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ABSTRACT To achieve the maximum network energy efficiency (EE) and guarantee the fairness of EE
among cognitive users (CUs), respectively, in the massive multiple-input multiple-output cognitive radio
network, we investigate two power optimization problems: network EE optimization problem (NEP) and
fair EE optimization problem (FEP) under a practical power consumption model. Because of the fractional
nature of EE and the interference, both NEP and FEP are non-convex and NP-hard. To tackle these issues,
we propose two energy-efficient power control algorithms, in which we decompose NEP/FEP into two steps,
and solve them with an alternating iterative optimization scheme. Specifically, in the first step, for an initial
transmit power, the maximum network EE/fair EE is achieved by the bisection method based on fractional
programming; then, with the achieved EE, in the second step, the adapted optimal transmit power can be
obtained by an efficient iterative algorithm based on sequential convex programming. These two steps are
performed alternately until the stop conditions are reached. Numerical results confirm the fast convergence
of these proposed algorithms and demonstrate their effectiveness with high network EE and well fairness
of EE among CUs. Furthermore, it is illustrated that, under a practical power consumption model, more
cognitive base station antennas would cause some loss of network EE but bring some improvements on the
network spectral efficiency (SE), whereas higher circuit power consumption would reduce the network EE
but only slightly affect the network SE.

INDEX TERMS Cognitive radio, energy efficiency, fractional programming, massiveMIMO, power control,
spectral efficiency, sequential convex programming.

I. INTRODUCTION
Nowadays, spectral efficiency (SE), which evaluates how
effectively limited available spectrum resources are utilized,
and energy efficiency (EE), which measures how efficiently
energy resources are consumed, are two key performance
metrics for the next generation (5G) wireless communica-
tions. It is foreseen that by 2020 there will be more than
50 billion devices [1] connected through cellular networks to
implement the ubiquitous communications, and the data traf-
fic is anticipated to increase by 1000 times over the next ten
years [2]. This indicates that higher SE is required in future
communications. However, obtaining such a large capacity
by simply scaling up the transmit power is clearly impossi-
ble. The reason is that it would lead to excess emission of

greenhouse gas and electromagnetic pollution, along with an
unmanageable energy demand. Hence, a sharp improvement
on EE, at a similar power consumption level as present, is
considered to be an effective way to achieve such goal.

Cognitive radio (CR) [3] has been a hot topic in the
field of wireless telecommunications over the past decades,
for its superiority on substantially enhancing the spectrum
utilization. Lots of researches [4]–[6] have confirmed that
power control is an efficient and effective method to improve
the performance of SE and EE in CR systems. In parallel,
massive MIMO is deemed to be a promising candidate tech-
nology of 5G, for its predominance in boosting SE and
EE with low complexity [7]. In massive MIMO systems,
though the aggressive multiplexing gain can be obtained with
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equal power allocation scheme [8], power control among
users can help to harvest all the benefits brought by massive
antenna arrays [9]–[12]. To meet the high service require-
ments of future communications, CR networks (CRNs) with
massive antenna arrays at the transceivers, i.e., massive
MIMO CRNs [13], will be a potential development trend,
for their remarkable advantages on SE and EE. Even though
some work [14] has explored the design and analysis of
massive MIMO CRNs, there has been little work concern-
ing power control problem in it. However, considering its
notable superiority, power control technology in massive
MIMO CRNs is very worthy of attention and study. This is
the motivation of this work.

According to the open literature, it is widely recognized
that high network EE is a key indicator of the technological
advance in future communication networks [15], especially
for massive MIMO systems with a large number of base
station (BS) antennas. In addition to that, the fairness among
cognitive users (CUs) in CRNs is an inevitable problem,
which guarantees their individual quality-of-service (QoS)
when they share the spectrum. While in massive MIMO
systems, the large-scale fading still remains, and it would
directly cause the unfairness between users near and far from
the BS. Therefore, in this paper, we aim at maximizing the
network EE of massive MIMO CRNs and guaranteeing the
fairness of EE among CUs through optimizing the uplink
transmit power.

II. RELATED WORKS
As an essential cognitive technology, power control has been
studied for many years. Various objectives [4]–[6] can be
achieved through designing suitable transmit power strat-
egy. Different from the existing system-wise energy-efficient
designs, [4] derives an optimal user-wise energy-efficient
power allocation scheme, which dramatically improves the
EE of cognitive femto users. The tradeoff between the sensing
quality and EE is studied in a CRN [5], concluding that
the network SE and network EE can be together enhanced
via power control and sensing bandwidth adjustment.
Taking a fairness constraint into account, [6] considers a
noncooperative power control game for EE maximization in
a multiuser CRN.

In massive MIMO systems, power control among users
has been considered as a necessary and essential tool to take
full advantage of massive antenna arrays [9]–[12]. In [9],
power control is applied as an effective way to minimize
the uplink power consumption with maximum sum SE in
multi-cell massive MIMO systems. While it is noted that all
the above power models only consider the transmit power
consumption, which tend to achieve higher SE and better
EE performance with more BS antennas. However, in prac-
tical massive MIMO systems, since the size of hardware
systems increases, the effect of circuit power consumption
would be gradually aggravated by the factor of BS antennas
number. As a result, it would bring nonnegligible negative
impacts on massive MIMO systems [10]. [11] points out

that the EE of massive MIMO systems depends heavily on
the circuit power consumption. Hence, a new realistic power
consumption model is proposed [12], where the number of
BS antennas and transmit power are individually optimized
to investigate how they affect the EE. In sharp contrast to
the common belief, the optimal transmit power is found to
increase with the BS antennas number, which means that the
circuit power consumption is an important design parameter
for high EE massive MIMO systems.

