (first stage), followed by parallel signal-path
narrowband (i.e., basilar membrane, BM) and control-path
broadband filters (second stage). The control path reflects
the active processes in the cochlea. The gain and bandwidth
of the nonlinear BM filter are varied according to the out-
put of the control-path filter to account for several level-
dependent response properties of the cochlea such as com-
pression, suppression, and nonlinear phase responses in the
cochlea. The output of the BM filter is passed through the
third stage of the model which simulates inner-hair-cell (IHC)
mechanisms with a static nonlinearity followed by a fifth-
order low-pass filter. Then the IHC output drives the IHC-AN
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FIGURE 2. lllustration of the difference between the spectrogram vs.
neurogram: (a) speech signal taken from the TIMIT database

(‘SA1 sentence’), (b) the corresponding spectrogram and

(c) neurogram response.

synapse which provides the instantaneous synaptic release
rate as output. Finally, the discharge times are produced by
a renewal process that includes both absolute and relative
refractory effects. The model responses have been extensively
validated against a wide range of physiological recordings
from the peripheral auditory system to both simple and com-
plex stimuli [21], [23]. However, to construct the 2-D neuro-
gram, the model IHC-AN synapse output which provides the
probability of instantaneous discharge rate of AN fibers as a
function of time was used in the present study.

In this study, the IHC-AN synapse outputs for 32 AN
fibers with CFs ranging from 150 Hz to 8 kHz were used
to construct neurogram. Conceptually, a neurogram is anal-
ogous to a spectrogram that gives a pictorial representation
of neural responses in the time-frequency domain. Fig. 2
shows the two types of representation, spectrogram and neu-
rogram plots, in response to a typical signal taken from the
TIMIT database. The neurogram was initially constructed by
averaging the synapse output of each CF (AN fiber) with
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a bin-width of 100 us, and then the resulting response was
smoothed by a Hamming window of 128 samples. Thus, the
resulting neurogram reflects a relatively slow variation in the
amplitude of the input speech signal and is referred to as
the envelope (ENV) neurogram [26].

B. DISCRETE RADON TRANSFORM (DRT)

The multiple parallel-beam projections of the image, f (x, y),
from different angles are referred to as the discrete Radon
transform. The projections are computed by rotating the
source around the center of the image [27]. In general, the
Radon transform Rg(x/) of an image is the line integral
of f parallel to the y,-axis,

Ro (x) = /Oof(x’ cos (8) — v sin (0) , x sin (0)
+ y'cos(6))dy’ (D

x| | cos(0)
[y’] - [—sin(@)
Fig. 3 illustrates the geometry of the Radon transform.
The DRT has been extensively applied in image process-
ing applications such as the computed axial tomography
(CAT scan), barcode scanners, and electron microscopy of
macromolecular assemblies like viruses and protein com-
plexes. Also, a texture analysis method [28] and a face
recognition framework [29] were previously developed based
on Radon projections on the input image. Motivated by
these applications, in this study, the proposed features were
extracted by applying the DRT on the 2-D neurogram image.
Quantitatively, the Radon coefficient in this case represents
the relative spectro-temporal information across CFs for dif-
ferent angles of projection which would capture the relevant
perceptual features of phonemes. The Radon projection coef-
ficients for different angles were then combined to form the
feature vector for each neurogram.

where

sin (0)
cos(f) i| &
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FIGURE 3. Geometry of the discrete Radon transform.

C. DEEP NEURAL NETWORK (DNN)

DNNs are receiving increasing attention for acoustic mod-
eling in speech recognition, especially for large-scale
tasks [9], [30]-[32]. In general, the classification problem
can be solved using multiple hidden layers. In this study,
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two layers have been used and trained up (each layer individ-
ually) using special type of artificial neural networks known
as the autoencoder and the sofmax layer. Autoencoder is
unsupervised machine learning technique to encode a data
set for the purpose of dimensionality reduction. The structure
of autoencoder network is similar to that of the traditional
feed forward multilayer perceptron (MLP) network but with
the output nodes having the same size as the input nodes.
In general, the autoencoder technique consists of two stages:
encoder and decoder. When the number of nodes in the hidden
layer is less than the size of the input layer, a compressed
version of the input can be achieved. In other words, the input
is mapped to a compressed representation (encoder stage).

