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ABSTRACT In this paper, an Interactive Multiple Model filter design is proposed to improve signal
shadowing detection performance on land-mobile channels during rain fading for a downlink operating
at Ka-band through a geostationary satellite. A robust solution for on-line determination of the filter
measurement error covariance is provided. Analyses are performed for a combination of channels under
different atmospheric conditions, clear sky and rain, and different scenarios, suburban and rural. Using Inter-
national telecommunications union-based synthesized attenuation time-series, the proposed filter achieved
a reduction in the incorrect detection duration of 32% for the scenario with a mobile terminal experiencing
rain, and by 60% for the scenario with a fixed terminal experiencing rain.

INDEX TERMS Interacting multiple model, Ka-band, Kalman filter, land mobile radio, satellite communi-
cation, shadowing, rain fading.

I. INTRODUCTION
High speed Internet access via satellite networks is increas-
ingly attracting more attention, especially for communities
that do not possess reliable access to terrestrial broadband
communication options [1]. In order to keep up customer
demand, a growing number of satellite Internet operators
are planning to use or have already started using higher
frequency bands, such as the Ka-band (26–40 GHz) [2].
These higher frequency satellite communication bands
possess more spectrum availability, thus allowing for trans-
mission links with wider bandwidths to be offered as well as
accommodating more links at higher connection speeds [3].
Consequently, high-throughput satellite communication
system designs are employing innovative solutions such
as additional payload flexibility via software-defined
radio (SDR) in order to enable dynamic resource allocation,
i.e., flexible power and spectrum allocation [4], and adaptive
coding and modulation (ACM) [5]–[7], also used for channel
impairment mitigation. Impairments affecting the signal line-
of-sight (LOS), e.g. fading and shadowing, are functions of
the space and atmospheric weather, operational frequency
band, terminal location and motion speed for the case of land-
mobile satellite (LMS) systems, and environment type, e.g.,
rural, urban, suburban, and hilly terrain. Correct detection of

an impairment event in the presence of multiple impairment
events might lead to a more effective response of mitigation
techniques [8] and/or actions that minimizes its impact on the
QoS [9]–[11].

One component commonly used by schemes that attempt
to minimize or mitigate these signal impairments is the
knowledge of the communications channel state infor-
mation (CSI). A common CSI element is signal-to-noise
ratio (SNR) [12], [13] measured at the receiver that can be
used locally by open-loop implementations, or fed back to the
transmitter when a closed-loop solution is implementation.
Communication signals passing through geostationary satel-
lites (GEO) experience large propagation delays due to
the high orbits associated with GEO satellites, which are
around 36, 000 km, resulting in round-trip times (RTT) of
more than 0.5 second between two ground stations (GS).
Compared to this RTT, different channel attenuation sources
present different dynamics, e.g., atmospheric fading, mostly
caused by rain, is a slow process with time correlation ofmore
than 10 seconds [8], [12], thus, CSI prediction would not be
useful for mitigation of slow events given the relatively long
channel coherence time. On the other hand, multipath fading
characteristic of LMS channels, such as those caused by
signal reflections, and atmospheric scintillation, considered
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fast fading events, possess a time correlation on the order
of milliseconds or less [12]. Given that this time correlation
is shorter than the GEO RTT, the CSI cannot be estimated
and fed back fast enough since it would be outdated at the
moment of this usage. However, signal shadowing, another
well studied event present on LMS channels [14]–[16], is
neither a very fast nor very slow process, and could be tracked
for reconfiguration control purposes [17]. Its dynamics vary
according to the terminal location, motion speed, as well as
with the relative satellite location in the sky [15]. One unique
characteristic of signal shadowing is that it is basically deep
fading experienced by both transmitter and receiver, at the
same time, causing communication outage for that specific
link. Based on this fact, an open-loop detection scheme is
expected to properly track the occurrence of signal
shadowing. Additionally, [14], reported that for LMS chan-
nels at Ka-band, shadowing is the most severe impairment
due to its signal shorter wavelength causing it to be more
scattered than reflected, resulting in LOS blockage.

Future cognitive satellite links through LMS channels may
benefit from shadowing detectors to enable more power
savings, spectrum sharing improvements, and better network
relay selection mechanisms when mobile terminals experi-
ence clear sky or rainy conditions. These detectors should
be robust enough to operate under different weather condi-
tions. Since shadowing causes link outage, fading mitigation
techniques are not effective. Thus, the nodes should refrain
from transmitting during shadowing events, allowing power
to be saved at all link nodes: mobile terminal(s), gateway,
and satellite. As a consequence, transmissions between these
nodes should stop at the same time. If collaborative nodes
are located within the range of those primary nodes that shut
down, spectrum sharing could potentially be exploited during
that silence time duration. In addition to saving power and
making spectrum available, network relay selection mecha-
nisms [11], [18] may achieve a better throughput and latency
performance by rerouting packets at time instants that are
more accurately determined. Also, for systems not capable
of relaying packets, either by its network architecture or
unavailability of relaying nodes, data could be buffered dur-
ing shadowing events and transmitted later on, avoiding an
increase in network load and latency caused by unnecessary
retransmissions, representing another way of saving power
and sharing spectrum.

In the literature, there are several shadowing detectors that
have been proposed. In [19] a fish-eye camera was employed
for good/bad channel state detection and compared it with
an SNR threshold detector as in [20]–[22]. In [23] the mean
SNR was used for shadowing detection to assist ACM in
LMS channels at 2 GHz, while in [24] the same detection
method was used but did not specify the carrier frequency
band. In [11] and [25] themean SNRwas used to control relay
selection mechanisms in terrestrial wireless networks. In [9]
shadowing at the network layer was detected using the mean
length of error bursts for ARQ control. In [26] shadowing was
detected through ARQ timeouts. Notice that even techniques

combiningACMandARQwithout relay selection assisted by
shadowing detection, such as in [27], could lead to network
load increase by increasing the number of retransmissions.

Therefore, these detection methods based solely on SNR
measurements failed in detecting shadowing events when it
was raining due to two main reasons. First, these detectors
used a fixed threshold that assumed a shadowing event every
time a signal attenuated by rain fading reaches a level below
the shadowing threshold. Second, because shadowing events
are independent of the atmospheric conditions, it can happen
anytime during rain, thus, even a shadowing detector with
variable threshold is unable to operate properly. If shadowing
could be detected during rain, mitigation techniques such as
ACM could be used during a longer period of time, besides
enabling other benefits regarding power and spectrum, as
mentioned above. To the best of the authors knowledge, the
problem of shadowing detection for LMS channels in the
presence of rain at Ka-band has not been addressed and seems
to be an open research question.

The shadowing detector proposed in this paper is based on
Interactive Multiple Model (IMM) filter [28], [29]. The IMM
filter, a well-known target tracking technique based on signal
estimation based on a set of systemmodels running in parallel
Kalman filters [30], [31], was initially employed in applica-
tions such as aircraft tracking [32], GNSS navigation [33],
and communications systems [34]. One major requirement
of using an IMM filter is to know the collection of models
that the system can reside in, which in our case translates
into knowing the communications channel model. Commu-
nications channel modeling often attempts to consider all
fading and noise sources. However, it is almost impossible to
preciselymodel all weather and environmental dynamics, due
to the large amount of variables that are functions of several
other global scale elements. If possible, knowing the exact
models would allow us to predict the channel behavior with
very low error margin. As mentioned before, for a satellite
channel, a precise noise model would require knowledge of
every single noise source affecting the channel as well as its
behavior in time, which is almost impossible to determine
at the present. Some recent research papers proposed tech-
niques to estimate these values [35]–[40]. The primary issue
with these techniques is that they are mostly constrained to
work under certain conditions, are designed for a specific
purpose or application, and the system model is assumed
to be known. An alternative approach to unknown model
parameters framework is to account for them in the process
noise covariance matrices based on the assumption that these
unknown parameters and the channel noise are Gaussian dis-
tributed, as shown by previous numerical experiments [29],
[33], [34], [41].