All these related works have shed light on the power con-
trol algorithm design of optimizing the EE in the context of
5G networks [16]–[23]. To achieve high global EE for multi-
cell massiveMIMO systems, a power control algorithm under
the assumption of equal power allocation is provided in [20].
For the MIMO CRN, [21] proposes both distributed and cen-
tralized EE optimization algorithms based on the augmented
Lagrangian multiplier method. Considering the limited feed-
back resource in CRNs, [22] gives an adaptive efficient
resource allocation for the multiuser MIMO rateless-coded
CRN with QoS provisioning. However, they do not account
for rate requirements of users. Thus the resulting users’ rates
may be fairly low. To fill this gap, [23] develops a unified
framework with minimum rate constraints for EE optimiza-
tion in both centralized and distributed networks, but it indi-
rectly achieves the optimal power control strategy by means
of changing variables and a logarithmic approximation of
the achievable rate. Note that the distributed algorithm (user-
centric) suffers a system-wide performance gap with respect
to a centralized one (network-centric), as demonstrated
in [21], [23], and [24], due to the users’ selfishly competitive
fashion. Nevertheless, there is little work concerning energy-
efficient power optimization problems in practical massive
MIMO CRNs. Our previous conference work [36] gives the
outline of an energy-efficient power optimization scheme
without changing variables for the EE fairness among CUs.
In this paper, we extend the work in [36], and further
investigate into the case with the aim of achieving higher
system-wide EE performance. Furthermore, the energy-
efficient power optimization problems to a practical mas-
sive MIMO CRN are reformulated by taking into account
the effect brought by the circuit power consumption on
the system. The major contributions are summarized as
follows:
• We investigate two optimization problems of maximiz-
ing the network EE/fair EE, i.e., the network EE opti-
mization problem (NEP) and fair EE optimization prob-
lem (FEP), in a practical massive MIMOCRN by means
of uplink power control. Wherein we give a detailed
description of the system model and problem formu-
lation, following a more realistic power consumption
model compared with some available work.

• After the theoretic analysis of these constrained opti-
mization problems, it is found that they are nonconvex
nonlinear fractional programming and NP-hard. Based
on the fractional programming [25], [26] and sequential
convex programming [27], [28], we address these prob-
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lems with an alternating iterative optimization scheme,
and present the detailed algorithm procedures accord-
ingly. It should be noted that, due to the rate-dependent
item in the power consumption model, the methods in
[23], [24], [28] are not applicable to the cases in our
work. Besides, though considering the rate-dependent
item, the [12, Lemma 3] is not suitable in our cases, for
the presence of interference in the system.

• Moreover, the convergence and complexity of these pro-
posed algorithms in the practical massive MIMO CRN
are analyzed. At last, we make simulations and demon-
strate their effectiveness by comparing the results with
those of other transmission schemes [29], [30]. Apart
from that, the impacts of cognitive base station (CBS)
antennas number and the circuit power consumption
on the network EE/SE and the transmit power of these
methods are further investigated.

The remaining of this paper is organized as follows.
In Section III, we give the system model and a practical
power consumption model for the massive MIMO CRN.
NEP and FEP with their individual energy-efficient power
control algorithmic solution are presented in Section IV and
Section V, respectively. Numerical results are described in
Section VI followed by conclusions in Section VII. Through-
out the paper, we use the following notations. Boldface upper-
case letters denote matrices or sets, and boldface lower-case
letters denote column vectors or sets. The superscripts (·)T

and (·)H denote the transpose and Hermitian transpose, and
‖ · ‖ denotes the standard Euclidean norm.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this paper, we assume that the channel usage pattern of
primary users (PUs) is fairly static over time and CUs are
allowed to share the licensed spectrum of PUs in an under-
lay coexistence mechanism, if their caused interference to
PUs is below a threshold. In this section, we first present an
underlay massive MIMO CRN, and then formulate a general
constrained EE optimization problem to it.

A. SYSTEM MODEL
As depicted in Fig. 1, the massive MIMO CRN consists of
a primary network and a multiuser massive MIMO cogni-
tive network. The primary network contains a multi-antenna
primary base station (PBS) and a single-antenna PU. Within
its communication area, one CBS equipped withM antennas
and K single-antenna CUs compose the cognitive network,
where M � K . All CUs are assumed to share the same
time-frequency resources with the PU. So, when they simul-
taneously communicate with their own BS, there must exist
mutual interference among them.

B. SIGNAL TRANSMISSION
Let x = [x1, x2, · · · , xK ]T and p = [p1, p2, · · · , pK ]T, where
xk =

√
pksk is the signal transmitted from the k-th CU,

pk is its corresponding transmit power and sk denotes the data

FIGURE 1. System model.

symbol with E{|sk |2} = 1. Similarly, xp =
√ppsp is the

transmitted signal from the PU with transmit power pp and
data symbol sp.

After the data are sent off, theM × 1 received vector at the
CBS can be given as

y = Gx+ gpxp + n, (1)

where G represents the M × K channel matrix between the
CBS and CUs, gp , [gp, . . . , gp]T is the M × 1 channel
vector between the CBS and the PU, and n is anM×1 vector
of additive white Gaussian noises (AWGNs) with zero mean
and covariance matrix σ 2IM at the CBS antennas, with IM an
identity matrix of dimension M .

G incorporates the effects of small-scale fading and large-
scale fading. In particular, its k-th column, i.e. gk , [G]k ,
can be written as gk = hk

√
βk , where hk and

√
βk are the

M × 1 small-scale fading vector and the large-scale fading
coefficient, respectively, between the CBS and the k-th CU.
Similarly, gp = hp

√
βp describes the channel state between

the CBS and the PU with small-scale fading information hp
and large-scale fading information

√
βp.

Note that each small-scale fading coefficient hj (j ∈
{∀k, p}) is assumed to be independent identically distributed
(i.i.d.) random variable (RV) with zero mean and unit vari-
ance, and the large-scale fading captures the geometric atten-
uation and shadow fading with βj = zj/(dj/dh)θ , where
zj is a log-normal random variable with standard deviation
σshadow, dj and dh denote the distance from user j to the CBS
and the cell-hole radius from which users are excluded [7],
respectively, and θ is the path-loss exponent. Since the dis-
tances between all users and the CBS are much larger than
the antenna spacing, βj is assumed to only depend on j and to
be constant over many coherence time intervals [8].

