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ABSTRACT Model management systems become increasingly critical in model-driven engineering. One of
the main tasks of these systems is to record the operations performed onmodel elements.While most systems
support the record of primitive model change operations, complex composite model change operations are
neglected, which may result in the lack of understandability. In this paper, we propose an approach to capture
model transformation from primitive operations to composite ones. First, based on the low-level operation,
we define some general high-level operations with hierarchical structures. Then, a matching algorithm is
designed to compare primitive operations with the hierarchical structures from the bottom up. If matching
successfully, the primitive operationswould be lifted to a composited operation. The algorithm is iterative and
ensures that all operations are lifted. The evaluation results on real-world cases show that both precision and
recall of composite operation detection are improved when compared with the EMF Modeling Operations
(EMO) and Complex Change Detection Engine (CCDE) algorithms.

INDEX TERMS Model management, composite operation with hierarchical structures, operation detection.

I. INTRODUCTION
Nowadays, model-driven engineering (MDE) plays an essen-
tial role in system design [1]–[3]. Models are the central
artifact throughout the whole life-cycle of system develop-
ment in MDE [4], [5]. They are not only an profile of the
system, but also raw materials for verification, validation and
code generation [6]–[10]. As the system models may evolve
now and then, model management, such as model versioning
control system (MVCS) [11] are consequently employed.
One of the most challenging task in these systems is how to
track changes of model elements effectively, such as creation
and deletion.

Approaches for change tracking are mainly classified into
state-based ones and operation-based one [12]. State-based
approach extracts changes from model itself with a model
differencing phase [13], while operation-based approach is
corresponding to the performed commands [14]. However,
most existing mainstream MVCS [15]–[18], whether state-
based or operation-based, record only primitive operations
which are recognized as the simplest operations that create,
delete or modify one model element. On the other hand,
as containing domain-specific information of relative mod-
els, composite operation [19] which are composed by lower
level operations with a common purpose often contributes to
better understandability and higher performance of related

activities like conflicts detection [20] and model transfor-
mation [21], which is obviously more useful in practice.
Therefore, the detection of composite operation becomes of
the utmost importance.

Currently, most works on composite operation detection
[22]–[25] usually cannot reach high precision or recall for
several reasons. Firstly, for a given operation sequence differ-
ent composite operations could be composed, as there might
be overlapping part in different composite operations and we
cannot choose the right one without extra information such
as user’s intention. Moreover, the length of operations in a
composite operation might be uncertain since there might be
more than one operations for the same operation type, thus
the sub-operations would often be incomplete when detect-
ing a composite operation, a.k.a Indefinite length problem
mentioned in [25]. Finally, while validating the preconditions
of a composite operation, different order of primitive opera-
tions might produce different results [22], which would also
influences the detection accuracy. Besides, the search space
of potential composite operation list might be very large in
some model languages [23], and in such cases it can be very
time-consuming that enumerates every possible solutions.

To counteract these problems, we introduce a novel
approach based on a multi-level hierarchical definition of
composite operation and a level-lifting detecting algorithm,
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FIGURE 1. Workflow of the detection procedure.

which can be used in both state-based and operation-based
environments. The overview of the approach is described
in Fig. 1, and details would be illustrated with the opera-
tions on UML class diagrams throughout the paper. In the
hierarchical definition step, both primitive and composite
operations required in class diagrams as well as relative rela-
tions are defined. Each composite operation is first defined
directly by primitive ones and then reorganized in a hierar-
chical structure. In the level-lifting step, a matching proce-
dure is conducted. Before matching progress start, obtaining
primitive operation sequence and the dependency relations
between low-level operations would be taken into account
first. Then an iterative level-lifting algorithm is employed,
which contains a top-down scanning and a bottom-up com-
positing phase. During each iteration low-level operations
attempt to match one certain composite operation. At last,
invalid composite operation will be discharged in the match
checking stage.

The main contributions of this paper are as follows:
• We propose a novel composite operation definition with
hierarchical structure based on pattern containing all
the sub-operations’ type with multiplicity and relation
constraint, which helps to avoid the Indefinite length
problem and makes model developers to detect the com-
plex composite operations with great clarity

• We propose an effective level-lifting detecting algorithm
based on this hierarchical structure, which can reuse the
existing matching results and achieve a higher perfor-
mance.

