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ABSTRACT A human localization system using multi-source heterogeneous data in indoor environments
is proposed in this paper. The system can be easily constructed with already deployed Wi-Fi and camera
infrastructures and is able to make use of received signal strength samples, surveillance images, and room
map information to achieve a comparable performance. In a corridor scenario, we optimize propagation
model (PM) parameters with crowdsourcing data from only several locations and establish a data table
of optimized parameters for trilateration localization. These crowdsourcing data are also used to correct
trilateration localization results, through which localization performance can be greatly improved. In a room
scenario, we locate a human object with a panoramic camera and room map. We first detect the human
object on the observed image and search a pixel location that represents the object’s location best. Then,
the pixel location on the image is mapped to the room map using an artificial neural network. By this
method, localization accuracy of sub-meter level can be obtained. We perform the proposed system in our
experimental environment, and the experimental results show that our localization system not only requires
no extensive time and labor cost, but also outperforms fingerprinting and PM localization systems.

INDEX TERMS Indoor localization, propagation model optimization, coordinate correction, object
detection, location mapping.

I. INTRODUCTION
In global positioning system (GPS)-denied indoor environ-
ments, various indoor localization systems based on different
techniques, such as ultra wideband (UWB), infrared, ultra-
sound,Wi-Fi, and vision processing, have been developed for
location-based services (LBS) [1]–[3]. Because Wi-Fi infras-
tructures are ubiquitously deployed in indoor environments
for communications, localization methods using Wi-Fi have
been extensively researched like propagation model (PM),
time of arrival (TOA), time difference of arrival (TDOA),
angle of arrival (AOA), and fingerprinting [3]–[6]. Mean-
while, cameras also proliferate fast in people’s daily life for
surveillance and localization methods with a single camera
and camera network also have been presented in the past
few years. Therefore, a heterogeneous design of Wi-Fi and
camera-based localization is highly promising for accurate
localization in indoor environments [7].

Among of the localization methods based on Wi-Fi, fin-
gerprinting method is favored because it only needs software
update without any hardware modification and outperforms
the other methods under non-line-of-sight (NLOS) environ-
ments. However, it requires a process of data collection in
the offline phase, which needs to collect location-labeled
received signal strength (RSS) data by trained experts to build
a database called radio-map [6]. The process requires consid-
erable time and effort and therefore it limits the application
potential of fingerprinting method. Although PM method
needs no data collection and extra hardware, as a range-based
localization method, the performance of PM method heav-
ily depends on the estimated distances between a user and
Wi-Fi access points (APs) for trilateration localization. So the
performance of basic PM method is barely satisfactory.

In recent years, crowdsourcing approach has been pro-
posed for radio-map establishment, in which common users,
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namely crowdsourcing participants, contribute location-
labeled RSS data in a participatory sensing manner [8].
However, the problem of crowdsourcing-based radio-map
establishment is that a considerable number of RSS data
should be collected to compute an accurate localization
result [9]. Thus, we apply crowdsourcing to PM localiza-
tion method. In a corridor scenario, we mark crowdsourcing
points (CPs) with two-dimensional (2-D) code stickers on the
ground, so that crowdsourcing participants can freely scan
the 2-D codes for location information and label collected
RSS data with the location information. These crowdsourcing
data are used for PM optimization and coordinate correction.
Unlike fingerprinting method, our proposed crowdsourcing-
based PM localization method only needs location-labeled
RSS data collected at a few CPs. This amount of RSS data
can be easily collected in a short time and usually are not
enough for fingerprinting method.

Because crowdsourcing participants might not be allowed
to enter rooms, we propose a human localization method
using a panoramic camera and room map for room scenar-
ios, which offers a localization accuracy of sub-meter level.
The method first detects a human object observed with the
panoramic camera on the room ceiling. Then the pixel loca-
tion that represents the object’s location best is searched and
mapped to a corresponding pixel location on the roommap to
obtain a localization result.

Therefore, in this paper, we propose a human localization
system using multi-source heterogeneous data for accurate
localization in corridor and room scenarios. The main con-
tributions of this paper are summarized:

1) We propose an indoor localization system using multi-
source heterogeneous data that consist of RSS samples,
surveillance images and room map information. The system
not only can be easily constructed with already deployed
Wi-Fi and camera infrastructures, but also is able to achieve
a comparable localization performance.