It is assumed that the CBS has a good knowledge
of the channel information. After receiving signals, each
CBS antenna would detect the desired signal with the
maximum ratio combining (MRC) linear processor, which
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corresponds to multiplying y with gHk to extract the intended
signal xk from interference and noise. Then the processed data
transmitted from CU k at the CBS is

rk = gHk gk
√
pksk +

K∑
i=1,i 6=k

gHk gi
√
pisi

+ gHk gp
√
ppsp + gHk n. (2)

In this paper, we model the interference and noise terms
as additive Gaussian noise independent of sk and further
assume that the channel is ergodic [8]. Then, with the same
methodology in [8], we develop a lower bound of ergodic
achievable uplink rate of CU k at the CBS,

Rk
≥ R̃k

= log2(1+E[
|gHk gk |

2pk∑K
i=1,i 6=k |g

H
k gi|

2pi+|gHk gp|
2pp+‖gk‖2σ 2

])

= log2(1+
(M − 1)βkpk∑K

i=1,i 6=k βipi + βppp + σ
2
). (3)

Note that this lower bound will be taken as one perfor-
mance metric in the following to evaluate the SE of CU k , i.e.
SEk , R̃k [8]. Thus the network SE (the overall throughput)
can be expressed as [8]

SEtot ,
K∑
k=1

R̃k =
K∑
k=1

log2(1+
(M − 1)βkpk∑K

i=1,i 6=k βipi+βppp + σ
2
).

(4)

On the other hand, in CR, the cognitive network is required
to preserve the performance of the primary network. Intu-
itively, the interference caused by all the CUs to the PU should
be below its interference temperature. Therefore, we should
have the following interference temperature constraint on
the CUs:

K∑
k=1

αkpk ≤ T , (5)

where αk is the large-scale fading coefficient between the
PBS and the k-th CU, and T denotes the tolerated maximal
peak interference level, i.e., interference temperature thresh-
old, at the PU.

C. POWER CONSUMPTION MODEL
Since the power model with ideal hardware [8], which only
considers the radiated power, might be misleading in design-
ing practical networks, we shall introduce a more realistic
power model for massive MIMO CRNs to derive a more
accurate EE metric.

In this section, we consider not only the radiated power
consumed for transmitting but also the power dissipated in
the other circuit blocks of the CBS and CUs. Thus, for
the uplink transmission in massive MIMO CRNs, the total

power consumption of the whole network can be modeled
as [12], [16], [20]

PCtot = Pamp + Pcir . (6)

Specifically, Pamp is the power consumption at all the
power amplifiers of CUs,

Pamp =
1
ε

K∑
k=1

pk , (7)

where ε is the drain efficiency of power amplifiers.
And Pcir is modeled as the power consumption in the
processing circuit on both the transmitter and receiver
sides [12], [16], [20],

Pcir = Mρc + %
K∑
k=1

R̃k + ξ, (8)

where ρc , ς (PLP+PBB+PCBS ) denotes the effective circuit
power consumption per CBS antenna, ς reflects the impacts
of cooling, direct-current to direct-current (DC-DC) power
supply and main supply at the CBS, PLP is the linear pro-
cessing power consumed by the MRC detector at each CBS
antenna, PBB and PCBS are the other baseband processing
power consumption at each antenna and the power consumed
at the circuit components of each CBS antenna (e.g., convert-
ers, mixers, and filters), respectively, %

∑K
k=1 R̃k denotes the

circuit power consumption that grows in proportion to the
uplink data rate with a constant scaling factor % [12], [16],
and ξ is a static circuit power consumption term indepen-
dent of M (but might scale with the number of CUs), for
example it includes the fixed power consumption at the
CBS and the circuit power consumption at K CUs, but it
is mainly determined by the former in a communication
process [12], [20]. Therefore, ξ can be approximated as a
constant. Thus, from the perspective of each CU, the total
power consumption for its uplink data transmission, which
includes the power consumption on both the transmitter and
receiver sides, can be approximately expressed as follows:

PCk ,
1
ε
pk +Mρc + %R̃k + ξ. (9)

D. ENERGY EFFICIENCY
In general, EE is measured in bits/Joule and a common def-
inition of EE in communication systems is the ratio between
the SE (sum-rate in bits/channel use) and the total power
expended (in Joules/channel use) [8]. Hence, combined with
the above practical power consumption model, the expres-
sions of network EE and EE of CU k [29] can be written as:

ηtot =
SEtot
PCtot

, ηk =
SEk
PCk

. (10)

In practical applications, we can assume that SEtot , PCtot ,
SEk , PCk > 0.
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E. PROBLEM STATEMENT
A general constrained energy-efficient power optimization
problem in massive MIMO CRNs can be defined mathemat-
ically as:

max
p

U (p)

s.t. C1 :
∑K

k=1
αkpk ≤ T

C2 : Rk (p) ≥ r
req
k , ∀k

C3 : 0 ≤ pk ≤ pmaxk , ∀k. (11)

The goal is to optimize the transmit power of CUs to max-
imize a given utility function U (p) under the PU interference
temperature constraint C1 and the QoS requirements C2 for
CUs with their transmit power constraints C3. Wherein C2
imposes the minimum data rate requirement for each CU;
pmaxk in C3 is the peak transmit power of CU k .
To obtain good performance of network EE and well fair-

ness of EE among CUs in massive MIMO CRNs, we choose
the network EE and the EE of the worst-case CU, or simply
‘fair EE’ for short, to be the utility functionU (.), respectively.
Then we formulate two optimization problems, i.e., NEP and
FEP, in Section IV and Section V, respectively. Given the
fractional nature of EE and the presence of interference, the
network EE and the fair EE do not have concave numera-
tors. In other words, NEP and FEP are both nonconvex and
NP-hard, which indicates that it is very difficult to find global
solutions of NEP and FEP with affordable complexity.

IV. NETWORK EE OPTIMIZATION PROBLEM (NEP)
In this section, the main objective is to maximize the network
EE by optimizing the transmit power of CUs. In order to
overcome the nonconvexity of NEP, we decompose NEP into
two steps and address them alternately with an alternating
iterative optimization scheme, based on fractional program-
ming for the maximum network EE and sequential convex
programming for the optimal transmit power.