Regarding measurement campaigns for the LMS channel
at the K-band, only a few publications in the open literature
are available. Previous work has been performed with respect
to LMS channel modeling using both theoretical studies and
measurement campaigns for L- and C-bands that date back
to 1991 [42]. However, each study targets a very specific
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scenario in terms of location, building density, frequency
band, and antenna elevation angle. Most of these previous
works did not take into consideration the weather and its
impact on the transmission performance, although several of
these past works have contributed to a number of ITU rec-
ommendations, especially at L- and S-bands [15], [43]–[45].
Other researchers have investigated Global Navigation
Satellite System (GNSS) receivers when deployed in LMS
channels [46], [47]. Across the K-band frequency range,
a general Ku-band channel model was provided in [48], while
in [49] a channel model that considers tropospheric scintilla-
tion effects at Ku-band was presented. In [16] a theoretical
performance study that considers the effects of rain fading on
the LMS channel at Ka-band frequencies was presented.

Other measurement campaigns focused on rain fading,
such as NASA’s ACTS and OLYMPUS programs [50]–[52],
and a consortium of five European countries that used the
commercial satellite Alphasat to conduct propagation mea-
surement campaigns across Europe [53], all have measured
rain attenuation at Ka-band as well as other atmospheric
effects. Ka-bandmeasurement campaigns using purely exper-
imental satellites have also been reported, such as Fedsat [54]
from Australia, WINDS from Japan [55], and Hotbird 6
from France [56]. Data from these activities tend to be avail-
able only to the research group conducting the experiments.
We recognize that simple statistical models (some of
which were obtained using data from these aforementioned
measurement campaigns), such as those described by
several International Telecommunications Union (ITU)
standards [57], [58] have been used for years by satellite
designers in order to perform transmission performance anal-
ysis, and attenuation time-series were never a requirement
for the development of satellite link-budgets. However, to
the best of the authors’ knowledge, given that none of this
data is publicly available, the only way to provide rain
attenuation time series data to a Ka-band satellite channel
simulator is to use synthesized time series based on the ITU
recommendations.

The main objective of this paper is to propose a real-time
shadowing detector algorithm for satellite receivers operat-
ing on LMS channels at Ka-band during rain, with a small
false alarm detection rate when the terminal is fixed or
not experiencing signal shadowing. Analyses are conducted
considering a downlink between a mobile terminal and a
GEO satellite, as illustrated in Fig. 1, with the terminal
experiencing five different channels: LOS during rain (fixed
terminal), suburban LMS during clear sky and rain, and rural
LMS during clear sky and rain. To achieve this objective,
several challenges are considered, namely:
• Design of a shadowing detector for mobile terminals
capable of detecting shadowing on LMS channels during
clear sky and rain,

• Acquisition of satellite signal measurement time series
for different channels while operating under different
weather conditions, and

• Accurate channel modeling for each scenario.

FIGURE 1. Illustration of a GEO satellite communicating via a Ka-band
land mobile satellite channel to a mobile ground node during rain fading.
The received signal is a combination of both LOS and shadowed
multipath faded signals.

In order to address the issues mentioned above, the main
contributions of this paper are the following:
• A novel IMM filter-based shadowing detector algorithm
for operation through GEO satellite link at Ka-band for
fixed and mobile terminals during rain,

• An automatic search algorithm for a system’s process
noise covariance matrix for IMM filters, and

• A detailed algorithm implementation of the time series
generators of rain attenuation and LMS channel with
variable sample rate, based on updated ITU recommen-
dations from 2013 and 2015.1

In addition to these contributions, the performance of the
proposed shadowing detector algorithm is compared against
some current state-of-the-art detector schemes.

The rest of this paper is organized as follows: Section II
gives an overview of satellite communication time series
generation for Ka-band when operating in clear sky and
rain fading conditions. Section III presents the proposed
IMM filter design. Section IV presents the simulation results
of the time series synthesizers, as well as the IMM filter
together with the events detection. Section V concludes the
paper and provides insights about future work.

II. Ka-BAND SATELLITE COMMUNICATIONS
CHANNEL EXPERIENCING RAIN FADING
There is increasing demand for satellite communication
systems operating over the Ka-band due to its spectral avail-
ability. However, this frequency band is susceptible to several
atmospheric impairments that play a key role in determining
the performance of the satellite communication link. The
main source of attenuation in this band is rain, which is
responsible for the effects of slow fading caused by the energy
absorption of electric fields traveling across water molecules
at certain frequencies. Signal attenuation is also caused by

1Available on GitHub [59]
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other atmospheric effects such as wind speed, cloud density,
and gases such as oxygen and water vapor [57], [60], [61].

Each of these attenuation sources is a function of not only
the frequency band but also the elevation angle, geographical
location, and the time of day and year. These conditions
result in design challenges that vary spatially and over time.
Consequently, SDR can help resolve these issues and pro-
vide flexible and adaptive solutions due to its reconfigurable
attributes in real-time. Thus, devising algorithms capable of
tracking the current channel condition and informing the
radio platforms about the appropriate transmission/reception
configuration that yields the overall optimum performance in
terms of bit error rate (BER), will help robust satellite com-
munication systems operating in the Ka-band to be achieved.

In addition to atmospheric impairments, the total attenu-
ation is also a function of the satellite orbit, as well as the
ground station mode. A GEO orbit is considered in this paper,
where the satellite possesses a fixed location in the sky with
respect to a user on Earth at a distance of 36, 000 km from
the Equator. The ground station can possess both a fixed or
mobile location; we consider both scenarios in this paper.
Satellite communication links operating across the Ka-band
and experiencing rain attenuation are considered in this work.

A. RAIN ATTENUATION TIME SERIES
SYNTHESIZER AT Ka-BAND
Due to the lack of available measurement data, especially
of rain fading impairments at Ka-band, attenuation time
series had to be synthesized based on the recently updated
ITU recommendations. In order to generate the synthetic
rain attenuation levels, a method proposed by ITU-R
P.1853-1 [62] was employed, where three inputs were
required: (i) Complementary Cumulative Distributive Func-
tion (CCDF) of rainfall rate for the desired location; (ii) the
percentage probability of rain in an average year, P0, for
the desired location; (iii) the attenuation levels exceeded in
decibels for the percentages of time used to compute the
CCDF. Although it is known that cumulative statistics as well
as rain attenuation dynamics depend on the relative motion
speed between the mobile user and the advection of rain cells
due to wind, the analysis and results provided by this work
assume wind speed equal to zero, and future work is expected
to consider the other atmospheric effects mentioned above,
including rain cell advection due to wind speed. In this work,
the following time percentages were used:

[0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 5, 10].

(1)

P0 represents the probability of rain at the GS in an average
year and can be estimated based on information derived from
40 years of data from the European Centre of Medium-
range Weather Forecast (ECMWF) [60] or from local
measured rainfall rate data. This probability value P0 is
required to compute the probability of rain attenuation on the
slant path. Using the ITU-R P.837-6 [60] and focusing on

FIGURE 2. Rain attenuation time series for Ka-band based on
ITU-R P.1853. Note that during the entire time interval the channel
is facing rain fading.

the location of Worcester, MA, USA (lat 42◦ 16′ 30.8′′ N ,
lon 71◦ 48′ 25.2′′ W ), a CCDF for rain rate and P0 were
computed. Then, the rain rate values from the CCDF were
converted into attenuation levels (dB) using the specific atten-
uation equations from ITU P.618-12 [57] specifications using
parameters given by ITU P.839-4 [63], such as the rain height,
as well as parameters given by ITU-R P.838-3 [61], such as
the circular polarization for a carrier frequency fc at 26 GHz.
Finally, using the method proposed by ITU-R P.1853 [62],
a rain attenuation time series was generated, which assumed
an elevation angle of 34◦, at a sampling rate of 1 Hz across a
time period of 84, 600 seconds. A snapshot of 512 seconds of
a generated times series is shown in Fig. 2, which is the same
time series used in other scenarios, further described in later
sections.