Similarly, the autoencoder network can be decoded to
map the compressed representation back to the original
input (decoder stage). In this study, two autoencoders
were employed. The first autoencoder with a hidden layer
of 400 neurons was trained to encode the 735-dimensional
input features (the Radon projections of the neural responses
as explained in subsection E) to a 400-dimensional output.
This output was fed to the second autoencoder with a hidden
layer of 100 neurons to map the 400-dimensional data to
100-dimensional feature set.

Unlike the autoencoders, the softmax layer is a super-
vised machine learning technique that uses a multinomial
logistic regression to train (classify) the input feature vectors
according to the corresponding labels. The input to the soft-
max layer is the 100-dimensional features set (output of the
second autoencoder). The output of the softmax layer con-
sists of 39 neurons which represents the number of phoneme
classes.

As a summary, the 735-dimensional proposed feature vec-
tors were compressed to a set of 100-dimensional represen-
tation using two networks of autoencoder, and the softmax
layer was then employed to classify the compressed form of
features into the required classes. The trained network was
saved to be used in the testing stage for predicting the classes
of the test data-set. Fig. 4 shows the schematic diagram of the
neural network.

As a future work, DNNs can be integrated with hidden
Markov models (HMMs) for developing a continuous speech
recognition system [30] using the same proposed feature.

D. DATASET AND PHONE CLASSES
Experiments were performed on the complete test set of the
TIMIT database [25]. There are two ““‘sa’ (dialect) sentences
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in the TIMIT database spoken by all speakers that may result
in artificially high classification scores [33]. To avoid any
unfair bias, experiments were performed on the “si” (diverse)
and “sx” (compact) sentences. The training data set consists
of 3696 utterances from 462 speakers, whereas testing set
consists of 1344 utt erances from 168 speakers (not included
the training set). The glottal stop /q/ was removed from the
class labels, and the 61 TIMIT phoneme labels were collapsed
into 39 labels following the standard practice given in [33].
Further, we evaluate the classification performance using a
broad phone-class approach proposed by Reynolds and Anto-
niou [34]. White noise, street noise, station noise and airport
noise [35] with different signal-to-noise ratios (SNRs) were
added to the clean phoneme signals to evaluate the perfor-
mance of the proposed and two traditional methods.

E. PROCEDURE

Each phoneme signal was up-sampled to 100 kHz which was
required by the AN model in order to ensure stability of
the digital filters implemented for faithful replication of fre-
quency responses of different stages (e.g., middle ear) in the
peripheral auditory system. The sound pressure level (SPL) of
all phonemes was set to 70 dB which represents the preferred
listening level for a monaural listening situation. Because
the AN model used in this study is nonlinear, the neural
representation would be different at different sound levels.

However, for the purpose of classification, all phonemes
were isolated (from TIMIT) and scaled to 70 dB SPL.

In the DNN training phase, the Radon projection coeffi-
cients were calculated from the phoneme neurogram using
twenty one (21) rotation angles ranging from 0° to 180° in
steps of 9°. The vector of each Radon projection was resized
to 35 points and then combined together for all angles to form
a (1 x 735) feature vector. Thus the total number of features
for each phoneme was 735 irrespective of the duration of the
phoneme in the time domain. A mapping function was used
subsequently to normalize the mean and standard deviation
of the feature vector to 0 and 1, respectively. All normalized
data from each phoneme were combined together to form an
input array for DNN training. The corresponding label vector
of phoneme classes was also constructed.

In testing phase, the Radon projection coefficients using
the same twenty one rotation angles were calculated from
the test (unknown) phoneme neurogram. The label (class)
of the test phoneme was identified using the approximated
function obtained from the DNN training stage. Fig. 5 shows
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FIGURE 5. Neurogram-based feature extraction for the proposed method:
(a) a typical phoneme waveform (/aa/), (b) neurogram representation of
the phoneme signal, (c) the Radon projection coefficients of the
neurogam for an angle of 0° both in quiet and under noisy

conditions (0 and 10 dB SNRs).

example features extracted by applying the Radon transform
on the neurogram. Fig. 5(a) shows the waveform of a typical
phoneme (/aa/) taken from the TIMIT database and the cor-
responding neurogram representation is shown in Fig. 5(b).
Fig. 5(c) shows the Radon projection coefficients of the
neurogram for an angle of 0° for the phoneme signal in
quiet (solid line) and at SNRs of 0 dB (dashed line) and
10 dB (dotted line).