A. FIRST-STEP FOR MAXIMUM NETWORK EE
By substituting the network EE ηtot in (10) into (11),
NEP can be formulated as

max
p

ηtot (p)

s.t. C1 :
∑K

k=1
αkpk ≤ T

C2 : Rk (p) ≥ r
req
k , ∀k

C3 : 0 ≤ pk ≤ pmaxk , ∀k. (12)

Due to that the objective function in (12) is a ratio of
two real-valued functions, and both SEtot (p) and PCtot (p)
are differentiable, (12) is a nonlinear differentiable fractional
programming problem [25]. Unfortunately, the interference
in the system makes the numerator of network EE a noncon-
cave function of transmit power. Thus the fractional program-
ming tool fails to globally maximize the network EE [24].

Nevertheless, [26] proposes an efficient and effective way to
resolve such problem.
Based on [25], we first transform (12) into its equiva-

lent subtractive form to facilitate the algorithm development.
Let ηopttot and popt represent the maximum network EE and
its correspondingly optimal transmit power of CUs in (12),
respectively. Then we express ηopttot as

η
opt
tot =

SEtot (popt )
PCtot (popt )

= max
p∈C1,C2,C3

SEtot (p)
PCtot (p)

, (13)

and let

F(ηtot ) = max
p∈C1,C2,C3

[SEtot (p)− ηtotPCtot (p)]. (14)

Theorem 1 provides a basis for the transformation of (12).
Theorem 1: For any network EE ηtot , the optimal transmit

power popt is achieved if, and only if:

F(ηopttot ) = max
p∈C1,C2,C3

[SEtot (p)− η
opt
tot PCtot (p)]

= SEtot (popt )− η
opt
tot PCtot (p

opt ) = 0, (15)

for SEtot (p) > 0 and PCtot (p) > 0.
Proof: Theorem 1 can be proved with the similar

approach in [26].

FIGURE 2. Sketch of F (ηtot ).

Since F(ηtot ) is convex, continuous and strictly decreasing
in ηtot [26], as shown in Fig. 2, η

opt
tot must satisfy F(ηopttot ) = 0,

and one can use the bisection method [31] to find the opti-
mal ηopttot . Its correspondingly optimal transmit power popt can
be obtained by solving the following optimization problem:

max
p

SEtot (p)− ηntotPCtot (p)

s.t. C1,C2,C3. (16)

The specific procedure is given in Algorithm 1.

B. SECOND-STEP FOR popt

Due to the presence of interference, the objective function
of (16) in Algorithm 1 remains nonconcave. Hence, (16)
is a very difficult nonconvex problem. Meanwhile, (16) is
NP-hard as will be shown later. To tackle this difficulty,
inspired by [32], we introduce sequential convex program-
ming and develop an efficient iterative algorithm for popt .
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Algorithm 1: Main Algorithm Procedure for Maximizing
Network EE in NEP
1: Initialization
• Set iteration index n = 0, the maximum iteration
number Nmax and the termination precision ∆ > 0 .
• Set ηminEE and ηmaxEE , such that ηminEE ≤ η

opt
tot ≤ η

max
EE .

2: Repeat
3: ηntot = (ηminEE + η

max
EE )/2.

4: solve the optimization problem (16) for ηntot and
obtain the optimal transmit power pn.

5: if |F(ηntot )| =
∣∣SEtot (pn)− ηntotPCtot (pn)∣∣ ≤ ∆,

then
popt = pn and ηopttot =

SEtot (pn)
PCtot (pn)

,

break.
else
if F(ηntot ) < 0, then
ηmaxEE = η

n
tot .

else
ηminEE = η

n
tot .

end if
end if

6: Set n := n+ 1 for each CU.
7: until n > Nmax

At first, based on that SEtot can be expressed as a difference
of two concave functions with respect to p, we rearrange the
objective function in (16) as

SEtot (p)− ηntotPCtot (p) = f (p)− h(p), (17)

where

f (p) = (1− ηntot%)

×

K∑
k=1

log2(
K∑
i=1

βipi + βppp + σ 2
+ (M − 2)βkpk )

− ηntot [
1
ε

K∑
k=1

pk +Mρc + ξ ], (18)

and

h(p) = (1− ηntot%)
K∑
k=1

log2(
K∑

i=1,i 6=k

βipi + βppp + σ 2).

(19)

To achieve a constraint convex set of NEP, we transform
the nonconvex constraint C2 into its equivalent convex linear
form C2′ as follows:

C2′ : (M − 1)βkpk + (1− 2r
req
k )(

K∑
i=1,i 6=k

βipi + βppp + σ 2)

≥ 0, ∀k (20)

Now, (16) can be recast as

max
p

f (p)− h(p)

s.t. C1,C2′,C3. (21)

It should be noted that the constraint set formed by C1,
C2′ and C3 is convex. Besides, [33] defines that a continuous
function f : [l, u] → R is a sigmoidal function if it is either
convex, concave, or convex for x ≤ z ∈ [l, u] and concave
for x ≥ z for some parameter z ∈ R. So, both f (p) and
−h(p) are the sum of a series of sigmoidal functions, and
thus (21) is a problem that maximizes the sum of a series
of sigmoidal functions over a constraint convex set. Hence,
from [33], (21) is a sigmoidal programming. However, based
on the theory of sigmoidal programming, (21) is NP-hard and
NP-hard to approximate [33]. Similarly, (16) is NP-hard
and NP-hard to approximate. Therefore, it is difficult to
address (16) directly in polynomial time in the globally opti-
mal sense.

To circumvent the problem, we shall borrow the idea of
sequential convex programming. According to [27], the basic
idea of sequential convex programming is to find local optima
of a difficult problem of maximizing objective functions,
through solving a sequence of easier approximate problems
by standard methods. Once suitable approximations have
been found, sequential convex programming can obtain a
first-order optimal solution of the original problem [27], [28]
with affordable complexity, requiring only the solution of
convex approximate problems but satisfying theoretical opti-
mality claims [28]. Therefore, finding the suitable approxi-
mations is the most critical issue in this approach.