1) LMSS CHANNEL SIMULATION AT Ka-BAND
Given the ground station mobility, the Earth-space
land-mobile satellite service (LMSS) channel time series
was generated based on ITU-R P.681-8 [58] communicating
across the Ka-band with a GEO satellite. For a more real-
istic propagation simulation, both statistical and stochastic
models for mixed propagation conditions, such as rural,
wooded, urban, and suburban areas, were also employed. This
model computes the cumulative distribution function (CDF)
using a semi-Markov 2-state model represented by a
non-shadowed (good) state and a shadowed (bad) state, where
the state duration follows a log-normal distribution and the
signal within each state follows a Loo distribution. The log-
normal shadowing affects only the direct component, while
the diffuse multipath components have a constant average
power [64].

It is worth noting that the ITU-R P.681-8 version used in
this paper recommends the usage of parameters measured
specifically for a suburban area at 11.7 GHz rated to be used
by any frequency between 10 GHz and 30 GHz, thus covering
the lower portion of the Ka-band. The ground vehicle
speed vm was set to 33 km/h, while the elevation angle was
set to 34◦. Furthermore, the angle between the vehicle head-
ing vector projected on the ground and the satellite azimuth
vector projected on the ground was specified to be equal
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FIGURE 3. LMS channel simulator diagram block based on ITU-R P.681-8.
After good/bad state time series generation, the same input parameters
are provided to the state attenuation time series synthesizers, including
good, bad and their transitions. Matlab code implementation provided
in [59].

to 0◦. The sampling frequency fs was assumed to be equal
to 10, 000 samples per second, which is a function of the
carrier frequency fc, as well as of the maximum speed of the
vehicle vmax , given by [65]:

vmax ≤
c0
2
fs
fc
, (2)

where c0 is the speed of light. The synthesizer diagram block,
shown in Fig. 3, was implemented in MATLAB (source code
available in [59]). Instead of the recommended Jakes model,
a 10th-order low-pass Butterworth filter with normalized 3 dB
cutoff frequency equal to:

fc =
fDoppler
fs/2

, (3)

was used to reproduce the fast variations due to multipath
since it is more realistic for an LMS channel than the Jakes
model [15]. Note that fDoppler =

vm fc
c0

is the maximum
Doppler frequency. The time series was generated as follows:
Using the input parameters provided by the ITU-R P.681-8,
parameters are generated for the two states as well as for the
transitions between them (for implementation purposes, tran-
sitions are considered states too). Then, a complex time series
for both direct and multipath components were generated.
Since the direct signal suffers from slow fading, it is filtered
by a low-pass filter with transfer function:

H (Z ) =

√
1− ρ2

1− ρZ−1
, (4)

FIGURE 4. Example of an LMS channel synthetic attenuation time series
at Ka-band based on ITU-R P.681-8. Shadowing due to mobile terminal
LOS blockage by buildings and trees are represented by deep attenuation
values, where the good and bad states are Loo distributed.

where:

ρ = exp
(
−vm (1/fs)
Lcorr

)
, (5)

and Lcorr is the correlation distance given by [58]. The
phase of direct signal is defined by the maximum Doppler
frequency, while the multipath series is filtered using the
Butterworth filter. Note that the synthesizer implementation
employed in this paper differs from that found in [15] since
the latter uses a maximum transition rate (shadowing slope)
of 5 dB/m while the former uses the recommended linear
interpolation of the parameters during all transitions between
good (bad) and bad (good) states. This leads to a more natural
transition of themean and standard deviations of the Gaussian
random variables used to generate the raw series for both
direct and multipath signals.

The implementation employed in this paper generates data
at a sampling rate of fs, resulting in a total of 5.12 million
samples. However, to comply with the rain attenuation time
series, the LMS synthesizer output is down-sampled to
512 samples, as shown in Fig. 4.

For the scenario where we have amobile LMS channel dur-
ing a rain fading event, we add together the previous two time
series. A step-by-step block diagram for the algorithm of the
complete fading time series generator is provided in Fig. 5.
The resultant attenuation time series is shown in Fig. 6.
Several aspects that differ between the analysis proposed in
this paper and those found in [16] included the following:
(i) in this paper we consider the power attenuation over both
direct and multipath signals for both shadowed and non-
shadowed scenarios; and (ii) this paper uses synthesized time
series based on the updated ITU recommendations, with the
goal of analyzing the attenuation values on a per second
basis rather than an annual shortage percentage. However,
both studies assume that the rain possesses minimal influence
on the probability density function (PDF) with respect to
shadowing events in clear sky scenarios. Consequently, the
shadowing resulting from both direct and multipath rays,
as well as the rain attenuation from these same direct and
multipath rays, can be considered to be two independent
stochastic processes.
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FIGURE 5. Block diagram of complete attenuation time series generator
algorithm. Output time series is a combination of the individual rain
fading time series and the LMS channel time series, generated
individually.

FIGURE 6. LMS channel time series during rain fading for a constant
speed mobile ground receiver communicating with a GEO satellite at
Ka-band.

FIGURE 7. Addition of rain fading to the LMS amplitude. Notice the
change of the mean in the PDF. As expected, both events are independent.

When comparing the cumulative distribution func-
tion (CDF) of the LMS channel time series (shown in Fig. 4)
with the CDF of the same LMS time series but with the effects
of rain attenuation at Ka-band included (shown in Fig. 2),
we observe that the resultant channel possesses a log-normal
PDF since only the mean of the LMS PDF changes, which
is observed in Fig. 7. Thus, it can be deduced that an LMS
channel experiencing from rain fading possesses a smaller
mean.

III. PROPOSED INTERACTIVE MULTIPLE MODEL (IMM)
USING KALMAN FILTERS
In order to perform shadowing detection in the presence of
rain, a signal state classification is proposed to be done by
a filter that is capable of state estimation in the presence of
noisy measurements such as the Kalman filter. The Kalman
filter, fully explained in [66], estimates a signal contaminated
by two noise sources, process noise w(k) and measurement
noise v(k), respectively, using the state space equations with-
out control, namely:

X (k + 1) = F · X (k)+ w(k), (6)

which is responsible for modeling the state evolution, while

z(k) = H · X (k)+ v(k) (7)

describes the noisy outputs of the measurement sensor. In our
case, the transition matrix F in Eq. (6) is expressed as:

F =
[
1 dt

]
, (8)

which is a time-invariant constant velocity model that allows
for the projection of the current estimated state, in our case
the measured power k-steps ahead, controlled by dt assumed
to be equal to 1. Note that, the rest of this paper refers to the
synthetic time series that is output from the simulator as the
‘original’ time series, and to the time series affected by sensor
noise as the ‘measured’ time series. The observable state z(k)
is the measured received power amplitude, thus, H = 1. The
process noise w(k) and the measurement noise v(k) are both
zero-mean Gaussian distributed with covariance matrices Q
and R, respectively.

The first step in setting up a Kalman filter is to have an
accurate systemmodel that describes the majority of different
system behaviors. For instance, several specific behaviors
can be modeled when tracking a target position for navi-
gation purposes, such as the speed and acceleration of an
aircraft [32], [40], [41], [67]. In these cases, the model fully
describes the system dynamics, with few uncertainties left to
the noise functions w(k) and v(k).
For the model being addressed by this paper, namely, the

atmospheric environment, we would like to include as many
local weather variables in the model as possible, such as
the influence of the current tropospheric temperature, wind
speed, amount of clouds in the area, and all the time evolu-
tionary behavior of each of these variables. However, such
modeling is known to be very complex, thus developing both
a state space model and a transition matrix that accounts for
the effects of all these variables and their evolution over time
is considered to be outside the scope of this work. Neverthe-
less, based on the assumption that these unknowns have the
same Gaussian distribution as the noise [29], [33], [34], [41],
our proposed approach uses a very simple state space model
which accounts for the uncertainties in the process noisew(k),
which ends up into estimating parameters such as covariance
matrices, described in the following subsection.