In order to compare the accuracy of the proposed
method to the performance of two traditional methods, the
RASTAMAT [36] and FDLP [37], [38] toolboxes were
used for extracting MFCC and FDLP features, respectively,
from all phonemes. Each phoneme signal was divided into
frames using a Hamming window of length 25 ms with an
overlap of 10 ms between frames. For each frame, 39 features
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(dimension of the classifier) consisting of 3 groups such as
Ceps (Mel-frequency cepstral coefficients), Del (derivatives
of Ceps) and Ddel (derivatives of Del) with 13 features per
group were computed.

As a result, for each phoneme the size of the MFCC
coefficients array is [ x 39, where [ is the total number of
frames (observations). It is important to mention that the
number of features (39) is fixed for all phonemes, whereas
[ varies depending on signal duration. Similarly, the same
size of overlapped frames and window type were used in
computing the corresponding 39 FDLP features for each
frame. The structure of the FDLP feature array is similar
to that of the MFCC method. In the training stage, the
DNN network shown in Fig. 4 was employed to train the
39-dimensional MFCC/FDLP features. For both MFCC and
FDLP the first autoencoder with a hidden layer of 200 neu-
rons was trained to encode the 39-dimensional input features
to a 200-dimensional output. This output was fed to the sec-
ond autoencoder with a hidden layer of 100 neurons to map
the 200-dimensional data to 100-dimensional feature set. The
input to the softmax layer is the 100-dimensional features set
(output of the second autoencoder). The output of the softmax
layer consists of 39 neurons which represents the number of
phoneme classes. In the testing stage, the feature vectors of
an unknown phoneme with a size of [ x 39 were used as an
input to the DNN model generated form the training stage.
The model predicts / values (the range is from O to 39) and
the class which has a maximum repetition over the / values
determines the final identity (label) of the test phoneme.

Ill. RESULTS AND DISCUSSIONS
This section provides simulation results of the proposed,
MFCC- and FDLP-based phoneme classification methods.
These methods were tested both in quiet and under noisy con-
ditions. For phoneme classification under noisy conditions,
the features extracted from original (clean) phoneme samples
of the TIMIT train subset were used to train DNN models.
In the testing stage, different noise with a particular signal
to noise ratio was added to the test phoneme signal from the
TIMIT test subset, and proposed features were then extracted.
In this study, different values of SNRs ranging
from O to 25 dB in steps of 5 dB were considered to eval-
uate the performance of the classification methods. To gen-
erate the confusion matrices of segment classification for
the three methods, the full phone-against-phone confusions
matrices were first calculated, and all the entries within each
broad-class block were then added together to provide one
value [34]. The segment classification confusion matrices
areshown in Table I for quiet (clean) condition. It is obvi-
ous that closures (CLO) were identified more accurately
for MFCC and neurogram-based features. For FDLP-based
features plosives were less confused with others. For FDLP
and neurogram features some of the plosives (PLO) and
fricatives (FRI) were confused with other groups, but most
of the confusions were observed within these two groups.
Similarly, semivowels (SVW) and vowels (VOW) were con-
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TABLE 1. Confusion matrices for segment classification in quiet (clean)
condition using three features: MFCC, FDLP, and Auditory Neurogram.
Averaged accuracy for MFCC, FDLP and proposed features

are 60.55%, 40.94% and 67.71%, respectively.

PLO FRI NAS SVW  VOW DIP CLO

MFCC
PLO 38.28 8.56 7.26 14.91 16.38 0.5 14.1
FRI 1092  39.97 8.23 7.38 8.3 133 23.87
NAS 10.58 288  57.69 7.69 9.62 0 11.54
SVW 25 0 0 25 0 25 25
VOW 0.38 1.79 146  20.56  56.99 4.65 1.04
DIP 0 0.28 506 2275 4775  24.16 0
CLO 3.75 1.42 3.08 0.29 0.47 0 9099
FDLP
PLO 77.59 11.2 1.68 0.28 1.96 0 7.28
FRI 1532 73.14 0.79 3.16 1.9 0 5.69
NAS 3.94 3.67  58.79 9.97 14.7 0.26 8.66

SVW 426 2.29 786  67.59 13.58 1.31 3.11
VoW 3.96 1.42 6.35 11.8  68.26 3.96 4.26
DIP 1.38 0 3.21 4.13 17.89  71.56 1.83
CLO 11.93 10.17 4.59 3.1 3.67 0.15  66.39

Neurogram-Radon
PLO 85.39 9.40 0.68 0.71 0.69 0.00 3.14
FRI 6.68 8743 1.10 0.90 0.68 0.06 3.15
NAS 0.48 374 79.13 4.09 5.95 0.05 6.57
SVW 0.59 1.16 203 7948 1334 2.04 1.37
VOW 0.27 0.71 2.76 7.82 8250 5.11 0.82

DIP 0.00 0.00 0.26 406 2457  71.10 0.00
CLO 2.52 4.74 3.27 0.70 0.93 0.02  87.82

fused more among these groups compared to other groups for
all three methods.