Suppose pl be the value of p in iteration l. The first-order
Taylor approximation of h(p) at pl can be written as

h(pl)+∇hT (pl)(p− pl), (22)

where ∇h(p) is the gradient of h(p) at p, and is given by

∇h(p) =
K∑
k=1

ek∑K
i=1,i 6=k βipi + βppp + σ

2
, (23)

where ek is a K -dimensional column vector with ek (k) = 0,

and ek (i) =
(1− ηntot%)βi

ln 2
, i 6= k .

Since h(p) is concave and differentiable over the constraint
convex set, the first-order Taylor approximation (22) is in
fact a global over-estimator of h(p), i.e., h(p) ≤ h(pl) +
∇hT (pl)(p − pl) [31]. The inequality shows that from the
local information (i.e., h(pl), and ∇hT (pl) ), we can derive
global information (i.e., a global over-estimator of it) [31].
Since the logarithmic structure of h(p), it is not very sensitive
to changes in p. Hence, h(p) can be well approximated by its
first-order Taylor approximation in a fairly large neighbor-
hood of pl [32].

Consequently, the following transformation can provide a
well approximated lower bound maximization for (21):

max
p

f (p)− [h(pl)+∇hT (pl)(p− pl)]

s.t. C1,C2′,C3. (24)

Since the above objective function is concave over the
constraint convex set, (24) is a standard convex optimization
problem. Thus the first-order optimal solution popt of (16)
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can be efficiently achieved by solving its convex approximate
problem (24) with available convex software packages in
polynomial time. The detailed description of this procedure
is represented in Algorithm 2.

Algorithm 2: Iterative Algorithm Procedure for popt

1: Initialization
• Set iteration index l = 0, and the termination
precision δ > 0 .
• Set p0, calculate I0 = f (p0)− h(p0).

2: Repeat
3: Solve the optimization problem (24) to obtain the

optimal transmit power popt .
4: Set l = l + 1, and pl = popt .
5: Calculate I l = f (pl)− h(pl).
6: until

∣∣I l − I l−1∣∣ ≤ δ.
It is noted that, since the maximum value of (24) is upper

bounded due to the power constraints C3, the iterative pro-
cedure is guaranteed to converge (Proof: See Appendix A),
and the obtained optimal transmit power would converge to
a stationary point of (24), i.e., (16), with any feasible initial
value (Proof: See Appendix B).

To sum up, we can address the NEP (12) by repeating
the following procedure, solving (24) to get the optimal
transmit power popt for a current ηntot and updating ηntot with
the bisection method, until we reach the optimal ηopttot ≥ 0
satisfying |F(ηopttot )| ≤ ∆. This algorithm is implemented at
the CBS. After the CBS achieves the optimal transmit power
for CUs by the proposed algorithm, it broadcasts the allocated
transmit power to CUs at each transmission block.

Next, we make a brief analysis about the computational
complexity of the proposed algorithm for NEP. On the one
hand, the bisection method adopted in the first-step needs

dlog2(
ηmaxEE −η

min
EE

∆
)e iterations before obtaining the optimal ηopttot

with error tolerance of ∆ [31]. From Algorithm 1, we know
that it is bounded by Nmax . On the other hand, the optimal
transmit power popt can be achieved with the polynomial
complexity O(K 3) in the second-step. Putting these facts
together, we can conclude that the proposed algorithm has an
affordable polynomial complexity, which makes it applicable
to practical systems.

V. FAIR EE OPTIMIZATION PROBLEM (FEP)
Although the system can achieve a high network-side EE
in NEP, it gives rise to the unfairness among CUs in terms
of individual EE. To be specific, in NEP, the system simply
improves the network EE by allocating more power to CUs
in good channel conditions sacrificing CUs in bad channel
conditions. This appears unreasonable in practical CRNs.
Given this, in this section we explore the fairness of EE
among CUs in massive MIMO CRNs.

Inspired by [29], in which max-min fairness among users
is achieved through maximizing the EE of the user in the
worst-case, we choose the fair EE be the objective function

of FEP. Considering the nonconvexity of FEP, like in NEP,
we decompose the FEP into two steps and address them
alternately with an alternating iterative optimization scheme,
on the basis of the interplay of fractional programming for the
fair EEmaximization and sequential convex programming for
the optimal transmit power.

A. FIRST-STEP FOR MAXIMUM FAIR EE
In this section, the utility function U (p) of (11) corresponds
to the fair EE (mink ηk ). As a result, FEP becomes

max
p

min
k
ηk (p)

s.t. C1 :
∑K

k=1
αkpk ≤ T

C2 : Rk (p) ≥ r
req
k , ∀k

C3 : 0 ≤ pk ≤ pmaxk , ∀k. (25)

It can be easily proved that (25) is nonlinear differen-
tiable fractional programming [25] and the numerator of ηk
is nonconcave. Therefore, fractional programming tool can
not globally maximize the fair EE [24]. Similar to IV-A, we
utilize the methods in [26] to overcome this difficulty.
Firstly, we replace the objective function in (25) with its

equivalent subtractive form [25]. Let η∗k and p∗ be the maxi-
mum fair EE and its correspondingly optimal transmit power
of CUs in (25), respectively. Then, η∗k can be expressed as

η∗k = min
k

SEk (p∗)
PCk (p∗)

= max
p∈C1,C2,C3

min
k

SEk (p)
PCk (p)

. (26)

Define function

F̃(ηk ) = max
p∈C1,C2,C3

min
k
[SEk (p)− ηkPCk (p)], (27)

then we have the following essential theorem to perform the
transformation of (25):
Theorem 2: For any fair EE ηk , the optimal transmit

power p∗ is achieved if, and only if:

F̃(η∗k ) = max
p∈C1,C2,C3

min
k
[SEk (p)− η∗kPCk (p)]

= min
k
[SEk (p∗)− η∗kPCk (p

∗)] = 0, (28)

for SEk (p) > 0 and PCk (p) > 0.
Proof: Please refer to the similar approach in [26].