2) We propose a crowdsourcing-based PM localization
method in corridor scenarios. A data table that consists of
optimized PM parameters of different CPs is first established
to estimate accurate distances between a user and APs for
trilateration localization. Then the distance between the user
and a nearby CP is also estimated to correct the localization
coordinates, through which localization errors can be reduced
greatly.

3) We propose a panoramic camera-based localization
method in room scenarios. The method first detects a human
object on the observed image and searches the pixel loca-
tion that can represent the object location best. With room
map information, the found pixel location is mapped to
the map using artificial neural network (ANN) to locate
the object. The proposed panoramic camera-based local-
ization method has a localization accuracy of sub-meter
level.

4) We verify the proposed localization system in a real
office environment and compared it with popular fingerprint-
ing and PM-based localization systems. The experimental

results confirm that our system outperforms the localization
systems using fingerprinting and PM methods.

The rest of this paper is organized as follows. Section II
reviews the related works of our proposed localization
system. The system overview is given and every com-
ponent of it is described in details in Section III. The
experimental setup, results and analyses are given in
Section IV. Finally, Section V concludes this paper.

II. RELATED WORKS
A. Wi-Fi INDOOR LOCALIZATION USING
CROWDSOURCING
In the beginning, crowdsourcing participants contributed
location-labeled RSS samples for radio-map establish-
ment with indoor electronic maps [8], [10]. Then
Mirowski et al. [11] deployed a number of 2-D code labels in
their experimental area for users to scan and obtain location
information. Wu et al. [12] recorded numerous trajectories
of crowdsourcing participants and then matched the trajec-
tories with RSS data using multidimensional scaling (MDS).
In [13], a survey-free algorithm called Chameleon was pro-
posed to filter out altered APs with crowdsourcing data.
Wang et al. [14] proposed an indoor sub-area localiza-
tion method that constructed sub-area radio-map with
crowdsourcing data and related them to indoor layouts.
Jiang et al. [9] proposed a probabilistic radio-map construc-
tion for crowdsourcing-based fingerprinting method. The
method required a large number of RSS samples. Unlike
above-mentioned literatures that focused on crowdsourcing-
based fingerprinting localization, Zhuang et al. [15]
estimated PM parameters with crowdsourcing data for AP
localization. Then localization coordinates were computed
with trilateration localization. The system required a certain
number of crowdsourcing data collected from the partici-
pants’ daily life. By contrast, our proposed crowdsourcing-
based PM localizationmethod only needs crowdsourcing data
from a few CPs, which can be easily collected in a short time.

B. CAMERA-BASED INDOOR LOCALIZATION
So far, many camera-based localization systems have been
proposed. With 2-D image physical properties, locations and
heights of people were estimated by a constrained optimiza-
tion process in multiple calibrated camera network [16].
Liu et al. [17] first focused on the localization-oriented cov-
erage of camera network and then formulated the localization
problem using Bayesian estimation to compute a needed cam-
era density. Liu et al. [18] proposed a location-constrained
maximum a posteriori algorithm for camera-based local-
ization through incorporating camera parameters and loca-
tion information. Pflugfelder and Bischof [19] formulated
camera-based localization and trajectory reconstruction as
an optimization problem that could be solved by singular
value decomposition (SVD). Also, Lin et al. [20] presented
a series of image transforms based on the vanishing point of
vertical lines, which improved their probabilistic occupancy

VOLUME 5, 2017 813



Y. Sun et al.: Human Localization Using Multi-Source Heterogeneous Data in Indoor Environments

map (POM)-based localization method. Compared with the
camera-based indoor localization methods above, our method
is capable to cover an area and locate people with only one
panoramic camera.

C. INDOOR LOCALIZATION USING MULTI-SOURCE
HETEROGENEOUS DATA
To offer accurate location information for users, people
have tried to exploit multi-source heterogeneous data for
indoor localization. The expressions of the Cramer-Rao lower
bound (CRLB) were given using heterogeneous information
under NLOS conditions, which showed that the condition of
localizability could be almost always fulfilled for connected
range bearing networks [21]. Nguyen et al. [7] presented a
vision-enhanced wireless localization method that success-
fully integrated vision information and TOA measurements
of UWB for cooperative localization in harsh indoor envi-
ronments. In [22], Denis et al. emulated a multi-mode ter-
minal based on ZigBee and orthogonal frequency division
multiplexing (OFDM). Their experimental results proved
that more accurate location of the terminal could be esti-
mated through cooperation, data fusion and node detection.
Liu et al. [23] proposed a peer assisted localization approach
using RSS and acoustic signals. The approach could reduce
the maximum error to 2m. Chen et al. [24] presented a
smartphone inertial sensor-based localization and tracking
approach usingWi-Fi and iBeacon. The localization accuracy
of the approach was 1.39m. Unlike [24], using Wi-Fi and
FM wireless fingerprints, a system proposed in [25] only had
a localization accuracy of room level. Therefore, although
various localization systems using heterogeneous data have
been developed, to the best of our knowledge, no indoor
localization system using Wi-Fi, panoramic camera and map
information has been proposed so far.