However, the proposed method outperformed the two other
traditional methods in terms of accuracy.

Table II shows classification accuracies of individual
classes using different features for different noise types at
six levels of SNR. For street, train station and airport noises,
the performances of the proposed method for all SNRs were
better than the results for all other features. MFCC features
showed better performance for white noise at all noisy con-
ditions except at 0 dB SNR.

The percentage accuracies of broad phone classes as a
function of SNR are shown in Fig. 6. It is clear that the
proposed method resulted better accuracy compared to the
performance of other two methods at all noisy environments
except for white noise. For street, train station and airport
noises, the classification accuracy of the proposed method
dropped from 82.84% in quiet to ~58% at 0 dB SNR, whereas
for the same condition, the performance of the MFCC-
and FDLP-based methods declined from 73.15% to ~38%
and from 51% to ~30%, respectively. For white noise,
MECC features showed a relatively better performance com-
pared to using other features.

acoustic measurements for phoneme classification,
and their broad class accuracy using the complete set
(118 speakers) Plenty of research has been done on
phoneme classification [13], [32], [39]-[41]. The core test set
(7,215 tokens) of the TIMIT database was used in most of
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TABLE 2. Individual phone class accuracies (%) for different feature
extraction techniques using speech with additive noises. The best
performance for each condition is indicated in bold.

SNR (dB) 0 5 10 15 20 25
White Noise

MFCC 18.1 29.94 41.3 49.74 55.49 58.46

FDLP 17.33  21.01 23.95 28.07 32.04 34.97

Neurogram 23.53  29.56 35.77 42.61 50.88 57.99

Street Noise

MFCC 23.66  32.55 41.04 49.13 54.84 58.29

FDLP 18.97  22.57 26.32 29.47 32 38.65

Neurogram 32.87 43.87 53.21 60.31 64.76 66.84

Train Station Noise

MFCC 2479 3424 43.55 50.84 55.22 57.12

FDLP 21.47 3047 37.47 25.56 39.1 34.69

Neurogram 33.61 42.3 50.89 57.6 62.24 65.51

Airport Noise
MEFCC 23.01 3495 45.87 53.8 58.08 59.7
FDLP 21.98 2632 29.56 31.13 37.86 39.52

Neurogram 35.38  46.79 55.88 62.17 65.83 67.26

the literature for the evaluation of performances of different
phoneme classification methods [13], [34], [40], [42]. How-
ever, in order to include more variations of phonemes, the
proposed method was tested and results are reported here
using the complete set of the TIMIT database (50,754 tokens).
In quiet, a classification accuracy of 84.1% for the core test
set was reported by Reynolds and Antoniou [34], whereas
the proposed method achieved an accuracy of 8§3.48% for the
complete test set. Halberstadt ef al. used heterogeneous was
79.0%, whereas the accuracy using our method was 83.48%
(168 speakers) [42]. In 2005, Johnson et al. showed the result
for the complete set using the HMM as a classifier, and they
reported the single phone accuracy of 54.86% and 35.06%
using the MFCC and reconstructed phase space (RPS)-based
method, respectively [41], whereas the proposed neural-
response-based method showed an accuracy of 67.71% for
single phones. We also showed the result of 60.55% using
the MFCC-based feature with the DNN as a classifier.

Similarly, Saeb er al.[40] used the sparse representation
for a robust phoneme classification for the core set. At clean
condition, their performance was 75.12%, but it dropped
to 10% at 20 dB SNR for white noise, whereas the
accuracy of the proposed method for the complete set
dropped from 67.71 % in quiet to 50.88% for the same
SNR condition (20 dB).