The Kalman filter approach used in this work can be
summarized by the following equations, which can be further
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divided into two sets of equations. The first set is responsible
for predictions of X̂j, given by:

X̂j(k + 1 | k) = F · X̂j0(k | k), (9)

with the covariance Pj given by:

Pj(k + 1 | k) = F · Pj0(k | k) · FT + Q. (10)

The second set performs updates of the Kalman gain Kj:

Kj(k + 1) = Pj(k + 1 | k) · HT
j · (Sj(k + 1))−1, (11)

where the residual covariance matrix S is computed by:

Sj(k + 1) = H · Pj(k + 1 | k) · HT
j + Rj. (12)

X̂j and Pj are updated using the expressions:

X̂j(k + 1 | k + 1) = X̂j(k + 1 | k)+ Kj(k + 1) · ej(k + 1),

(13)

Pj(k + 1 | k + 1) = Pj(k + 1 | k)− Kj(k + 1) · Sj(k + 1)

·KT
j (k + 1), (14)

where the residual e is computed using the expression:

ej(k + 1) = z(k + 1)− H · X̂j(k + 1 | k). (15)

Since in our case the conditions for an optimal Kalman
filter are not satisfied (if known, a realistic model of atmo-
spheric impairments affecting the communications channel
would be non-linear), an extended version known as
IMM filter has been proposed in order to perform recur-
sive estimation when continuous uncertainties Gaussian
distributed, such as additive white Gaussian noise (AWGN),
and discrete uncertainties such as finite system states, are
assumed [29], [33], [34], [41]. The IMMfilter is composed of
a finite number of Kalman filters, and each filter is designed
to represent a different system behavior, or state.

Each Kalman filter input X̂j0 is computed by [29]:

X̂j0(k | k) =
N∑
i=1

X̂i(k | k)µi,j(k), (16)

for i, j = 1, 2, · · · ,N used to identify the Kalman filters
within the IMM filter (j0 refers to IMM mixed values only).
The mixing probabilities µi,j at instant k are computed by:

µi,j(k) =
π (i, j)µi(k)
µ̂j(k + 1 | k)

, (17)

andmixes the original Kalman filter inputs X̂i with each other.
The predicted model probability µ̂j from instant k to k + 1 is
computed by:

µ̂j(k + 1 | k) =
N∑
i=1

π (i, j)µi(k), (18)

where π (i, j) is the Markovian state transition probability
matrix [34].

The next step is to use the standard Kalman filter equations
in each parallel filter, with its respective mixed inputs com-
puted by Eqs. (16) and (19). Each Kalman filter in parallel
has the same update and prediction equations presented in
Eqs. (9)-(15), with the only difference being their respective
Q matrices, which in our case are computed automatically,
and the covariance matrices Pj0 computed by:

Pj0(k | k) =
N∑
i=1

[Pi(k | k)+ (x̂j0(k | k)

− x̂i(k | k)) · (x̂j0(k | k)− x̂i(k | k))T ]µij(k).

(19)

Finally, the individual Kalman filter estimates are
combined into one IMM filter estimate using the expression:

X̂ (k + 1 | k + 1) =
N∑
j=1

X̂j(k + 1 | k + 1)µj(k + 1), (20)

where the model probabilities µj are updated by using the
expression:

µj(k + 1) =
µ̂j(k + 1 | k) · Lj(k + 1)∑N
j=1 µ̂j(k + 1 | k)Lj(k + 1)

. (21)

The likelihood function Lj is given by:

Lj(k + 1) =
exp

(
−

1
2e

T
j (k + 1) · S−1j · ej(k + 1)

)
(
|2πSj(k + 1)|

) , (22)

for j = 1, · · · ,N . The process repeats itself for the next
iteration, when a new set of measurements is acquired from
the sensors.

In order to initiate the proposed algorithm the following
assumptions are made: X (0) is equal to the received power
level under clear sky conditions; P = [10000] since the
covariances are expected to converge to a constant value;
initial state probabilities µ = [0.5; 0.5]; and the Markovian
state transition probabilities are assumed to be:

π =

[
0.9 0.1
0.1 0.9

]
. (23)

In this case, π was chosen to represent the behavior of the
system staying at a certain state with a higher probability than
the probability of transitioning to another state. This behavior
was considered based on the slow fading characteristic of the
rain attenuation effect and on the deep fading characteristic
of shadowing in LMS channels. In the following subsection,
a more detailed explanation regarding the choice of the filter
number present on the IMMfilter is provided in the following
subsection.

During online operations, after choosing theQmatrices, at
each iteration one SNR measurement is input and two output
probability values, computed by Eq. (21), from each Kalman
filter inside the IMM filter, are compared against a threshold.
Fig. 10 presents the state decision output for a threshold value
equal to 0:5.
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FIGURE 8. Diagram block for the proposed design for search of Q matrix
integrated with the IMM filter design. Each matrix combination is tested
individually. Q1 and Q2 are the output matrices chosen by the learning
blocks. The ultimate IMM output is the state decision if there is
shadowing or not.

A. DEFINING NUMBER OF FILTERS IN IMM
When designing an IMM filter, one of the key requirements
is to define how many Kalman filters should be used. Each
Kalman filter in an IMM filter is often used to model one
system state [29], [41], [67], and the IMM filter computes
probabilities to most accurately identify which model reflects
the system current behavior. Thus, onemust know beforehand
which system behaviors will be tracked by the IMM filter,
such that a Kalman filter can be designed for each of them.
In this paper, we used two filters that model the detection of
shadowing in LMS channels, being able to distinguish deep
fading from slow fading, such as due to rain attenuation. The
primary idea here is to have one filter that quickly follows
the noisy SNR measurements steep transitions caused by
shadowing, and the other filter to follow the slower transitions
caused by rain fading.

B. AUTOMATIC SEARCH FOR Q
In the previous section, the problem of modeling the
system was left to defining values for the R and Q matrices,
which represent the measurement and noise process noise
variances based on the assumption that these noise sources
are Gaussian. Since R is an independently generated value of
the system relative to our measurements, we can assume R
to account for only the noise resulting from the sensor. Thus,
R is assumed to be known, and can be measured offline using
a known input.

Considering the primary goal of allowing the system to
estimate measurements from noisy inputs, the cost function
to be minimized is the mean-squared error (MSE). In order to
achieve this goal, an approach that tests and builds the differ-
ent Q matrices for each parallel Kalman filter is proposed as
shown in Fig. 8, which illustrates their diagram blocks, and
by Algorithm 1, which describes the step-by-step usage of the
proposed model for shadowing detection.

The algorithm is initiated with different sets of possible
variance values for each parallel Kalman filter. In order to
tailor each parallel filter to a different behavior, or mode,
one needs to provide different ranges of values for each set,
throughwhich the search algorithmwill look for and build the
Q matrices. One of the goals of this paper is to demonstrate
and analyze the IMM performance using a simple model
that distinguishes between attenuation slopes, with slower
changes being a characteristic of clear sky or rain conditions,
and very steep slopes being a signature of shadowing events.
Thus, only two different modes, i.e., two differentQmatrices,
are necessary: (i) a mode with small values indicating slower
attenuation slopes, and (ii) a mode with large values indi-
cating steeper attenuation slopes. This idea is standard for
IMM filter designers, in which there is one model and
two filters representing the system state being or not in
that model. In the literature [29], [31], [67], values used
to distinguish states in various model approximations, such
as aircraft tracking, are two to three orders of magnitude
apart. Further details are described in Section IV of this
paper.

Given that both filter models run in parallel within the
IMM, the output of each iteration is a combination of both
operations depending on their respective probabilities to
distinguish between no fading and/or slow fading, and deep
fading modes. As a result, the technical challenge associated
with this operation is identifying the correct mode, or at least
the most probable one at each instant.

While designing these filters, it was noted that large values
in a Q matrix make the IMM filter rely more on its noisy
inputs, thus its output follows the noisy inputs more closely.
Furthermore, this choice of Q causes the output to quickly
change its values in an attempt to follow the rapidly changing
input, such as when noise or deep fading is present. On the
other hand, for small values of Q the output of the IMM
slowly follows the changes in the inputs. Thus, the result is
an smoothed output with respect to its input. Each Kalman
filter attempts to track the signal within the noise, thus when
the IMM mixes their output probabilities, it makes easier to
distinguish deep fading from noise and slow fading, allowing
for the detection of shadowing events even in the presence of
rain.