• We design a new checking system to validate not only
the satisfiability of preconditions of each composite
operation even in the condition that the operations

sequence is unordered, but also whether the irrelevant
operations in operation sequence violate the composite
operations.

The rest of the paper is organized as follows. In Section II
initial definitions and relations of primitive operations and
composite operation are presented. Then the matching pro-
cedure is illustrated in Section III and we will evaluate our
approach in Section IV. Some related works are introduced
in Section V and then Section VI concludes this paper.

II. FORMAL DEFINITION
Before reviewing the primitive and composite operations in
Class Diagrams of UMLmodel, wewill firstly give a refactor-
ing example. Figure 2 shows an example of UML refactoring,
in which classes named Professor and Student composed the
original model. Considering their common field name, in the
evolved model the developer created a parent class person,
and then the field name in both children classes were pulled
up in the new class. The operation-based record and state-
based record of this change procedure are listed in the left
side and right side of the figure respectively.

Follow the definition of [26], several concepts and rela-
tions, such as models and operations will be introduced, with
the above refactoring example for detail illustration.
Definition 1: An instance of modelM is defined by model

elements E that it contains, the available operations that can
be conducted on it, and the constraintsT that it complies with;
that is, M = 〈E,O,T 〉 [26].

Take the evolved model in Fig. 2 for example. Both Class
Professor and Field Name are model elements, and Add-
Class(person) is an available operation which was conducted
on the model instance. Constraints T are frequently defined
by a metamodel, which regulates the kinds of element that
will be shown in the model, the relationships between ele-
ments, and the numerical and other rules applied in themodel.
For instance, the metamodel of class diagrams states that
Class is the central element, which may aggregate several
attributes or methods. A class may inherit one superclass and
may generalize several subclasses. Each instance of class,
attribute, and method has a name so on.
Definition 2: An operation O is specified by its target

elements E, preconditions preC and postconditions postC,
i.e. O = 〈E, preC, postC〉. Preconditions are the prerequisite
for operation executing, whereas postconditions are those
declaration of the properties which have to be held after
execution.

In the operation AddField(name, person), for example,
Class person and Field name are the target elements, and
the precondition person → notEmpty() means that Class
person should be existence before the operation executed
while postcondition name → notEmpty() means that Field
name would be created in Class person after execution. We
also define the applicability of the operations and some other
relations among the operations as follows.
Definition 3 (Applicability): An operation p can be

applied to model instanceM, ifM satisfies the preconditions
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FIGURE 2. A refactoring example.

and postconditions of p, i.e.

p
A
−→ M ⇔ p.preC(M ) == true&&p.postC(M ) == true.

(1)
Here, we denote p

A
−→ M to indicate that p is applicable

to M while p
N/A
−→ M means not applicable. P.preC(M)

and p.post(M) represent the preconditions and postconditions
when operation p would be applied to M, respectively.

As shown in Fig. 2, AddField(name, person) can be applied
to the evolved model because in the evolved model both Class
person and Field name are not empty, which just satisfies
the precondition and postcondition. In the orignal model,
however, Class person doesn’t exist so that AddField(name,
professor) is not applicable to the orginal model.
Relation 1 (Composability): Two operations p and q can

be composed if q ◦ p
A
−→ M . Here q ◦ p represents the com-

posed operation, which indicates that p is applied before q.
In the example above, AddClass(person) and AddField

(name, professor) in the right operation list can be composed
because after executing AddClass(person) the Class person
would not be empty, which satisfies the precondition and
postcondition of the composed operation, that is, the com-
posed operation can be applied to the original model.
Relation 2 (Dependency): An operation p is depended on

by another operation q, if the execution of q requires p is
executed first, which is denoted by p ≺ q. The following rule
expresses that operation q depends on operation p if q is not

applicable to model M before p is applied.

p ≺ q⇔ q
N/A
−→ M ∧ q ◦ p

A
−→ M . (2)