To investigate the reason behind robustness of the neural-
response-based proposed method, a typical phoneme (/ao/) of
length 90 ms was used as an input to the AN model to gen-
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FIGURE 6. Broad class accuracies (%) for different feature extraction techniques. Performances were evaluated under four different
types of noise (a: white noise, b: street noise, c: train station noise, and d: airport noise). The proposed feature (auditory neurogram)
exhibited better performance in comparison to the result for both MFCC and FDLP features in all noisy cases except for white noise.

erate the corresponding neurogram responses. The phoneme
waveform in the time domain is shown in Fig. 7(a).

The corresponding MFCC and FDLP coefficients are
shown for each frame in Fig. 7(b) and (c), respectively.
The size of the generated neurogram image was 32 by 20,
where the neural responses were simulated for 32 CFs. All
columns of neurogram array were combined together to form
a 1-D vector (the new size was 1 x 640) which is shown in
Fig. 7(d). The responses (features) of the phoneme in quiet
are shown by the solid lines, and the responses using the
same phoneme distorted by a white noise of 0 dB SNR are
shown by the dotted lines in each corresponding plots (b, c,
d). The correlation coefficient between these two vectors was
com-puted using the following equation and was found to
be ~0.54 for the neurogram feature, 0.43 for MFCC, and 0.27
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for FDLP coefficients.

%: ; (Amn - A) (an - B)

\/ (; 5 - A)z) (; 5 B - B)z)

where A and B are the mean values of combined vector from
the clean (A) and distorted/noisy (B) neurograms or features,
respectively.

Based on the similarity index, it is obvious that the pro-
posed neural features were more robust compared to the
traditional acoustic-property-based features. This observa-
tion is further supported by the findings in study [43] that
neural responses are robust to noise due to the phase-locking

3)

r =

639
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FIGURE 7. (a) Signal waveform of the phoneme /ao/, (b) MFCC features extracted from the phoneme /ao/ in quiet (solid line) and at an SNR
of 0 dB (dotted line) conditions. The correlation coefficient between the two vectors was 0.43, (c) FDLP features in clean and noisy conditions.
The correlation coefficient between the two cases was 0.27, (d) Neurogram responses of the phoneme /ao/ in quiet and noisy conditions.

The Correlation coefficient between the two vectors was 0.54. For MFCC and FDLP features, the phoneme was divided into frames and

39 coefficients were computed from each frame.

property of the neuron (especially at lower CFs). More-
over, it was found that in response to a vowel-like stim-
ulus at a conversational speech level, the AN response is
phase-locked almost exclusively to the formant frequency
closest to the fiber’s CF, and this phenomenon is referred
to as the synchrony capture [44]. The synchrony cap-
ture by the formants makes temporal representations of
spectral shape very robust. The auditory-periphery model
employed in this study successfully captures all of these
properties [45], and thus the proposed neural feature could
contribute to the better classification performance simi-
lar to the performance of human listeners with normal
hearing.

In order to explore the effect of number of Radon angles
on classification accuracy, Fig. 8 presents the single clas-
sification accuracy for the proposed method as a function
of the number of Radon angles. For an angle, the accuracy
was almost 30% for the signals in quiet. With the increase
of number of angles, the classification accuracy increased
substantially up to a number of 21. The number of Radon

640
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60 [

w
(=]
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3

w
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20

20 30 40 50
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1 10
FIGURE 8. Phoneme classification accuracy in quiet as a function of the

number of Radon angles (between 0° and 180°) used to encode phoneme
information.

angles used in this study was chosen as twenty one based
on the phoneme classification accuracy for both in quiet and
under noisy conditions.
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IV. CONCLUSIONS

A phoneme classification technique was proposed in this
study based on the application of Radon transform on simu-
lated neural responses from a model of the auditory periphery.
The performance was evaluated on the complete test set
of the TIMIT database and compared to the results using
two standard acoustic-property-based methods. In general,
the proposed method outperformed MFCC- and FDLP-based
classification methods for both in quiet and under most of the
noisy conditions. The robustness in the performance of the
proposed neural-response-based method could be attributed
to the nonlinear properties of the neurons in the peripheral
auditory system, and the Radon transform applied on the
auditory neurogram successfully captures the relevant per-
ceptual features of the phonemes.

REFERENCES

(1]

[2]

[3]

[4]

[5]

[6]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R. P. Lippmann, ““Speech recognition by machines and humans,” Speech
Commun., vol. 22, pp. 1-15, Jul. 1997.