It is worth noting that when building Q matrices by com-
bining the values available in a set, for the Kalman filtering
equations to be computed properly one needs to make sure
that Q must be symmetric and all of its eigenvalues must
be positive, i.e., Q must be positive definite since it needs
to be invertible. In the following section, we discuss the
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FIGURE 9. Normalized CDF of LMS channel time series during rain fading,
shown in Fig.6 (Original) and its CDF after measurement by noisy
sensor (Measured) for R=0.1.

FIGURE 10. IMM outputs of state detection for mobile terminal using a
Ka-band link with a GEO during rain fading through an suburban LMS
channel. The measured received amplitude values and its respective
states are shown for comparison. Shadowing detection is achieved at
different levels of attenuation due to rain fading. Samples recorded
at 10Hz.

performance of the proposed IMM approach for each of the
scenarios mentioned in the previous section.

For each set of values, Q matrices are constructed by
evaluating all possible combinations of these values within
the Q matrix. The process occurs in parallel and iteratively
for all Kalman filters until all the possible Q matrices are
evaluated. In Fig. 8, this parallel process is depicted by the
‘Combiner 1’ and ‘Combiner 2’ blocks.

The outputs of each ‘Combiner’ are used by the indi-
vidual Kalman filters using only Eqs. (9)-(15). The filters
are operated using a training dataset and the MSE of the
outputs from each individual filter is recorded. Then, each
individual ‘Learner’ independently decides which Q matrix
met a certain requirement, in this case, the minimum MSE.
The result of each ‘Learner’ is then fed into the main IMM,
for validation and online estimations. Comments about its
performance evaluation are given in Section IV.

This proposed methodology allows the system to update its
Q matrices in order to operate under changing environments
for achieving a better performance. The determination of
how frequently Q should be re-evaluated is currently under
investigation by the authors, and is outside the scope of this
work.

Algorithm 1 Proposed Shadowing Detector Operational
Routine
Require: Initial parameters
1: Define training window size n
2: Select number of states to be detected s
3: Choose s sets of Q-values of any size within different

ranges each
4: Define s− 1 thresholds values for state detection
5: Build all possible cs combinations of matrices for

each of the s sets
6: Choose optimization metric
7: for t = 1:end of operation do
8: if t > n then
9: Receive new measurement z
10: for k = 1 : 1 : s do
11: for j = 1 : 1 : cs do
12: Train individual Kalman filters
13: Learn Q-matrices for optimized chosen

metric
14: Run IMM filter
15: Get detected state value
16: end for
17: end for
18: else
19: Update training window
20: end if
21: end for

IV. SIMULATION RESULTS
In this section, the proposed IMM filter performance is ana-
lyzed for five different channel conditions: (i) fixed receiver
under rain, (ii) LMS rural under clear sky, (iii) LMS rural
under rain, (iv) LMS suburban under clear sky, and (v) LMS
suburban under rain. The input to the IMM filter is the
time series of synthesized noisy SNR measurements at the
receiver. For simulation purposes, the noise measurement
process is assumed to be Gaussian with zero mean and stan-
dard deviation R with values equal to 0.1, 0.5 and 1. The
search for the Qmatrices Q1 and Q2 was performed building
matrices using all combinations of values from two indepen-
dent sets. The set for Filter 1 is: [0, 10−10, 10−3], and for
Filter 2 is: [10−10, 10−1, 1, 10]. The careful reader might
note that included in the ranges are 0 and 10−10, which are
very close to each other, indeed our results show that there is a
difference in performance when choosing one over the other.
Notice that the sets used contain different amount of values,
since there is no requirement regarding the maximum number
of elements of each set. However, an increase in the number
of elements increases the total number of combinations that
must be tested during training of the Kalman filter. The IMM
proposed approach was tested using the MSE of the SNR
estimations, the same metric used for the automatic search
of Q matrices during training.

Considering the time series length, the IMM filter perfor-
mance was evaluated using three different training dataset
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FIGURE 11. Shadowing detection performance in scenario with rain fading and no shadowing, for a fixed terminal using a Ka-band link with a GEO
satellite. Average duration of false shadowing detection (a) when no detection is expected, and its corresponding percentage of total simulation time
doing wrong shadowing decisions (b). Lower false detection mean time duration is better. Both threshold SNR and mean SNR methods show poor
performance.

TABLE 1. IMM filter MSE of rain faded channel - 100 runs.

sizes, with the largest one being half of the time series
duration. After the Q1 and Q2 matrices were chosen, the
testing dataset was used to validate the performance of the
IMM filter. Table 1 shows the validation MSE statistics for
100 simulation runs for three different R values for a scenario
with a fixed terminal experiencing rain fading only, and for
the three different training dataset sizes. Despite the smallest
mean error values for the measurement standard deviation
R = 1, the mean error for R = 0.1 and R = 0.5 can be
considered similar, with R = 0.1 presenting the smallest
standard deviation error values, as expected. Also, for all
different values of R, the mean error linearly decreased with
the increase of the training dataset size, as expected. Since R
is a parameter directly related to the hardware being used, it
is out of the scope of this paper to discuss better approaches

to improve the IMM performance function of R values. Thus,
the rest of this paper assumesR = 0.1, and as shown by Fig. 9,
the normalized CDF of both original attenuation time-series
and measured time-series considering the noisy sensor with
R = 0.1 are very similar. For the five scenarios mentioned
above, the Q values for the IMM inner filters 1 and 2, were
computed, respectively, as:

Q1 =
[
10−3 0
0 10−3

]
, (24)

Q2 =
[

10 10−10

10−10 10−10

]
. (25)

For Q1, the algorithm preferred the value of 10−10 over 0 for
the variance value of the rate. This shows that a very small
change of values had an impact on the decision of the final
Qmatrix, indicating the level of sensibility that the automatic
Q search method provides.
Tracking the inner filter probabilities values µ indicates

which filter has a higher probability of having a model that
best describes the current environment behavior, defined in
this paper as the channel states. Using a threshold of 0.5 the
IMM inner filters 1 and 2 represent the states 0 and 1, no
shadowing and shadowing states, respectively. For instance,
during the deep fading events, IMM filter outputs higher than
the threshold probability values for Filter 2, leads to the detec-
tion of State 1 indicating shadowing is being experienced by
the signal. Fig. 10 illustrates a snippet of the state decision
time series output together with the measured SNR at the
receiver. Several shadowing events were detected at different
attenuation levels, in this case solely due to rain fading.
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FIGURE 12. Shadowing detection performance on suburban (a) and rural (b) LMS channels during clear sky and rain conditions. Lower time duration
means better performance. Shadowing detection on LMS channels by IMM filter is invariant to atmospheric conditions when sampled at 10 Hz, and better
performance was achieved during rain by spending less time in erroneous shadowing detection condition when compared to current state-of-the-art
detectors.

Notice that the detection is not ideal and a few samples caused
false alarm detection. These errors are believed to be related
to IMM filter prediction errors for only a few samples, and
further investigation is required to fully understand the reason
of this error. Since signal shadowing occurs in a sequence of
samples, single detections can be ignored by the algorithm
making use of this detector. Furthermore, it is worth noting
that the dominance of one of the filters occurs based upon
the current channel shadowing conditions and how each filter
was designed, independently of the fading. This is implied
within the order of magnitude difference among the values
available for the initial set that each Q matrix is constructed
from.

In order to assess the performance of the proposed shadow-
ing detector through different scenarios and to compare our
proposed approach with some common state-of-the-art detec-

tion methods, simulations were conducted for five different
scenarios, described above. Each scenario was sampled at two
different rates, 1 Hz and 10 Hz, 100 times with 512 seconds
duration each, resulting in more than 14 hours of synthesized
attenuation time series, containing only rain, shadowing, or a
combination of these two impairment sources. Note that the
100 different time series for a certain scenario was simulated
to get the statistical performance of the randomness of the
communication channel, using the same original attenuation
time series. For each scenario, 5 detection methods were
compared: SNR threshold, mean SNR, and the proposed
IMM with three different training dataset sizes (30, 150, and
250 samples).