For F̃(ηk ) being convex, continuous and strictly decreas-
ing in ηk [26], the maximum fair EE η∗k must satisfy
F̃(η∗k ) = 0. Wherein η∗k can be obtained with the bisection
method [31], and the optimal transmit power p∗ can be
achieved by addressing the following optimization problem:

max
p

min
k
[SEk (p)− ηnkPCk (p)]

s.t. C1,C2,C3. (29)

The specific algorithm procedure is presented in
Algorithm 3.

1170 VOLUME 5, 2017



M. Cui et al.: Energy-Efficient Power Control Algorithms in Massive MIMO CRNs

Algorithm 3 : Main Algorithm Procedure for Maximizing
Fair EE in FEP
1: Initialization

• Set iteration index n = 0, the maximum iteration
number Nmax and the termination precision ∆ >0.
• Set ηminEE and ηmaxEE , such that ηminEE ≤ η

∗
k ≤ η

max
EE .

2: Repeat
3: ηnk = (ηminEE + η

max
EE )/2.

4: solve the optimization problem (29) for ηnk and
obtain the optimal transmit power pn.

5: if |F̃(ηnk )| =
∣∣mink [SEk (pn)− ηnkPCk (p

n)]
∣∣ ≤ ∆,

then
p∗ = pn and η∗k = mink [

SEk (pn)
PCk (pn)

],

break.
else
if F̃(ηnk ) < 0, then
ηmaxEE = η

n
k .

else
ηminEE = η

n
k .

end if
end if

6: Set n := n+ 1 for each CU.
7: until n > Nmax

B. SECOND-STEP FOR p∗

Obviously, due to the interference item in (29), it is still
difficult to handle (29) for its nonconvexity and NP-hard
feature. To tackle this issue, we apply sequential convex
programming [27] into developing an algorithm to iteratively
and efficiently search for p∗.
The objective function in (29) can be first rearranged into a

difference of two concave functions with respect to p thanks
to the logarithmic feature of SEk ,

SEk (p)− ηnkPCk (p) = f̃k (p)− h̃k (p), (30)

where

f̃k (p) = (1− ηnk%)

× log2(
K∑
i=1

βipi + βppp + σ 2
+ (M − 2)βkpk )

− ηnk [
1
ε
pk +Mρc + ξ ], (31)

and

h̃k (p) = (1− ηnk%) log2

 K∑
i=1,i 6=k

βipi + βppp + σ 2

 .(32)
Then we replace C2 with its equivalent convex linear

form C2′ in IV-B to form a constraint convex set of FEP.
Consequently, (29) can be equivalently rewritten as

max
p

min
k
[̃fk (p)− h̃k (p)]

s.t. C1,C2′,C3. (33)

Algorithm 4: Iterative Algorithm Procedure for p∗

1: Initialization
• Set iteration index l = 0, and the termination

precision δ > 0 .
• Set p0, calculate J0 = mink [̃fk (p0)− h̃k (p0)].

2: Repeat
3: Solve the optimization problem (37) to obtain the

optimal transmit power p∗.
4: Set l = l + 1, and pl = p∗.
5: Calculate J l = mink [̃fk (pl)− h̃k (pl)].
6: until

∣∣J l − J l−1∣∣ ≤ δ.
It is worth noting that, on account of the different minimum of
f̃k (p)− h̃k (p) in each iteration, the objective function in (33)
is nonsmooth. Enlightened by the concept of epigraph [31],
we introduce an auxiliary variable ϕ to eliminate the nons-
moothness of the objective function [29]. Therefore, (33) is
further transformed into

max
p,ϕ

ϕ

s.t. C1,C2′,C3,

C4 : f̃k (p)− h̃k (p) ≥ ϕ, ∀k. (34)

But the nonconvexity and NP-hard feature still remain.
The difficulty of solving (34) lies in the convex compo-
nent −̃hk (p). Since h̃k (p) is concave and differentiable over
the constraint convex set, one can easily find the first-order
Taylor approximation of h̃k (p) at any pl as its global over-
estimator [31], i.e.,

h̃k (p) ≤ h̃k (pl)+∇h̃Tk (p
l)(p− pl), (35)

where ∇h̃k (p) is the gradient of h̃k (p) at p, given by

∇h̃k (p) =
ek∑K

i=1,i 6=k βipi + βppp + σ
2
, (36)

where ek is a K -dimensional column vector with ek (k) = 0,

and ek (i) =
(1− ηnk%)βi

ln 2
, i 6= k .

Thanks to the logarithmic structure, h̃k (p) can be well
approximated by its first-order Taylor approximation in a
fairly large neighborhood of pl [29]. Therefore, we further
transform (34) into

max
p,ϕ

ϕ

s.t. C1,C2′,C3,

C4 : f̃k (p)− [̃hk (pl)+∇h̃Tk (p
l)(p− pl)] ≥ ϕ, ∀k.

(37)

At present, (37) is a smooth and standard convex opti-
mization problem. The locally optimal transmit power can
be efficiently achieved by solving (37) with interior point
methods [31]. We show the detailed algorithm process in
Algorithm 4 and give the following theorem:
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Theorem 3: (1) The efficient iterative algorithm 4 always
converges, and (2) the obtained optimal transmit power con-
verges to a stationary point of (37), i.e., (29), with any feasible
initial value.

Proof: See Appendix C.
In conclusion, we can address problem (25) by repeating

the following procedure, solving its equivalent subtractive
form (37) for a current ηnk and updating ηnk with the bisec-
tion method, until we reach the optimal η∗k ≥ 0 satisfying
|F(η∗k )| ≤ ∆. This algorithm is implemented at the CBS.
After the optimal transmit power for CUs is found by the
proposed algorithm, it would be broadcast by the CBS to CUs
at each transmission block.