FIGURE 1. Human localization using multi-source data in indoor
environments.

III. INDOOR HUMAN LOCALIZATION USING
MULTI-SOURCE HETEROGENEOUS DATA
A. SYSTEM OVERVIEW
As shown in Fig. 1, we propose a localization system using
RSS samples, surveillance images and roommap information
to offer accurate location coordinates for users in corridor
and room scenarios, which are two kinds of typical indoor
scenarios.

In the corridor scenario, we optimize a PM for trilateration
localization with crowdsourcing data. Our method is able
to make use of already deployed Wi-Fi APs and achieve a
satisfactory localization performance without intensive labor
and time cost.We first select several CPs that are marked with
2-D code stickers on the ground. Crowdsourcing participants
can scan the 2-D codes to obtain location information, with
which the collected RSS data are labeled. These location-
labeled RSS data can be uploaded to a server. Then PM
parameters of each CP are optimized with the crowdsourcing
data collected at each CP. By this way, a data table of opti-
mized PMparameters can be established.When a user scans a
2-D code at a CP, location coordinates of the CP are searched
in the data table and optimized PM parameters of the CP can
be derived for trilateration localization. Even after the user
walks away from the CP, the distance between the user and
CP can also be estimated as a restrictive condition to correct
the localization coordinates of trilateration localization.

In the room scenario, when the user enters a room and
is observed by the mounted panoramic camera. The pixel
differences between the observed image and modeled back-
ground image are computed. According to a given threshold,
the foreground object, that is the user, can be detected. Then
the foreground pixel location that can represent the user’s
location best is searched and mapped from the observed
image to a corresponding location on the room map. Finally,
the pixel location is transformed to a localization result in the
coordinate system we construct with linear equations.

Therefore, in indoor environments, the proposed localiza-
tion system in this paper is able to make use of available het-
erogeneous data to improve localization performance without
extensive labor and time cost.

B. PROPAGATION MODEL OPTIMIZATION AND
COORDINATE CORRECTION
We assume thatK APs are deployed in an indoor environment
and J CPs are marked with 2-D code stickers on the ground.
Crowdsourcing participants collect E RSS samples at each
CP and label them with location coordinates, which can be
denoted as

(
r(j)1 , r

(j)
2 , · · · , r

(j)
E , x

(j)
CP, y

(j)
CP

)
, j ∈ {1, 2, · · · , J}.

Because RSS data from only three APs are needed for tri-
lateration localization, the top three strongest crowdsourcing
RSS data are selected to optimize the PM parameters of each
CP. Then mean values of optimized parameters of each CP
are calculated. These mean values and location information
of each CP are compiled into a data table. If a user is at CP
j and scans the 2-D code on the ground, the corresponding
optimized parameters in the data table can be found to esti-
mate distances for trilateration localization. These parameters
will be adopted until the user moves to another CP and scans
the 2-D code there. Meanwhile, the crowdsourcing data of
CP j are also exploited to estimate the distance between
the user and CP j as a restrictive distance. If the distance
between the localization coordinates and CP j is greater
than the restrictive distance, then the localization coordinates
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FIGURE 2. Frame of the proposed crowdsourcing-based PM localization
method.

should be corrected. The frame of proposed method is shown
in Fig. 2.

1) PROPAGATION MODEL OPTIMIZATION
In this paper, we select a site-general model to predict
the radio propagation loss between a terminal device and
AP [26], which can be denoted by:

PLoss = 20 lg f + N lg d + Lf (n)− 28, (1)

where PLoss in dB is the radio propagation loss between the
terminal device and AP, d in meter is the separation distance
between the terminal device and AP (d > 1m), f in MHz is
the frequency, Lf in dB is the floor penetration loss factor, n
is the number of floors between the terminal device and AP
(n ≥ 1), and N is the distance power loss coefficient, which
equals 30 at 2.4GHz in office environments.