Relation 3 (Violation): An operation p violates another
operation q, if the execution of p makes q not applicable,
which is denoted by p 6≺ q. The violation can be judged as:

p 6≺ q⇔ q
A
−→ M ∧ q ◦ p

N/A
−→ M . (3)

In the orginal model, AddField(name, professor) is
depended on by AddClass(person) since AddField cannot
be applicable without AddClass, i.e. AddClass(person) ≺
AddField(name, person). On the other hand, if an operation
DeleteClass(person) is inserted after AddClass(person) in the
case above, AddField(name, person)would be not applicable,
i.e. DeleteClass(person) 6≺ AddField(name,person). Opera-
tions can be usually classified into two sets according to
whether the operation can still be decomposed: primitive
operations and composite operations, which will be expati-
ated in what follows.

A. PRIMITIVE OPERATIONS
Primitive operations accomplish the atomic modifications
directly detected by themodeling tools or computed bymodel
difference tools, which cannot be decomposed to simpler
operations. These modifications are usually conducted the
basic elements of a specific model. According to the category
of these modifications, We denote primitive operation type
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by a set of primitive operations that can be applied to a model
instance [27], which is defined by two parts:
• Types of atomic modification - add, delete, and update.
• Types of target model elements, i.e. classes, relation-
ships, fields, operations.

Primitive operation type concerned in Class Diagram are
listed in Table 1. Operations on method are not listed because
they are similar to those on fields.

TABLE 1. Primitive operation types in class diagram.

Therefore, primitive operations can be defined as opera-
tions that conform the primitive operation type. For exam-
ple, AddField(Field e, Class c) is a primitive operation type
which means that add a field to a given class. Meanwhile,
addField(name, person) which means add name to person,
is the specific primitive operation. Moreover, it is important
to note that the definitions and relations of operation listed
above are still suitable for the primitive operation.

B. COMPOSITE OPERATIONS
A composite operation is composed with lower level oper-
ations, which means that it takes the exactly same effect
on model elements as its composed operations. Current
researches often define a composite operation as a sequence
of primitive operations. However, there would be some insuf-
ficient that kept this definition from being perfect as has been
argued in section I. In this paper, we define composite opera-
tion in a hierarchical structure based on composite operation
pattern, which would be expounded in detail as follows.

Like primitive operation type defined in primitive opera-
tion, we denote composite operation type or pattern by a set of
composite operations that can be applied to a model instance,
which is defined by:
• A set of operation types which composed in a pattern.
The type could be either primitive operation type or
composite operation type.

• Multiplicity constraint of each type, i.e. the range of
operations in each operation type [27].

• Relation constraint between its contained types [27].
For example, name of Field e in both Class c1 and c2
should be the same, when defined the pattern Move-
Field(Class c1.Field e, Class c2) which is composed of
AddClass(Class c2,Field e) and DeleteClass(Class c1,
Field e).

Therefore, a composite operation can be defined as a
sequence of operations, which 1) comprise all the types com-
posed in its associated pattern, 2) satisfy the multiplicity and
relation constraint of each type, and 3) the preconditons and

postconditions of each contained operation should also be
satisfied.

Considering the fact that a pattern can also comprise other
pattern, so it is a recursive definition of a composite opera-
tion. We also introduce mid-level operations as inter-mediate
between primitive and complex composite operations. In the
presence of intermediate operations, a complex composite
operation can be indicated by a hierarchical structure, i.e.
complex operations can be decomposed into mid-level ones
and mid-level operations can be further decomposed to prim-
itive ones. In UML Class Diagrams we define several cus-
tomized mid-level composite operation types below.

• MoveField(Class c1.Field e, Class c2): move field e
from class c1 to c2.

• MoveMethod(Class c1.Method m, Class c2): move
method m from class c1 to c2.

FIGURE 3. Hierarchical structure of ExtractSuperClass.