Since the shadowing events were simulated, the ideal
detection time series are known beforehand and were used
as a baseline for comparison against the detector outputs.
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Statistical shadowing detection performance was assessed
on three major categories, over the time slices: mean time
duration of wrong detection, standard deviation of wrong
detection, and percentage of total time of wrong detection.
Fig. 11 shows the detection performance in a scenario with
a fixed terminal experiencing only rain fading, without shad-
owing, allowing evaluation of false detection performance.
Both threshold SNR and mean SNR detection methods
showed poor performance with more than 60% of the time
making false detection at a sample rate of 10 Hz. However,
the IMM filter showed a very good performance with close
to zero false detection. These results motivated the major-
ity of the research present on this paper to be extended to
several different LMS channels, under different atmospheric
conditions.

Regarding the sample rate, we present a comparison
between 1 Hz and 10 Hz results in order to show to the
reader the impact of choosing a different sample rate value to
track a certain channel phenomena, as well as to illustrate its
potential to be used within similar scenarios but with different
purposes of state tracking. The remaining performance eval-
uation discussion considers only the 10 Hz sample rate, since
it is the most appropriate to capture the shadowing effects
based on the minimum time-series sample rate for a mobile
terminal, as mentioned in [65].

On suburban scenarios, shadowing detection was evaluated
under clear sky and rain conditions. The results, illustrated
in Fig. 12, show that the IMM filter behavior in terms of
mean time duration of detection error and total percentage
of time doing wrong detection is similar and immune to the
presence of rain. However, the performance of the othermeth-
ods, SNR threshold and mean SNR, will vary substantially
depending on the channel atmospheric conditions. These pos-
sess a relative good performance during clear sky conditions,
even somewhat better than the proposed IMM filter, but an
extremely poor performance during rain with a difference of
more than 32% in this case for the percentage of total time
duration doing wrong decisions.

Simulations were performed for rural scenarios as well,
for both clear sky and rain conditions. The results shown in
Fig. 12 also confirm that the proposed IMM filter method
has a better performance for shadowing detection during rain
on LMS channels in rural scenarios, where a minimum of
8.5% improvement on percentage of time duration of wrong
detection was achieved by the IMM filter over the SNR
thresholdmethod. As in the suburban scenario, the IMMfilter
performance during clear sky and rain conditions was similar.
The SNR threshold and mean SNR showed a better perfor-
mance during clear sky conditions with very low mean time
duration of detection error and percentage of time duration.

V. CONCLUSIONS
Using synthesized attenuation time series for five different
GEO satellite channels experiencing clear sky and rain
conditions, this paper presented simulation results on the
advantages of using the IMM filter for shadowing detec-

tion for fixed and mobile terminals during rain conditions.
Preliminary results exposed a major flaw of current state-of-
the-art shadowing detection methods while operating during
rain, presenting very poor performance in terms of false
alarm for shadowing detection when no shadowing event was
actually present. However, these methods still have better
detection performance than the proposed IMM filter when
there is no slow attenuation caused by rain.

Considerable detection performance improvements could
be achieved by the proposed IMM filter approach when
comparing it against current state-of-the-art methods. This
is the case for a mobile terminal using an LMS channel
experiencing rain fading in a GEO satellite link operating at
Ka-band.

Future high throughput mobile satellite communication
systems using GEO satellites at Ka-band will be able to
rely on better adaptive designs based on detailed and more
accurate channel state information, as those provided by
filter-based detectors such as the IMM method provided in
this paper. These systems will be aware of the current com-
munication channel conditions while dealing with channel
uncertainties, such as precise space and atmospheric weather
models. In addition to that multiple states can be configured
in order to represent specific channel conditions, with the
potential to improve the performance of adaptive radios and
increase the overall network cooperative aspect.

Also, some insights and details on the ITU implementa-
tions for the time series generators used in this paper were
discussed, which resulted in the code made publicly avail-
able through the reference mentioned above. Future analysis
will consist of taking real-world signal measurements from
a Ka-band GEO satellite under the mentioned scenarios and
performing the experiments described in this paper so that
the results presented by this paper can be confirmed. Next,
the proposed filter design must be deployed in a real-world
prototype and tested on similar channel conditions asas those
analyzed in this paper.

REFERENCES
[1] H. Fenech, A. Tomatis, S. Amos, V. Soumpholphakdy, and J. L. S. Merino,

‘‘Eutelsat HTS systems,’’ Int. J. Satellite Commun. Netw., vol. 34, no. 4,
pp. 503–521, 2016.

[2] M. Hasan and C. Bianchi, ‘‘Ka band enabling technologies for high
throughput satellite (HTS) communications,’’ Int. J. Satellite Commun.
Netw., vol. 34, no. 4, pp. 483–501, 2015.

[3] (Jan. 2013). Satellitetoday.Com Via Satellite. [Online]. Available:
http://www.satellitetoday.com/telecom/2013/01/01/payloads-seeking-the-
holy-grail-of-flexibility/

[4] N. Porecki, G. Thomas, A. Warburton, N. Wheatley, and N. Metzger,
‘‘Flexible payload technologies for optimizing Ka-band payloads to meet
future business needs,’’ in Proc. 19th Ka Broadband Commun., Navigat.
Earth Observat. Conf., Oct. 2013, pp. 1–7.

[5] K. Butchart and R. M. Braun, ‘‘An adaptive modulation scheme for low
Earth orbit satellites,’’ in Proc. South African Symp. Commun. Signal
Process. (COMSIG), Sep. 1998, pp. 43–46.

[6] A. J. Goldsmith and S.-G. Chua, ‘‘Adaptive coded modulation for fad-
ing channels,’’ IEEE Trans. Commun., vol. 46, no. 5, pp. 595–602,
May 1998.

[7] D. Tarchi, G. E. Corazza, and A. Vanelli-Coralli, ‘‘Adaptive coding and
modulation techniques for next generation hand-held mobile satellite

VOLUME 5, 2017 15425



P. V. R. Ferreira et al.: Interactive Multiple Model Filter for Land-Mobile Satellite Communications at Ka-Band

communications,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2013,
pp. 4504–4508.

[8] M. Bousquet et al., ‘‘Cost Action 255: radiowave propagationmodeling for
SatCom services at Ku-Band and above final report: Impairment mitigation
and performance restoration,’’ Eur. Space Agency, Paris, France, Tech.
Rep. ISSN: 0379-6566, 2002.

[9] J. Zhu and S. Roy, ‘‘Improving link layer performance on satellite channels
with shadowing via delayed two-copy selective repeat ARQ,’’ IEEE J. Sel.
Areas Commun., vol. 22, no. 3, pp. 472–481, Apr. 2004.

[10] R. Babaee and N. C. Beaulieu, ‘‘Cross-layer design for multihop wire-
less relaying networks,’’ IEEE Trans. Wireless Commun., vol. 9, no. 11,
pp. 3522–3531, Nov. 2010.

[11] H. Khodakarami and F. Lahouti, ‘‘Link adaptation with untrusted relay
assignment: Design and performance analysis,’’ IEEE Trans. Commun.,
vol. 61, no. 12, pp. 4874–4883, Dec. 2013.

[12] S. Cioni, R. de Gaudenzi, and R. Rinaldo, ‘‘Channel estimation and phys-
ical layer adaptation techniques for satellite networks exploiting adaptive
coding and modulation,’’ Int. J. Satellite Commun. Netw., vol. 26, no. 2,
pp. 157–188, 2008.

[13] D. R. Pauluzzi and N. C. Beaulieu, ‘‘A comparison of SNR estimation
techniques for theAWGNchannel,’’ IEEE Trans. Commun., vol. 48, no. 10,
pp. 1681–1691, Oct. 2000.