In this paper, all the APs we deployed are on the same
floor as our experimental environment, so the term Lf (n) can
be removed from (1). If we let P(k)Tr and P(k,j)Re denote the
transmitted power of AP k and received power measured by
a terminal device at CP j, respectively, and also replace the
constant 28 with parameter X (k,j), then (1) can be rewritten
as:

P(k)Tr − P
(k,j)
Re = 20 lg f + N (k,j) lg d (k,j) − X (k,j). (2)

In practical application, the power P(k)Tr and P(k,j)Re in dBm
can be derived from AP configurations and measured RSS
samples by the terminal device, respectively. The distance
between the user at CP j and AP k can be computed by:

d (k,j) = 10

P(k)Tr − P
(k,j)
Re − 20lgf + X (k,j)

N (k,j) . (3)

In order to improve localization performance, we first
optimize PM parameters X (k,j) and N (k,j) and then establish
a data table of the optimized parameters. Let the location
coordinates of AP k and CP j be (x(k)AP, y

(k)
AP) and (x(j)CP, y

(j)
CP),

respectively, then the horizontal distance d (k,j)Horz between them
can be calculated by:

d (k,j)Horz =

√(
x(k)AP − x

(j)
CP

)2
+

(
y(k)AP − y

(j)
CP

)2
. (4)

Therefore, parameters X (k,j) and N (k,j) are optimized to
minimize the difference of the real and estimated distances
between AP k and CP j denoted by (5), which can be consid-
ered as an unconstrained nonlinear multivariable optimiza-
tion problem:

(
X̂ (k,j), N̂ (k,j)

)
= argmin
(X (k,j),N (k,j))

∣∣∣d (k,j)Real − d
(k,j)

∣∣∣
d (k,j)Real =

√(
d (k,j)Horz

)2
+1h2

, (5)

where 1h is the height difference between the AP and user’s
terminal device and it is set to be a fixed value in this
paper. To solve the optimization problem, we select Nelder-
Mead simplex algorithm and the starting values of parameters
X (k,j) and N (k,j) are set equal to 28 and 30, respectively.
In order to establish the data table of optimized parameters,
mean values ¯̂X (j)Tab and ¯̂N (j)Tab of CP j are calculated with the
crowdsourcing data of CP j. In case no matched optimized
parameters are available for trilateration localization, mean

values ¯̂XAll =
J∑
j=1

¯̂X (j)Tab and ¯̂NAll =
J∑
j=1

¯̂N (j)Tab of all the two

optimized parameters are also computed.
With optimized PM parameters, localization coordinates

are calculated by trilateration localization. We assume that
the user stands at

(
x̂, ŷ

)
, the user’s terminal device measures

RSS samples from three APs that are deployed at loca-
tions

(
x(i)AP, y

(i)
AP

)
, i ∈ {a, b, c} and the horizontal distances

between the user and these APs are d (i), i ∈ {a, b, c}, then we
can have (6). The location coordinates

(
x̂, ŷ

)
can be computed

through solving the equations as follows:

√(
x̂ − x(a)AP

)2
+

(
ŷ− y(a)AP

)2
= d (a)√(

x̂ − x(b)AP

)2
+

(
ŷ− y(b)AP

)2
= d (b)√(

x̂ − x(c)AP

)2
+

(
ŷ− y(c)AP

)2
= d (c)

. (6)

2) COORDINATE CORRECTION WITH CROWDSOURCING
DATA
As shown in Fig. 3, After the user scans the 2-D code at CP j,
even when the user walks to location i, a restrictive distance
between the user at location i and CP j can be still estimated
to correct localization coordinates. Let P(1,i)Re and P(1,j)Re be the
received powers from AP 1 measured at location i and CP j,
respectively. The received power P(1,i)Re can be denoted with
the optimized parameters in the data table:

P(1,i)Re = P(1)Tr − 20 lg f − ¯̂N (j)Tab lg d
(1,i)
+
¯̂X (j)Tab. (7)
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FIGURE 3. Distance estimation between a user and crowdsourcing point.