According to the patterns described in Table 2, for exam-
ple, we can construct the tree structure of the ExtractSuper-
Class(person, professor, student, name) as in Fig. 3, where
the root is the operation that is decomposed. Two classes
professor and student are extracted here, which have the
common field name, and a new class Parent is created as a
superclass after extraction. In a first decomposition, the ini-
tial operation is split into two operations: AddClass(person)
creates the superclass person and PullUpField(person, name)
extracts the field name from professor and student to per-
son. The PullUpField(person, name) is further decomposed
into MoveField(professor, name, person) which moves field
name from professor to person, and DeleteField(name, stu-
dent) which removes name from student. Finally, the Move-
Field(professor, name, person) composes AddField(name,
person) that adds name to Parent and DeleteField(name,
professor) that deletes name from professor.

Moreover, the Dependency and Violation are also extended
as,
Relation 4 (Dependency of Composite Operation): An

composite operation p depends on another operation q, if
one of its contained operation r depends on q, which can be
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TABLE 2. Patterns of the rafactoring example.

expressed as follows:

q ≺ p⇐ q ≺ r ∧ r ∈ O(p). (4)

Relation 5 (Violation of Composite Operation): An oper-
ation q violates a composite operation p, if q violates one of
the contained operation of p.

q 6≺ p⇐ q 6≺ r ∧ r ∈ O(p). (5)

O(p) represents all the operations composed in p.

III. DETECTION OF COMPOSITE OPERATION
In the previous section, the hierarchical structure of opera-
tions are defined, which will help detect the composite oper-
ations. The detecting procedure contains 3 stages including
hierarchical definition, level-lifting match and match check-
ing, which is illustrated in Fig. 1.

A. HIERARCHICAL DEFINITION
Two kinds of input data have to be prepared in this period:
the sequence of primitive operations which are recorded by
the modeler editor or computed by model difference tools,
and the refactoring patterns of composite operations which
are designed by the model developer according to the user
requirements as well as dependency between operations.

B. LEVEL-LIFTING MATCH
In this stage, each composite operation defined in themodel is
tried to be matched by this sequence of operations, while each
operation in the sequence will be compared to predefined
patterns in a level-lifting manner iteratively. The level-lifting
algorithm contains two main phases: a top-down scanning
which searches for existing composite operations recorded in
the hashmap from higher lever to lower lever and a bottom-
up compositing which would attempt tomatch the lower-level
operations to a higher level operations iteratively.

1) TOP-DOWN SCANNING PHASE
The input data recorded by modeler editor are all primi-
tive operations which could be contained in any composite
operation patterns. On the other hand, composite operation
patterns can overlap each other, and sometimes one pattern
can be even fully contained into another pattern. For exam-
ple, as shown in Fig. 3, to extract a common Field name
from Class professor and student(ExtractSuperClass) con-
tains the process of move the Field name from professor to
person(MoveField). Therefore, it will improve the matching
efficiency dramatically by discharging the patterns whose
contained patterns have not been detected before. That is,

the key point of the ‘‘top-down’’ phase is to identify all the
contained patterns in each composite operation pattern based
on reusing the existing match results.

For an complex composite operation with a multi-level
structure, each level should have more than one composite
operation except the lowest level where the operations are
all primitive operations. When the scanning begins, the algo-
rithm first checks whether current level’s composite opera-
tions cco can be found in the hashmap comap from the root of
patt, and it will scan the next level if comap doesn’t contain
cco. This process would not be end until current level is in
the leaf nodes of patt, or current level’s composite operations
are all matched from comap. Once scanning phase ends,
corresponding operations in the sequence will be replaced by
the cco, and then the ‘‘bottom-up’’ compositing phase begins.

2) BOTTOM-UP COMPOSITING PHASE
The bottom-up compositing process is illustrated in
Algorithm 1. There are two sets of input data: inputlist is the
operation list that to be lifted and patt represents the pattern
that expects to detect. Considering the results of previous
phase, different solutions are offered here. If composite oper-
ations cco in targetLevel’s pattern were all found in comap,
each operation o in inputlist would be firstly checked by
sequence(line 5) and then processed in the following code
according to the checking result, i.e. whether the operation
o belongs to composite operations in targetLevel’s pattern.
When the composite operations are all matched, the algorithm
will continue to search for the other primitive operations
near the composite operations in the sequence. In another
case all the operations in targetLevel’s pattern belong to
primitive operation, so the algorithm would search for the
primitive operations in the sequence directly. If it can be
managed to find all the operations in targetLevel’s pattern
and the multiplicity and relation constraints can be satisfied
at the meantime, a higher composite operation would be
substituted for the associated operations in inputlist and sent
to the comap. Then the targetLevel would be lifted and a
repetitive process would be continuing until the operations
cannot compose a higher level operation in the end, and
operations in inputList will be moved to outputlist finally.