G. A. Miller and P. E. Nicely, “An analysis of perceptual confusions
among some English consonants,” J. Acoust. Soc. Amer., vol. 27, no. 2,
pp. 338-352, 1955.

J. J. Sroka and L. D. Braida, “Human and machine consonant recogni-
tion,” Speech Commun., vol. 45, no. 4, pp. 401-423, 2005.

J. Yousafzai, M. Ager, Z. Cvetkovic, and P. Sollich, ‘““Discriminative
and generative machine learning approaches towards robust
phoneme classification,” in Proc. Inf. Theory Appl. Workshop, 2008,
pp. 471-475.

G. A. Miller, G. A. Heise, and W. Lichten, “The intelligibility of speech
as a function of the context of the test materials,” J. Experim. Psychol.,
vol. 41, no. 5, pp. 329-335, 1951.

J. B. Allen, “How do humans process and recognize speech?”
IEEE Trans. Speech Audio Process., vol. 2, no. 4, pp. 567-577,
Oct. 1994.

B. T. Meyer, M. Wichter, T. Brand, and B. Kollmeier, ‘“Phoneme
confusions in human and automatic speech recognition,” in Proc.
INTERSPEECH, 2007, pp. 1485-1488.

G. Hinton et al., ““Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Signal
Process. Mag., vol. 29, no. 6, pp. 82-97, Nov. 2012.

L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neu-
ral network learning for speech recognition and related applications:
An overview,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
May 2013, pp. 8599-8603.

H. Hermansky, “Perceptual linear predictive (PLP) analysis of speech,”
J. Acoust. Soc. Amer., vol. 87, no. 4, pp. 1738-1752, 1990.

H. Hermansky and N. Morgan, “RASTA processing of speech,” IEEE
Trans. Speech Audio Process., vol. 2, no. 4, pp. 578-589, Oct. 1994.

F. Zheng, G. Zhang, and Z. Song, “Comparison of different implemen-
tations of MFCC,” J. Comput. Sci. Technol., vol. 16, no. 6, pp. 582-589,
Nov. 2001.

J. Yousafzai, P. Sollich, Z. Cvetkovié, and B. Yu, “Combined features and
kernel design for noise robust phoneme classification using support vector
machines,” IEEE Trans. Audio, Speech, Language Process.,vol. 19,n0.5,
pp. 1396-1407, Jul. 2011.

M. Holmberg, D. Gelbart, and W. Hemmert, “‘Automatic speech recogni-
tion with an adaptation model motivated by auditory processing,” IEEE
Trans. Audio, Speech, Language Process., vol. 14, no. 1, pp. 43-49,
Jan. 2006.

B. Strope and A. Alwan, “A model of dynamic auditory perception and
its application to robust word recognition,” IEEE Trans. Speech Audio
Process., vol. 5, no. 5, pp. 451-464, Sep. 1997.

F. Perdigao and L. S4, ““Auditory models as front-ends for speech recog-
nition,” in Proc. NATO ASI Comput. Hearing, 1998, pp. 179-184.

A. Hines and N. Harte, “Speech intelligibility prediction using a neu-
rogram similarity index measure,” Speech Commun., vol. 54, no. 2,
pp. 306-320, 2012.

VOLUME 5, 2017

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

N. Mamun, W. A. Jassim, and M. S. A. Zilany, ‘“Prediction of
speech intelligibility using a neurogram orthogonal polynomial measure
(NOPM),” IEEE/ACM Trans. Audio, Speech, Language Process., vol. 23,
no. 4, pp. 760-773, Apr. 2015.

M. A. Islam, W. A. Jassim, N. S. Cheok, and M. S. A. Zilany, “A robust
speaker identification system using the responses from a model of the
auditory periphery,” PLoS ONE, vol. 11, no. 7, p. e0158520, 2016.

M. S. Alam, W. A. Jassim, and M. S. A. Zilany, ‘“Neural response based
phoneme classification under noisy condition,” in Proc. Int. Symp. Intell.
Signal Process. Commun. Syst. (ISPACS), Dec. 2014, pp. 175-179.

M. S. A. Zilany, I. C. Bruce, P. C. Nelson, and L. H. Carney, “A phe-
nomenological model of the synapse between the inner hair cell and audi-
tory nerve: Long-term adaptation with power-law dynamics,” J. Acoust.
Soc. Amer., vol. 126, no. 5, pp. 2390-2412, 2009.