Using the similar equation for P(1,j)Re , then we can have:

P(1,j)Re − P
(1,i)
Re =

¯̂N (j)Tab lg
d (1,i)

d (1,j)
. (8)

As shown in Fig. 3, the restrictive distance d (i,j)Res between
location i and CP j should not be less than

∣∣d (1,i) − d (1,j)∣∣, so
we can have:

d (i,j)Res ≥

∣∣∣d (1,i) − d (1,j)∣∣∣ =
∣∣∣∣∣∣∣10

P(1,j)Re −P
(1,i)
Re

¯̂N (j)Tab − 1

∣∣∣∣∣∣∣ d (1,j). (9)

When RSS samples from K APs are measured, (9) is
applicable to all the K APs and the real distance between AP
k and CP j can be calculated with their horizontal distance
and height difference, so we can conclude that:

d (i,j)Res '

 max
k∈{1,··· ,K }

∣∣∣∣∣∣∣10
P(k,j)Re −P

(k,i)
Re

¯̂N (j)Tab − 1

∣∣∣∣∣∣∣
√(

d (k,j)Horz

)2
+1h2

.
(10)

Even though the PM is optimized, due to radio propaga-
tion variations and multi-path effect, localization coordinates
calculated by PM method may deviate from the real location
greatly. The estimated distance d (i,j)Res can be used as a restric-
tive distance to correct the localization coordinates. After
localization coordinates

(
x̂i, ŷi

)
are estimated by trilatera-

tion localization, the distance d̂ (i,j) between the localization
coordinates

(
x̂i, ŷi

)
and CP j is calculated. If d̂ (i,j) is greater

than d (i,j)Res , then the localization coordinates are corrected to a
location on a circle with center point at CP j and radius d (i,j)Res as
well as in the same direction as

(
x̂i, ŷi

)
. The final localization

coordinates
(
x̂ ′i , ŷ

′
i

)
can be calculated by:

x̂ ′i =

(
x̂i−x

(j)
CP

)
d (i,j)Res

d̂ (i,j)
+ x(j)CP

ŷ′i =

(
ŷi−y

(j)
CP

)
d (i,j)Res

d̂ (i,j)
+ y(j)CP

. (11)

FIGURE 4. Flow chart of panoramic camera-based localization method.

C. HUMAN DETECTION AND LOCALIZATION USING
PANORAMIC CAMERA
In our room scenario, instead of using Wi-Fi, we locate
people with a panoramic camera mounted on the room ceil-
ing. There are two phases in our proposed localization pro-
cess: object detection and coordinate calculation. In the first
phase, observed images are first preprocessed with some
basic image processing operations and then a human object
on the observed image can be detected. In the second phase,
the object pixel location that represents the human object’s
location best is first searched and then mapped to a cor-
responding pixel location on the map. Finally, localization
coordinates can be obtained in our constructed coordinate
system using linear equations. The flow chart of the pro-
posed panoramic camera-based localization method is shown
in Fig. 4.

1) HUMAN OBJECT DETECTION
In this phase, an observed image derived from a surveil-
lance video is first preprocessed with basic image processing
operations, such as resizing, rotation, gray processing, and
reverse color processing, in order to reduce calculation com-
plexity and extract morphological characteristics [27]. Then
we detect the human object with background subtraction
method [28] because there is no greatly varying illumination
in the our experimental environment and background subtrac-
tion method has a fast computation speed.

Background subtraction method detects a human object
through separating the foreground object, that is the human
object, from the background image. It first models the back-
ground image that is approximate to the static observed scene
without foreground objects. So the differences between the
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modeled background image and observed image can be com-
puted. With a given threshold, foreground object pixels can
be determined.

In the process of background modeling, we first assume
that an image sequence after preprocessing is denoted as
{F1,F2, · · · ,Ft }, then the background pixel value Bt (x, y)
at location (x, y) on the image can be averaged by:

Bt (x, y) =
1
L

L−1∑
i=0

Ft−i (x, y), (12)

where Ft−i (x, y) is the pixel value at location (x, y) on image
Ft−i and L is the number of observed images used for com-
puting mean value Bt (x, y). Using (12), all the background
pixel values on the image can be computed. So we can obtain
the background image Bt .

Then we assume that Ft (x, y) is the pixel value at location
(x, y) on the observed image, so we can have:

|Bt (x, y)− Ft (x, y)| > T , (13)

where T is a threshold to determine whether the pixel belongs
to the foreground object or not. If (13) is satisfied, then the
pixel at location (x, y) is considered as a foreground pixel, or
it is a background pixel.