[14] J. B. Schodorf, ‘‘EHF satellite communications on the move: Baseband
considerations,’’ Lincoln Lab., Lexington, MA, USA, Tech. Rep. 1055,
2000.

[15] R. Prieto-Cerdeira, F. Perez-Fontan, P. Burzigotti, A. Bolea-Alamanac, and
I. Sanchez-Lago, ‘‘Versatile two-state land mobile satellite channel model
with first application to DVB-SH analysis,’’ Int. J. Satellite Commun.
Netw., vol. 29, pp. 291–315, Jun. 2010.

[16] W. Li, C. L. Law, J. T. Ong, and V. Dubey, ‘‘Ka-band land mobile satellite
channel model: With rain attenuation and other weather impairments in
equatorial zone,’’ in Proc. IEEE 51st Veh. Technol. Conf., vol. 3. May 2000,
pp. 2468–2472.

[17] A. Rico-Alvarino, J. Arnau, and C. Mosquera, ‘‘Link adaptation in mobile
satellite links: Schemes for different degrees of CSI knowledge,’’ Int. J.
Satellite Commun. Netw., vol. 34, no. 5, pp. 679–694, 2015.

[18] D. S. Michalopoulos, H. A. Suraweera, and R. Schober, ‘‘Relay selection
for simultaneous information transmission and wireless energy transfer:
A tradeoff perspective,’’ IEEE J. Sel. Areas Commun., vol. 33, no. 8,
pp. 1578–1594, Aug. 2015.

[19] M. Rieche, D. Arndt, A. Ihlow, and G. D. Galdo, ‘‘Modeling of the land
mobile satellite channel considering the terminal’s driving direction,’’ Int.
J. Antennas Propag., vol. 2015, pp. 1–21, Dec. 2015.

[20] D. Arndt, A. Ihlow, T. Heyn, A. Heuberger, and R. Prieto-Cerdeira, ‘‘State
modelling of the land mobile propagation channel for dual-satellite sys-
tems,’’ EURASIP J. Wireless Commun. Netw., vol. 228, pp. 1–21, Jul. 2012.

[21] L. E. Braten and T. Tjelta, ‘‘Semi-Markov multistate modeling of the
land mobile propagation channel for geostationary satellites,’’ IEEE Trans.
Antennas Propag., vol. 50, no. 12, pp. 1795–1802, Dec. 2002.

[22] Y. Hase, W. J. Vogel, and J. Goldhirsh, ‘‘ Fade-durations derived from
land-mobile-satellite measurements in Australia,’’ IEEE Trans. Commun.,
vol. 39, no. 5, pp. 664–668, May 1991.

[23] D. Tarchi, G. E. Corazza, and A. Vanelli-Coralli, ‘‘A channel state-driven
ACM algorithm for mobile satellite communications,’’ Int. J. Satellite
Commun. Netw., vol. 34, no. 6, pp. 787–807, 2015.

[24] M. Mardani, J. Seifali, F. Lahouti, and B. Eliasi, ‘‘Link-adaptive and
QoS-provisioning cooperative ARQ—Applications to relay-assisted land
mobile satellite communications,’’ IEEE Trans. Veh. Technol., vol. 60,
no. 7, pp. 3192–3206, Sep. 2011.

[25] K. R. Malekshan and F. Lahouti, ‘‘Distributed cross-layer dynamic
route selection in wireless multiuser multihop networks,’’ IEEE
Trans. Wireless Commun., to be published. [Online]. Available:
https://arxiv.org/abs/1407.5718

[26] W. G. Phoel, ‘‘Concepts for reliable satellite communications over block-
age channels,’’ in Proc. IEEE Military Commun. Conf. (MILCOM),
Oct. 2005, pp. 472–481.

[27] J. S. Harsini and F. Lahouti, ‘‘Quality of service constrained throughput
optimisation for joint adaptive transmission with automatic repeat request
over block-fading channels,’’ IET Commun., vol. 3, no. 6, pp. 1030–1040,
Oct. 2009.

[28] H. A. P. Blom and Y. Bar-Shalom, ‘‘The interacting multiple model algo-
rithm for systems with Markovian switching coefficients,’’ IEEE Trans.
Autom. Control, vol. 33, no. 8, pp. 780–783, Aug. 1988.

[29] N. Tudoroiu and K. Khorasani, ‘‘Satellite fault diagnosis using a bank of
interacting Kalman filters,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 43,
no. 4, pp. 1334–1350, Oct. 2007.

[30] A. H. Sayed, Adaptive Filters. Hoboken, NJ, USA: Wiley, 2008.
[31] R. Labbe’s Jr., Kalman and Bayesian Filters in Python, 2nd ed., 2015.

[Online]. Available: https://github.com/rlabbe/Kalman-and-Bayesian-
Filters-in-Python

[32] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, ‘‘Interacting mul-
tiple model methods in target tracking: A survey,’’ IEEE Trans. Aerosp.
Electron. Syst., vol. 34, no. 1, pp. 103–123, Jan. 1998.

[33] L. A. Johnston and V. Krishnamurthy, ‘‘An improvement to the interacting
multiple model (IMM) algorithm,’’ IEEE Trans. Signal Process., vol. 49,
no. 12, pp. 2909–2923, Dec. 2001.

[34] T. Sathyan and T. Kirubarajan, ‘‘Markov-jump-system-based secure
chaotic communication,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53,
no. 7, pp. 1597–1609, Jul. 2006.

[35] T. Y. Um, J. G. Lee, S.-T. Park, and C. G. Park, ‘‘Noise covariances
estimation for systems with bias states,’’ IEEE Trans. Aerosp. Electron.
Syst., vol. 36, no. 1, pp. 226–233, Jan. 2000.

[36] M. Enescu, M. Sirbu, and V. Koivunen, ‘‘Recursive estimation of
noise statistics in Kalman filter based MIMO equalization,’’ in Proc.
27th General Assembly Int. Union Radio Sci., Aug. 2002, pp. 1–4.

[37] Y. Li and J. Li, ‘‘Robust adaptive Kalman filtering for target tracking with
unknown observation noise,’’ in Proc. 24th Chin. Control Decision Conf.,
May 2012, pp. 2075–2080.

[38] W.-J. Qi, P. Zhang, G.-H. Nie, and Z.-L. Deng, ‘‘Robust weighted fusion
Kalman predictors with uncertain noise variances,’’Digit. Signal Process.,
vol. 30, pp. 37–54, Jul. 2014.

[39] A. Assa and F. Janabi-Sharifi, ‘‘A Kalman filter-based framework for
enhanced sensor fusion,’’ IEEE Sensors J., vol. 15, no. 6, pp. 3281–3292,
Jun. 2015.

[40] B. Feng, F. Ma, M. Fu, and C. Yang, ‘‘Real-time state estimator without
noise covariance matrices knowledge—Fast minimum norm filtering algo-
rithm,’’ IET Control Theory Appl., vol. 9, no. 9, pp. 1422–1432, Jun. 2015.

[41] T. Kirubarajan and Y. Bar-Shalom, ‘‘Kalman filter versus IMM estimator:
When do we need the latter?’’ IEEE Trans. Aerosp. Electron. Syst., vol. 39,
no. 4, pp. 1452–1457, Oct. 2003.

[42] E. Lutz, D. Cygan, M. Dippold, F. Dolainsky, and W. Papke, ‘‘The land
mobile satellite communication channel-recording, statistics, and channel
model,’’ IEEE Trans. Veh. Technol., vol. 40, no. 2, pp. 375–386, May 1991.

[43] D. Arndt et al., ‘‘Extended two-state narrowband LMS propagation model
for S-Band,’’ in Proc. IEEE Int. Symp. Broadband Multimedia Syst.
Broadcast., Jun. 2012, pp. 1–6.

[44] F. Lacoste, B. M. Villacieros, R. Prieto-Cerdeira, and J. Lemorton, ‘‘SISO
and MIMO enhanced 2-state modeling of the land mobile satellite channel
for various frequencies, environments and elevation angles,’’ in Proc.
8th Eur. Conf. Antennas Propag., 2014, pp. 2277–2281.