L. Robles and M. A. Ruggero, “Mechanics of the mammalian cochlea,”
Physiol. Rev., vol. 81, no. 3, pp. 1305-1352, Jul. 2001.

M. S. A. Zilany and I. C. Bruce, “Modeling auditory-nerve responses
for high sound pressure levels in the normal and impaired auditory
periphery,” J. Acoust. Soc. Amer., vol. 120, no. 3, pp. 1446-1466, 2006.

S. Ganapathy, S. Thomas, and H. Hermansky, ‘“Temporal envelope com-
pensation for robust phoneme recognition using modulation spectrum,”
J. Acoust. Soc. Amer., vol. 128, pp. 3769-3780, 2010.

J. Garofolo et al., “TIMIT acoustic-phonetic continuous speech corpus,”
Linguistic Data Consortium, Philadelphia, PA, USA, Tech. Rep. 101,
1993.

B. C. J. Moore, “The role of temporal fine structure processing in
pitch perception, masking, and speech perception for normal-hearing
and hearing-impaired people,” J. Assoc. Res. Otolaryngol., vol. 9, no. 4,
pp. 399-406, 2008.

R. N. Bracewell, Two-Dimensional Imaging (Prentice-Hall Signal Pro-
cessing Series). Englewood Cliffs, NJ, USA: Prentice-Hall, 1995.

K. Jafari-Khouzani and H. Soltanian-Zadeh, ‘“Rotation-invariant mul-
tiresolution texture analysis using Radon and wavelet transforms,” IEEE
Trans. Image Process., vol. 14, no. 6, pp. 783-795, Jun. 2005.

D. V. Jadhav and R. S. Holambe, “‘Feature extraction using Radon and
wavelet transforms with application to face recognition,” Neurocomput-
ing, vol. 72, pp. 1951-1959, Mar. 2009.

L. Deng et al., “Recent advances in deep learning for speech research
at Microsoft,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
May 2013, pp. 8604-8608.

A.-R. Mohamed, G. Dahl, and G. Hinton, “Deep belief networks
for phone recognition,” in Proc. NIPS Workshop Deep Learn. Speech
Recognit. Rel. Appl., 2009, p. 39.

D. Varghese and D. Mathew, ‘“Phoneme classification using
Reservoirs with MFCC and Rasta-PLP features,” in Proc. Int. Conf.
Comput. Commun. Inform. (ICCCI), 2016, pp. 1-6.

K.-F. Lee and H.-W. Hon, ““Speaker-independent phone recognition using
hidden Markov models,” IEEE Trans. Acoust., Speech Signal Process.,
vol. 37, no. 11, pp. 1641-1648, Nov. 1989.

T. J. Reynolds and C. A. Antoniou, “Experiments in speech recognition
using a modular MLP architecture for acoustic modelling,” Inf. Sci.,
vol. 156, pp. 39-54, Nov. 2003.

K. Hopkins and B. C. Moore, “The contribution of temporal fine structure
to the intelligibility of speech in steady and modulated noise,” J. Acoust.
Soc. Amer., vol. 125, no. 1, pp. 442-446, 2009.

D. P. Ellis, “PLP and RASTA (and MFCC, and inversion)
in MATLAB,” Columbia Univ.,, New York, NY, USA, Tech.
Rep. 225, 2005. [Online]. Available: http://www.ee.columbia.

edu/~dpwe/resources/matlab/rastamat/

S. Ganapathy, S. Thomas, and H. Hermansky, ‘‘Feature extraction using
2-D autoregressive models for speaker recognition,” Johns Hopkins
Univ., USA, Tech. Rep. 164, 2012.

S. Thomas, S. Ganapathy, and H. Hermansky, ‘“Recognition of rever-
berant speech using frequency domain linear prediction,” IEEE Signal
Process. Lett., vol. 15, pp. 681-684, 2008.

L. D. Vignolo, H. L. Rufiner, D. H. Milone, and J. C. Goddard, “Evo-
lutionary splines for cepstral filterbank optimization in phoneme clas-
sification,” EURASIP J. Adv. Signal Process., vol. 2011, p. 284791,
Jan. 2011.

A. Saeb, F. Razzazi, and M. Babaie-Zadeh, “SR-NBS: A fast sparse
representation based N-best class selector for robust phoneme classifi-
cation,” Eng. Appl. Artif. Intell., vol. 28, pp. 155-164, Feb. 2014.