2) LOCALIZATION COORDINATE CALCULATION
In the second phase, we assume that the foreground object
detected in the first phase consists of R pixels and the
panoramic camera is at location (xCam, yCam) on the image.
Because the panoramic camera is deployed near the central
area of the room ceiling, we find that the foreground pixel
that is the nearest to location (xCam, yCam) can represent the
detected object’s location best. Therefore, we calculate the
Euclidean distances Di, i ∈ {1, 2, · · · ,R} between every
foreground pixel and the pixel of the panoramic camera at
location (xCam, yCam) and then search the pixel location with
minimum Euclidean distance Dr . The searched pixel coordi-
nates Lr = (xr , yr ) are considered as the location coordinates
of the foreground object LImg =

(
xImg, yImg

)
on the image,

which are computed by:
Di =

√
(xi − xCam)2 + (yi − yCam)2

Dr = min (Di)
LImg = Lr

, i ∈ {1, · · · ,R}.

(14)

Then an accurate room map is also resized and bina-
rized to obtain a binary map IMap for coordinate mapping.
We model the mapping relationship between pixel locations
on the image and map as f (·). Because ANN has been
widely used for nonlinear mapping, a three-layer perceptron
trained by back propagation (BP) is applied in this paper [29].
The inputs of the ANN are the pixel coordinates LImg =(
xImg, yImg

)
on the image and outputs are the coordinates

LMap =
(
xMap, yMap

)
on the map. The proposed structure of

the ANN is shown in Fig. 5.

FIGURE 5. ANN structure for coordinate mapping.

We train the ANN with observed images of the human
object at several specific locations, whose location coordi-
nates are known. The relationship between pixel coordinates
on the image and map can be modeled by the ANN as:

LMap = f
(
LImg

)
. (15)

The outputs in layer l of the ANN can be given by:

y(j)l = g
(
u(j)l
)

u(j)l =
I∑
i=1
ω
(i,j)
l−1,lx

(i,j)
l−1,l − θ

(j)
l{

j = 1, 2, · · · ,H ; I = 2, l = 2
j = 1, 2; I = H , l = 3

, (16)

where ω(i,j)l−1,l is the weight from neuron i in layer (l − 1) to

neuron j in layer l, θ (j)l is the threshold of neuron j in layer l,
x(i,j)l−1,l is the input from neuron i in layer (l − 1) to neuron

j in layer l, y(j)l is the output of neuron j in layer l, H is
the number of neurons in the hidden layer, and g (·) is the
activation function of the ANN.

BP algorithm propagates computed errors backwards to
update the weights and thresholds of the ANN. The updat-
ing will continue until termination criterions for iteration
are satisfied. With the basic BP algorithm, the weights and
thresholds can be updated by:

ω
(i,j)
l−1,l = ω

(i,j)
l−1,l + αδ

(j)
l y

(j)
l−1

θ
(j)
l = θ

(j)
l − βδ

(j)
l

δ
(j)
l =


2∑

m=1
δ
(m)
l+1ω

(i,m)
l,l+1g

′

(
u(j)l
)
, l = 2(

e(j) − y(j)l
)
g′
(
u(j)l
)
, l = 3{

i = 1, 2; j = 1, 2, · · · ,H , l = 2
i = 1, 2, · · · ,H ; j = 1,2,l = 3

, (17)

where e(j) is the expected output and α and β are learning
rates. The learning rates can be adjusted adaptively to balance
stability and training time of the ANN.
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FIGURE 6. Experimental floor plan.

FIGURE 7. (a) TP-LINK TL-WR845N AP, (b) 28mm CMOS panoramic
camera, (c) 2-D code sticker on the ground.

IV. EXPERIMENTAL RESULTS AND ANALYSES
A. EXPERIMENTAL SETUP
In this paper, all the experimental data are collected in
a real indoor environment. The experimental environment
consists of office rooms and a corridor that are two kinds
of typical experimental scenarios for indoor localization.
As shown in Fig. 6, the experimental environment is an office
floor with dimensions of 51.6m×20.4m×2.7m. A total of
7 TP-LINKTL-WR845NAPswere deployedwith a height of
2.2m for communications coverage. One of them was shown
in Fig. 7(a). We used a 28mm CMOS panoramic camera
shown in Fig. 7(b) for localization. A surveillance video
recorded by the camera was divided into 530 images and
these images were used as our testing data. The images
recorded a user’s trajectory along the selected testing points
(TPs) in Room 620. We also took extra 300 observed images
as training data to train the ANN for coordinate mapping.
Meanwhile, all the RSS samples were collected with a Meizu
smartphone that was laid on a tripod with a height of 1.2m.
The smartphone was installed with an RSS collection soft-
ware that was developed by our own. The sampling rate of
the software was 1 RSS sample per second.