Depending on the matching result, each operation p in the
sequence could be classified into one of the following types.

• Potential Matched Operation. Operation p in the
sequence might match some operation in def, i.e.
p ∈ O(def ).

• Irrelevant Operation. That is, operations not matched.
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Algorithm 1: Hierarchy Level Lifting Algorithm
Input: patt : pattern expected to be detected; inputList : ini-

tial operation list; cco : composite operations detected in
top-down phase; comap : hashmap of detected composite
operations;

Output: outputList : operation list after level lifting;
1: if cco matched all composite operations in pattern of
targetLevel then

2: tempOperations := comap.get(cco);
3: replace tempOperations in inputlist with cco;
4: clear cco
5: for all o in inputList do
6: if o does not match any composite operation in

pattern of targetLevel then
7: continue inner for;
8: end if
9: init list of candidate composite operations cco;
10: add o to cco;
11: if all composite operations of targetLevel are

matched then
12: continue searching for other primitive operations;
13: else
14: continue inner for;
15: end if
16: search other primitive operations others near the

composite operations in the sequence;
17: end for
18: else
19: for all o in inputList do
20: if o does not match any operations in pattern of

targetLevel then
21: continue inner for;
22: end if
23: init list of candidate operations cpo;
24: add o to cpo;
25: end for
26: end if
27: if all operations of targetLevel are matched && multi-

plicity and relation constraints are satisfied then
28: obtain target operation instance targetOperation;
29: replace relative operations in inputList with

targetOperation;
30: put targetOperation into comap;
31: end if
32: if targetOperation not matched then
33: Return ‘‘notmatched ′′;
34: else
35: if targetLevel is root of patt then
36: Return ‘‘matched ′′;
37: else
38: Lift targetLevel;
39: Repeat process ‘‘forall’’;
40: end if
41: end if

Algorithm 2: Post Order Preconditions Checking Algorithm
1: PreconditionsChecking( Operation co) {
2: for all suboperation in co.suboperations do
3: PreconditionsChecking(suboperation);
4: end for
5: if suboperation.preC() == TRUE then
6: executes suboperation;
7: else
8: return false;
9: end if
10: if suboperation.postC() != TRUE then
11: return false;
12: end if
13: if co is root then
14: return true;
15: end if
16: }

C. MATCH CHECKING
The potential matched operations detected in Algorithm1
could not be composed when the preconditions of these
operations are not satisfied, and almost all the current
approaches have paid enough attention to validate the
preconditions. However, there will be still conflict between
potential composite operations and some irrelevant oper-
ations. For example, for a given operation sequence
addField(c,a), deleteField(b,a), deleteClass(c), primitive
operations addField(c,a), deleteField(b,a) might be
composed as MoveField(b,a,c) if preconditions are satis-
fied; nonetheless, irrelevant operation deleteClass(c) in the
sequence would violate the MoveField(b,a,c) and then influ-
ence the detection accuracy.

In this paper, we design a new checking system to solve
problems above, which include two validators: pValidator
to check the satisfiability of preconditions, and iValida-
tor to check whether the irrelevant operations in operation
sequence violate the composite operations. A post-order trav-
eler based checking algorithm performed in pValidator as
in Algorithm2. The algorithm first travels the operations
in composite operation co. If the preconditions of current
operation are satisfied, this operation will be executed and
the environment ofmodel would be changed correspondingly.
Otherwise the preconditions and postconditions cannot be
fulfilled and the algorithm returns false.