[45] M. Rieche, A. Ihlow, D. Arndt, F. Perez-Fontan, and G. D. Galdo, ‘‘Model-
ing of the land mobile satellite channel considering the terminal’s driving
direction,’’ Int. J. Antennas Propag., pp. 1–21, 2015.

[46] M. Ait-Ighil et al., ‘‘Simplifying the propagation environment representa-
tion for LMS channel modelling,’’ EURASIP J. Wireless Commun. Netw.,
vol. 1, pp. 1–20, Mar. 2012.

[47] M. Ait-Ighil et al., ‘‘ SCHUN - A hybrid land mobile satellite channel
simulator enhanced for multipath modelling applied to satellite navigation
systems,’’ in Proc. 7th Eur. Conf. Antennas Propag., 2013, pp. 692–696.

[48] S. Scalise, H. Ernst, and G. Harles, ‘‘Measurement and modeling of the
land mobile satellite channel at Ku-Band,’’ IEEE Trans. Veh. Technol.,
vol. 57, no. 2, pp. 693–703, Mar. 2008.

[49] A.M. Al-Saegh, A. Sali, J. S. Mandeep, and A. Ismail, ‘‘Tracking and scin-
tillation aware channel model for GEO satellite to land mobile terminals at
Ku-band,’’ Int. J. Antennas Propag., pp. 1–15, 2015.

[50] NASA ACTS program, National Aeronautics and Space
Administration, accessed on Oct. 2016. [Online]. Available:
http://www.nasa.gov/centers/glenn/about/fs13grc.html

[51] RF Propagation database, National Aeronautics and Space
Administration, accessed on Oct. 2016. [Online]. Available:
https://propagation.grc.nasa.gov/background/what-are-we-measuring

[52] D. Chakraborty, F. Davarian, and W. L. Stutzman, ‘‘The Ka-band prop-
agation measurements campaign at JPL,’’ IEEE Antennas Propag. Mag.,
vol. 35, no. 1, pp. 7–13, Feb. 1993.

[53] S. Ventouras et al., ‘‘Large scale assessment of Ka/Q band atmospheric
channel across Europe with ALPHASAT TDP5: A new propagation cam-
paign,’’ in Proc. 10th Eur. Conf. Antennas Propag. (EuCAP), Apr. 2016,
pp. 1–5.

15426 VOLUME 5, 2017



P. V. R. Ferreira et al.: Interactive Multiple Model Filter for Land-Mobile Satellite Communications at Ka-Band

[54] T. Kostulski and S. Reisenfeld, ‘‘Spectral analysis of experimental
Ka-band propagation measurements over the australian LEOmicrosatellite
‘FedSat’,’’ in Personal Satellite Services, vol. 15. Berlin Germany:
Springer, 2009, pp. 41–48.

[55] H. Fukuchi, N. Abe, T. Takahashi, and T. Asai, ‘‘Ka-band satellite
communication experiments and rain attenuation measurements using
WINDS,’’ inProc. 7th Int. Conf. Inf., Commun. Signal Process., Dec. 2009,
pp. 1–4.

[56] X. Boulanger, B. Gabard, L. Casadebaig, and L. Castanet, ‘‘Four years
of total attenuation statistics of earth-space propagation experiments at
Ka-band in Toulouse,’’ IEEE Trans. Antennas Propag., vol. 63, no. 5,
pp. 2203–2214, May 2015.

[57] Propagation Data and Prediction Methods Required for the Design of
Earth-Space Telecommunication Systems, document Rec. ITU-R P.618-12,
ITU-R, Geneva, Switzerland, 2015.

[58] Propagation Data Required for the Design of Earth-Space Land Mobile
Telecommunication Systems, document Rec. ITU-R P.681-8, ITU-R,
Geneva, Switzerland, 2015.

[59] P. Ferreira and A. M. Wyglinski, Satellite-Communications: LMS Time
Series Gen GEO v1.1. GitHub, 2015, doi: 10.5281/zenodo.44695.

[60] Characteristics of Precipitation for PropagationModeling, document Rec.
ITU-R P.837-6, ITU-R, Geneva, Switzerland, 2012.

[61] Specific Attenuation Model for Rain for Use in Prediction Methods, Rec.
ITU-R P.838-3, ITU-R, Geneva, Switzerland, 2005.

[62] Tropospheric Attenuation Time Series Synthesis, document Rec. ITU-R
P.1853-1, ITU-R, Geneva, Switzerland, 2012.

[63] Rain Height Model for Prediction Methods, document Rec. ITU P.839-4,
ITU-R, Geneva, Switzerland, 2013.

[64] G. Corazza, Digital Satellite Communications. New York, NY, USA:
Springer, 2007.

[65] B. Krach, A. Lehner, and A. Steingass, ‘‘Technical note on the
implementation of the land mobile satellite channel model—
Software usage,’’ German Aerospace Center DLR, Köln, Germany,
Tech. Rep. DLR-KN-FS-01-05, 2007.

[66] R. Faragher, ‘‘Understanding the basis of the Kalman filter via a simple
and intuitive derivation,’’ IEEE Signal Process. Mag., vol. 29, no. 5,
pp. 128–132, Sep. 2012.

[67] B. Feng, M. Fu, H. Ma, Y. Xia, and B. Wang, ‘‘Kalman filter with
recursive covariance estimation—Sequentially estimating process noise
covariance,’’ IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6253–6263,
Nov. 2014.

PAULO VICTOR RODRIGUES FERREIRA
received the B.Sc. and M.Sc. degrees in electrical
engineeringwith emphasis on telecommunications
and electronics from the Federal University of
Uberlandia, Brazil, in 2010 and 2012, respectively.
He is currently pursuing the Ph.D. degree with the
Wireless Innovation Laboratory, Department of
Electrical and Computer Engineering, Worcester
Polytechnic Institute, Worcester, MA, USA. He is
a grantee of the Brazilian Government Scholarship

Program Science without Borders.

RANDY PAFFENROTH received the degree in
mathematics and degree in computer science from
Boston University, and the Ph.D. degree in applied
mathematics from the University of Maryland
in 1999. He spent seven years as a Staff Scientist
of Applied and Computational Mathematics with
the California Institute of Technology. In 2006, he
joined Numerica Corporation, where he held the
position of Computational Scientist and Program
Director. He is currently an Associate Professor of

Mathematical Sciences and Associate Professor of Computer Science with
Worcester Polytechnic Institute with a joint appointment in the Data Science
Program. His technical interests includemachine learning, signal processing,
large scale data analytics, compressed sensing, and the interaction between
mathematics, computer science, and software engineering, with a focus on
applications in cyber-defense.

ALEXANDER M. WYGLINSKI (SM’11) received
the B.Eng. and Ph.D. degrees from McGill
University in 1999 and 2005, respectively, and
the M.Sc. (Eng.) degree from Queen’s University,
Kingston, in 2000, all in electrical engineering.
He is currently an Associate Professor of Elec-
trical and Computer Engineering with Worcester
Polytechnic Institute,Worcester, MA, USA, where
he was the Director of the Wireless Innovation
Laboratory. He has published over 35 journal

papers, over 75 conference papers, nine book chapters, and two textbooks.
His current research activities include wireless communications, cognitive
radio, software-defined radio, dynamic spectrum access, spectrum mea-
surement and characterization, electromagnetic security, wireless system
optimization and adaptation, and cyber physical systems. He is currently
being or has been sponsored by organizations, such as the Defense Advanced
Research Projects Agency, the Naval Research Laboratory, the Office of
Naval Research, the Air Force Research Laboratory - Space Vehicles Direc-
torate, TheMathWorks, Toyota InfoTechnology Center U.S.A., Rytheon, the
MITRE Corporation, the National Aeronautics and Space Administration,
and the National Science Foundation. He was a member of Sigma Xi,
Eta Kappa Nu, and the ASEE.

VOLUME 5, 2017 15427