As shown in Fig. 6, we selected 10 CPs on the floor
for crowdsourcing participants to collect RSS data. Because
office rooms were not allowed to enter sometime, all the CPs
were marked with red stickers in the corridor and some of
them were near the entrances, washroom and elevator, where
it was convenient for crowdsourcing participants to collect
data. The location information of CPs could be obtained
through scanning the 2-D codes printed on the red stickers
as shown in Fig. 7(c). Because the time for collecting data

TABLE 1. Mean errors of propagation model localization with different
parameters.

by each crowdsourcing participant should be less than one
minute for fear that they might feel bored [30], 60 RSS
samples were collected at each CP. For performance compar-
ison, fingerprinting method was also performed in the same
experimental area. A total of 116 reference points (RPs) were
selected in the corridor and Room 620 and 120 RSS samples
weremeasured at each RP for radio-map establishment. In the
corridor and Room 620, a total of 5400 RSS testing samples
were collected.

B. RESULTS OF OPTIMIZED PROPAGATION MODEL
LOCALIZATION
In our localization system, although the crowdsourcing-based
PM method is proposed for corridor scenarios, we perform
the PM method in the whole experimental environment, so
that the experimental results can bemore persuasive.With the
crowdsourcing data of CPs, we first optimize one parameter
that is parameter X or N using a single-variable optimization
algorithm that combines golden section search and parabolic
interpolation. However, as listed in Table I, the mean errors of
PM method with the optimized parameters mentioned above
decrease just a little. Then we optimize parametersX andN at
the same time with Nelder-Mead simplex algorithm. First, we
computed the mean values ¯̂XAll = 20.84 and ¯̂NAll = 37.18 of
all the optimized parameters, respectively. The mean error of
PM method with parameters ¯̂XAll and

¯̂NAll is reduced from
20.85m to 14.89m as shown in Table I, which is still not
satisfactory. Therefore, we calculate the mean values ¯̂X (j)Tab
and ¯̂N (j)Tab of each CP and establish a data table consists
of optimized PM parameters and location coordinates of
each CP. We assume that when a user walks by a CP, the user
will scan the 2-D code and obtain the location coordinates of
the CP. Then corresponding PM parameters in the data table
can be found and used for trilateration localization. With this
method, the localization performance is improved greatly and
the mean error decreases to 5.79m.

C. COORDINATE CORRECTION WITH RESTRICTIVE
DISTANCE
Because all crowdsourcing data are available to users, after a
user scans a 2-D code sticker, a restrictive distance between
the user and CP can be estimated. If the localization coordi-
nates deviate from the real location greatly, then the restric-
tive distance is used to correct the localization coordinates.
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FIGURE 8. Cumulative probabilities of PM-based localization methods.

According to (9) and (10), the estimated restrictive distance
d (i,j)Res should be equal to the maximum value of all the distance
differences

∣∣d (k,i) − d (k,j)∣∣ , k ∈ {1, 2, · · · ,K }. However, in
practical application, radio propagation may vary consider-
ably in indoor environments, which causes the maximum
estimated distance to be too large to correct localization coor-
dinates. Thus, in this paper, we eliminate distance outliers
and take the median distance to correct localization coordi-
nates [31].

As mentioned above, we test the methods with all the RSS
testing samples collected in the corridor and room scenar-
ios. The mean errors of localization results with maximum
and median restrictive distances for coordinate correction are
5.74m and 3.75m, respectively. These experimental results
verify our analysis above. Although the localization perfor-
mance of our proposed method with the data table is much
better than PM method with other optimized parameters, the
performance is still limited as shown in Fig. 8. The cumu-
lative probability of the method using the data table is only
40.1% within localization error of 4m. After coordinate cor-
rection with the median distance, the cumulative probability
increases to 66.6% within localization error of 4m.