Similarly, a brief analysis about the computational com-
plexity of the proposed algorithm for FEP is made in
the following. On the one hand, the bisection search for

the optimal η∗k in the first-step needs dlog2(
ηmaxEE −η

min
EE

∆
)e

iterations to guarantee the error tolerance of ∆ [31].
On the other hand, the optimal p∗ in each iteration can
be obtained by interior point methods in polynomial time
with computational complexity being roughly proportional to
O(dJmax

− J0 − δ
4J emax{K 3,F}) [29], [31], where Jmax

=

maxpmink [̃fk (p) − h̃k (p)], 4J = minl[J l − J l−1] and F
denotes the cost of evaluating the first and second derivatives
of the constraint functions [31]. Therefore, it follows that
the proposed algorithm to FEP is applicable to a practical
implementation.

VI. SIMULATION RESULTS
In this section, we analyze the performance of these proposed
energy-efficient power control algorithms in Section IV and
Section V, respectively. Along with that, the impacts of the
CBS antennas numberM and the circuit power consumption
items ξ and ρc on the network EE and network SE are also
investigated.

TABLE 1. Simulation parameters.

In the numerical simulations, we consider a massive
MIMO CRN with radius (from center to vertex) of 1 km,
and all the single-antenna CUs are located uniformly in it.
We assume that no CU gets closer to the CBS than dh =
100m [7], and each CU has the same minimum data rate
requirement and equal peak transmit power. Here, we ignore

FIGURE 3. (a) Convergence evolution of the efficient iterative algorithm
for popt with ηn

tot = 5 bits/Joule. (b) Convergence evolution of the

bisection method for η
opt
tot in NEP.

fast fading, shadowing, and other interference. Other sim-
ulation parameters are given in Table 1, and are chosen
according to some available literature [12], [13], [19]. Those
parameters are used in the following simulations unless stated
otherwise. In the following, we compare the proposed algo-
rithms, marked as ‘NEP’ and ‘FEP’, respectively, with the
scheme for weighted sum rate maximization (WSRM) [30],
the scheme for max-min weighted data rate (MMDR) [30],
and the ‘PowerMax’ algorithm with the peak transmit power
for each CU [29], which is considered as a baseline scheme.

Fig. 3(a) and Fig. 3(b) present the iteration evolutions of the
second-step efficient iterative algorithm for popt and the first-
step bisection method for ηopttot , respectively, in NEP. They
confirm the theoretical findings that the ‘NEP’ power control
algorithm is insensitive to the starting value of transmit power
and has rapid convergence. In addition, Fig. 3(b) shows that
after several iterations, F(ηtot ) converges to 0, which implies
that the optimal ηopttot can be quickly found with the bisection
method.

1172 VOLUME 5, 2017



M. Cui et al.: Energy-Efficient Power Control Algorithms in Massive MIMO CRNs

FIGURE 4. (a) Convergence evolution of the efficient iterative algorithm
for p∗ with ηn

k = 5 bits/Joule. (b) Convergence evolution of the bisection
method for η∗k in FEP.

Similarly, Fig. 4(a) and Fig. 4(b) depict the iteration
evolutions of the second-step efficient iterative algorithm
for p∗ and the first-step bisection method for η∗k , respectively,
in FEP. They demonstrate that the ‘FEP’ power control algo-
rithm converges rapidly with any feasible starting transmit
power. Besides, Fig. 4(b) confirms that F̃(ηk ) converges to 0
after several iterations. That is to say, the optimal η∗k can be
achieved very quickly.

Figure 5(a) presents the network EE and the EE of each
CU under five aforementioned algorithms in the system.
Specifically, ‘NEP’ has the highest network EE at the cost
of the EE of CUs in bad channel conditions, while ‘FEP’
guarantees the fairness of EE among the CUs with some
sacrifices in the network EE. Nevertheless, both ‘NEP’ and
‘FEP’ have preferable performance on the network EE than
the other three algorithms. In order to quantitatively evaluate
the fairness of these five algorithms, we introduce the Jain’s
fairness index (lying between 0 and 1) [34]. It is widely uti-
lized in many resource sharing or allocation problems, for its

FIGURE 5. (a) Network EE and the EE of each CU. (b) Total transmit power
consumed and Network SE under these algorithms.

comprehensive and highly intuitive interpretation properties.
According to [34], the Jain’s index of CU’s EE in this system
can be derived as follows:

Ja =

(∑K
k=1 ηk

)2
K
∑K

k=1 η
2
k

, (38)

where ηk denotes the EE of CU k as shown in (10). With the
achievable EE of CUs by these five schemes, we can get their
corresponding Jain’s index. Particularly, the fairness of ‘NEP’
is 0.82, those of ‘FEP’, ‘WSRM’, ‘MMDR’ and ‘PowerMax’
are 1, 0.90, 0.95 and 0.72, respectively. It is worth noting that
a larger Ja corresponds to better fairness performance from
the perspective of Jain’s index. So, ‘FEP’ can be considered as
fair. That is to say, ‘FEP’ canwell guarantee the fairness of EE
among CUs in the system. In addition, their correspondingly
total transmit power consumption and their achieved network
SE are shown in Fig. 5(b). We can intuitively see that even
‘NEP’ has the best performance of network EE, its network
SE is the lowest. While ‘FEP’ consumes more transmit power
than ‘NEP’, but achieves more network SE in return.
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FIGURE 6. Network EE/Network SE versus different M under these
algorithms.

FIGURE 7. (a) Network EE/Network SE versus different static circuit
power consumption ξ . (b) Total transmit power consumed versus
different static circuit power consumption ξ under these algorithms.