641



IEEE Access

Md. S. Alam et al.: Phoneme Classification Using the Auditory Neurogram

[41] M. T. Johnson, R. J. Povinelli, A. C. Lindgren, J. Ye, X. Liu, and
K. M. Indrebo, “Time-domain isolated phoneme classification using
reconstructed phase spaces,” IEEE Trans. Speech Audio Process., vol. 13,
no. 4, pp. 458-466, Jul. 2005.

[42] A. K. Halberstadt and J. R. Glass, ‘“Heterogeneous acoustic measure-
ments for phonetic classification 1,” in Proc. EUROSPEECH, 1997,
pp- 1-4.

[43] M.I Miller, P. E. Barta, and M. B. Sachs, ““Strategies for the representa-
tion of a tone in background noise in the temporal aspects of the discharge
patterns of auditory-nerve fibers,” J. Acoust. Soc. Amer., vol. 81, no. 3,
pp. 665-679, 1987.

[44] E.D. Young and M. B. Sachs, ‘“Representation of steady-state vowels in
the temporal aspects of the discharge patterns of populations of auditory-
nerve fibers,” J. Acoust. Soc. Amer., vol. 66, no. 5, pp. 1381-1403, 1979.

[45] M.S. A.Zilany and I. C. Bruce, ‘‘Representation of the vowel/e/in normal
and impaired auditory nerve fibers: Model predictions of responses in
cats,” J. Acoust. Soc. Amer., vol. 122, no. 1, pp. 402-417, 2007.

MD. SHARIFUL ALAM was born in Chand-
pur, Bangladesh. He received the B.Sc. degree
(Hons.) in computer science and engineering from
the Chittagong University of Engineering and
Technology, Bangladesh, in 2006. He is cur-
rently pursuing the M.Sc. degree with the Depart-
ment of Biomedical Engineering, University of
Malaya (UM), Kuala Lumpur, Malaysia. From
2014 to 2016, he was a Research Assistant with
the Auditory Neuroscience Laboratory, UM. His
current research interests include signal, speech, and image Processing.

MUHAMMAD ZILANY received the B.Sc. and
M.Sc. degrees in electrical and electronic engi-
neering from the Bangladesh University of Engi-
neering and Technology in 1999 and 2002, respec-
tively, and the Ph.D. degree in electrical and
computer engineering from McMaster Univer-
sity, ON, Canada, in 2007. From 2008 to 2011,
he was a Post-Doctoral Research Associate with
the Department of Biomedical Engineering and
Nerobiology & Anatomy, University of Rochester,
NY, USA. From 2012 to 2016, he was a Senior Lecturer with the Department
of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia.
Since 2016, he has been an Assistant Professor with the Department of
Computer Engineering, College of Computer Science and Engineering, Uni-
versity of Hail, Hail, KSA. He is currently a Charted Engineer with IET,
U.K., and a member of the Association for Research in Otolaryngology and
the Society for Neuroscience.

642

WISSAM A. JASSIM was born in Baghdad, Iraq,
in 1976. He received the B.Sc. and M.Sc. degrees
in electrical engineering from Baghdad Univer-
sity, in 1999 and 2002, respectively, and the Ph.D.
degree in electrical engineering from the Univer-
sity of Malaya (UM), Malaysia, in 2012. From
2013 to 2015, he was a Visiting Research Fellow
with the Department of Biomedical Engineering,
UM. From 2015 to 2016, he was a Post-Doctoral
Research Associate with the Department of Elec-
trical Engineering, UM. He is currently a Research Fellow with the ADAPT
Center, School of Engineering, Trinity College Dublin, the University of
Dublin, Dublin 2, Ireland. His current research interests include machine
learning, speech, and image processing.

MOHD YAZED AHMAD (M’12) received the
B.E. degree in electrical engineering from the
Department of Electrical Engineering, University
of Malaya, Kuala Lumpur, Malaysia, in 2003,
the M.Eng.Sc. degree from the Department of
Biomedical Engineering, Faculty of Engineer-
ing, University of Malaya, in 2006, and the
Ph.D. degree from the University of Technology,
Sydney, Australia, in 2013. He is currently a Senior
Lecturer with the Department of Biomedical Engi-
neering, Faculty of Engineering, University of Malaya. His current research
interests include real-time signal processing, instrumentation, and embedded
systems.

VOLUME 5, 2017