D. RESULTS OF PANORAMIC CAMERA-BASED
LOCALIZATION
After a user enters Room 620 from the corridor and observed
by our mounted panoramic camera, localization coordinates
are computed by the proposed panoramic camera-based
localization method. We take one of the testing images as
an example. The image of real scene, background image,
detected foreground object, and localization coordinates on
the room map are all shown in Fig. 9. More specifically, in
the object detection phase, the observed image after resizing
and rotation processing is shown in Fig. 9(a). As shown in
Fig. 9(b), the background image of the scene is modeled
using (12). Then pixel difference values between the observed

FIGURE 9. (a) Resized and rotated image, (b) Background image, (c)
Detected foreground object, (d)Localization result on the map.

image and background image are computed. In this paper,
the threshold T that is used to determine whether a pixel
belongs to the foreground object or not is set to be 32. So the
foreground object can be detected as shown in Fig. 9(c). In the
coordinate calculation phase, the foreground pixel location
that is nearest to the camera is first searched using (14) and
then the location is mapped to a corresponding pixel location
on the map using (15). As shown in Fig. 9(d), the localization
result is marked with a blue point on the room map.

In Room 620, we also perform fingerprinting and PM
localization methods for performance comparison. We only
use RPs in Room 620 for fingerprinting localization, The
mean errors of fingerprinting algorithms K-nearest neigh-
bors (KNN), weighted KNN (WKNN) and ANN are 1.70m,
1.65m and 1.81m, respectively. With the RSS data collected
at the RPs in Room 620, the PM parameters are optimized.
The mean error of PM method is 2.33m. These experimental
results are shown in Table II. By contrast, the mean error of
our proposed panoramic camera-based localization is 0.84m
and the cumulative probability within localization error of
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TABLE 2. Performance comparison of various methods in room 620.

FIGURE 10. Cumulative probabilities of various methods in room 620.

1m and 2m are 70.1% and 86.3%, respectively, which are
much higher than those of fingerprinting and PM methods.
As shown in Fig. 10, the cumulative probability curves of
these methods also validate that the proposed camera-based
localization method outperforms the other localization meth-
ods.

E. RESULTS OF PROPOSED LOCALIZATION SYSTEM USING
MULTI-SOURCE HETEROGENEOUS DATA
Our proposed localization system employs RSS samples in
the corridor scenario as well as surveillance images and room
map information in the room scenario, which not only saves
time and labor cost for system construction, but also achieves
better performance than the fingerprinting and PM-based
localization systems. We combine the proposed localization
methods in the corridor and room scenarios and perform
the proposed localization system on the whole experimental
environment. This means that the RSS testing samples in the
corridor and testing images in Room 620 are exploited for
localization. Once a user enters Room 620 from the corridor,
the location coordinates of the user are estimated with the
panoramic camera and roommap information. Fingerprinting
localization is also performed in the experimental environ-
ment for performance comparison. As shown in Table III,
the mean errors of KNN, WKNN, ANN, and proposed PM
are 4.20m, 4.19m, 4.37m, and 3.75m, respectively. The mean
error of our localization system using heterogeneous data is
3.15m. As shown in Fig. 11, the proposed system outperforms
the others within localization error of 8m. The reason is that
the localization errors that are larger than 8m are computed by

TABLE 3. Performance comparison of various methods in corridor and
room 620.

FIGURE 11. Cumulative probabilities of various methods in corridor and
room 620.

the proposed PM method in the corridor scenario. Compared
with KNN, WKNN, ANN, and proposed PM, the cumula-
tive probabilities of our proposed localization system within
localization errors of 2m and 3m can reach to 43.9% and
62.5%, respectively.

V. CONCLUSION AND FUTURE WORK
In this paper, a human localization system using multi-source
heterogeneous data is proposed. The proposed system can
be easily implemented without extensive labor and time cost
and also it outperforms the localization systems using finger-
printing and PM methods. In corridor scenarios, localization
performance of PMmethod is improved by using a data table
that consists of optimized parameters and location coordi-
nates of each CP and localization results are also corrected
with a restrictive distance estimated with crowdsourcing data.
In room scenarios, a panoramic camera is used to detect a
human object and then locate the object through location
mapping with room map information. This method is suit-
able for human localization in room scenarios and is able to
achieve much better performance than fingerprinting and PM
localization methods. The experimental results demonstrate
that our proposed localization system not only achieves a
comparable localization performance, but also offers a valu-
able reference for human localization using multi-source het-
erogeneous data in indoor environments.

In the future, we will concentrate on a deep integration
of multi-source heterogeneous data for indoor localization.
In addition, other PMs and map filtering might be tried.
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Privacy protection of crowdsourcing participants and multi-
user localization with a panoramic camera and roommap will
also be investigated.
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