Figure 6 shows the evolutions of network EE and network
SE of these five algorithms in terms of different CBS antennas
numbers. It can be clearly observed that all their achieved

FIGURE 8. (a) Network EE/Network SE versus different circuit power
consumption per CBS antenna ρc . (b) Total transmit power
consumed versus different circuit power consumption per
CBS antenna ρc under these algorithms.

network EE increases firstly and then decreases, while their
network SE keeps monotonically increasing with M . In par-
ticular, ‘FEP’ has a relatively good SE performance, and its
network SE is very close to the optimal network SE obtained
by the sum rate maximization methods, i.e., ’WSRM’ and
’MMDR’. As shown in Fig. 6, on the one hand, the ergodic
achievable uplink rate in (3) grows as M increases, thus the
network SE would be improved proportionally to M . On the
other hand, the total circuit power consumption increases
with M , but its growth rate is lower than that of the network
SE at first. So their achieved network EE shows firstly an
overall upward trend. When M is large, the growth rate of
network SE is gradually slowed down with the increasingM ,
and the total circuit power consumption becomes dominant,
consequently causing some loss of network EE. So, from the
viewpoint of network EE maximization, it is more beneficial
to utilize a moderate number of CBS antennas, even if there
are many available CBS antennas. While from the aspect of
large capacity, more CBS antennas are expected. So, to some
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extent, the proposed power control algorithms provide some
design insights on the selection of optimal M for different
specifications of EE and SE in massive MIMO CRNs.

In Fig. 7 and Fig. 8, we investigate the impacts of the
static circuit power consumption ξ and the circuit power
consumption per CBS antenna ρc on the network EE and
network SE. As shown in Fig. 7(a) and Fig. 8(a), the network
EE decreases with the increasing of either ξ or ρc, but both of
them have a negligible effect on the network SE of the latter
three algorithms. These results comply with the common
sense. Besides, it is observed that the network SE of ‘NEP’
and ‘FEP’ goes up slightly with the increasing of ξ or ρc. The
fact seems a bit counterintuitive at first, but it is consistent
with the conclusions derived in [12] that, with the increasing
of the static circuit power consumption and the circuit power
consumption per CBS antenna, we can afford using more
transmit power to improve the data rate before it becomes a
limiting factor for EE. Note that the transmit power of ‘NEP’
and ‘FEP’ indeed increases with ξ and ρc, as illustrated in
Fig. 7(b) and Fig. 8(b).

VII. CONCLUSION
In this paper, we investigated two energy-efficient power
optimization problems, i.e., NEP and FEP, to maximize
the network EE and guarantee the fairness of EE among
CUs, respectively, in a massive MIMO CRN. To tackle
the nonconvexity and NP-hard feature of the optimization
problems, we proposed two energy-efficient power control
algorithms on the basis of an interplay of fractional pro-
gramming and sequential convex programming. Numerical
results not only demonstrated the fast convergence and high
effectiveness of these proposed algorithms, but also illus-
trated the impacts of CBS antennas number and the circuit
power consumption on the network EE and network SE.
Specifically, in practical communication systems, the net-
work EE decreases with a too large number of CBS antennas
and the increase of circuit power consumption, while the
network SE keeps growing with the increasing number of
CBS antennas but is slightly affected by the circuit power
consumption.

APPENDIX A
Proof: For the optimal solution pl+1 of (24) in

iteration l, one has

I l+1 = f (pl+1)− h(pl+1)

≥ f (pl+1)− [h(pl)+∇hT (pl)(pl+1 − pl)]

≥ f (pl)− [h(pl)+∇hT (pl)(pl − pl)]

= f (pl)− h(pl) = I l, (39)

where the first inequality holds since h(p) is con-
cave and for any given p, h(p) ≤ h(pl) + ∇hT (pl)
(p− pl) [31], while the second inequality holds since pl+1 is
the optimal solution of (24) for obtaining the largest objective
value. Hence, the objective value of (24) is improved after
each iteration. Furthermore, the objective value of (24) is

upper bounded due to the transmit power constraints. Hence,
the iterative algorithm is guaranteed to converge.

APPENDIX B
Proof: Let m(p) = f (p) − [h(pl) + ∇hT (pl)(p −

pl)]. We note that m(p) is differentiable and strictly concave
on the constraint convex set of (24) [31]. As a result, the
obtained optimal transmit power converges to an accumu-
lation point [35]. Here, we assume pl = pl+1 in the limit,
and pl+1 = argmaxp∈{C1,C2′,C3}{f (p) − [h(pl) + ∇hT (pl)
(p− pl)]}. According to the optimality condition [35],

∇mT (pl)(p− pl) = ∇mT (pl+1)(p− pl+1) ≤ 0, (40)

and the vector satisfying the optimality condition is referred
to as a stationary point. So, pl is the stationary point of (24),
i.e., (16).

APPENDIX C
(1) The efficient iterative algorithm always converges.

Proof: Let pl+1 be the optimal solution of (37) in
iteration l. One has

J l+1 = min
k
[̃fk (pl+1)− h̃k (pl+1)]

≥ min
k
[̃fk (pl+1)− h̃k (pl)−∇h̃Tk (p

l)(pl+1 − pl)]

≥ min
k
[̃fk (pl)− h̃k (pl)−∇h̃Tk (p

l)(pl − pl)]

= min
k
[̃fk (pl)− h̃k (pl)] = J l, (41)

where the first inequality holds since h̃k (p) ≤ h̃k (pl) +
∇h̃Tk (p

l)(p − pl) [31], the second inequality holds since the
optimal solution pl+1 always maximizes the objective value
of (37). Hence, the objective value of (37) increases after each
iteration. Furthermore, due to the transmit power constraints,
this objective value is upper bounded. Therefore, the algo-
rithm converges after finite iterations.
(2) The obtained optimal transmit power converges to a

stationary point of (37), i.e., (29), with any feasible initial
value.

Proof: From (1), we can conclude that the obtained
optimal transmit power converges in finite iterations. Here
we assume pl = pl+1 in the limit, and pl+1 =

argmaxp∈{C1,C2′,C3}{mink [̃fk (p)−h̃k (pl)−∇h̃Tk (p
l)(p−pl)]}.

Let n(p) = f̃k (p) − [̃hk (pl) + ∇h̃Tk (p
l)(p − pl)]. According

to the optimality condition [35],

min
k
[∇nT (pl)(p− pl)] = min

k
[∇nT (pl+1)(p− pl+1)] ≤ 0,

(42)

and the optimal vector satisfying the optimality condition is
referred to as a stationary point. So, pl is the stationary point
of (37), i.e., (29).
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