On the other hand, iValidator will validate all the sequence
of unmatched operations again and identify the Violated
Operations from the irrelevant operation set. Here, Violated
Operation can be defined as follows.

• Violated Operation. Operation p in the sequence violates
def, i.e. p 6≺ def .

After the match checking stage, the matched primitive
operations in the sequence would be replaced by correspond-
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ing composite operations. The detection algorithm based on
the multi-level structure definition offers a number of distinct
advantages. First of all, the detection of composite operations
can achieve a higher performance. For one thing, considering
the multi-level hierarchical structure, the existing matching
result in the lower level can be reused when detecting the
higher level composite operations with the help of a hash map
which maintain lower level composite operation matching
result. For another thing, patterns whose contained composite
operation are not included in the operation sequence could
be discharged in the top-down scanning phase, which would
reduce search space in the Bottom-up compositing phase.

Secondly, by setting the multiplicity and relation con-
straints of each operation type explicitly in a composite oper-
ation pattern, all possible operations in a composite operation
would be found during the detecting phase, which could solve
the Indefinite length problem accordingly.
Thirdly, overlapping parts in different composite opera-

tions often exist in lower mid-level forms(e.g. MoveField()),
so we can improve the recall if all the composite operations
based on these lower mid-level operations recorded previ-
ously could be output. In addition, according to the heuristic
method h1mentioned in [25], the higher level operation often
gets a higher level priority, thus keeping the higher level
composite operations contributes to improve the precision of
the detection. Next section will present the evaluation of our
method.

IV. EVALUATION
In this section, we will perform our approach on real-world
models to evaluate the precision and recall of the detection
results.

A. EXPERIMENT SETUP
To evaluate our approach,models and operations are required.
We employ the model versioning tool EMFStore [17] to
accomplish the model building and operation recording.
EMFStore is an EMF-based tool which supports develop-
ing models that conform to specified metamodels. When
the models are modified, the operations, both primitive and
composite are recorded in change logs by built-in opera-
tion recorder. The primitive operations are well-defined in
EMFStore, but the composite operations have to be cus-
tomized since EMFStore is designed for general purpose. We
implemented Hierarchical Level-lifting Algorithm(HLLA)
based on EMFStore to detect composite operations that are
applicable for class diagrams in UML models, as well as
mid-level operations mentioned in Section II. Moreover, we
also implemented the matching algorithms mentioned in
[24] and [25] for comparison.

B. INPUT DATA
The purpose of evaluation is twofold. First, whether our
approach can correctly lift low-level operations to high-
level ones and whether all operations that can be com-
posed are lifted. Second, how this approach can benefit

the modeling tools, e.g. compress the operation list that is
recorded.

To achieve the goals above, two sets of input data named
case1 and case2 are prepared. Both of them are derived
from the UML Class Diagram of a real-world system called
DMPlatformwhich has evolved more than 300 versions since
2013.More than 10 developers of our group have participated
in the project. Operations in case1 are designed manully to
cover all the composite operation patterns. We have added
some exceptional case in the operation sequence to test
whether the three algorithms can detect all the composite
operation properly. On the other hand, in case2 we extracted
primitive operations from two versions of Class Diagram as
input data. The first version was a ‘‘middle version’’ when we
first implemented the basic function of the system, while in
the second version we have made a lot of changes to refactor
the system, including 106 composite operations.

C. MEASUREMENT
In this experiment, two indicators precision and recall are
computed to assess the accuracy of all three algorithms. In the
scenario of operation level lifting, precision is the ratio of the
correctly lifted composite operations to all lifted operations,
i.e. the actually correctly lifted operations. Recall denotes the
fraction of correctly lifted operations among operations that
should be lifted, i.e. operations that do not fail to be lifted.

The matching results of case studies are illustrated in
Table 3. The first column listed the most common compos-
ite operations in code refactoring, while the next columns
showed all the detailed data to compare precision and recall
of the three algorithms. It can be obviously observed that for
some composite operations which accomplish a few modifi-
cations such as MoveField, RenameField, etc, the matching
results of our approach comes near to perfection. For higher
level operations such as Flatten Hierarchy and Extract Sub-
ClassFiled, the number of wrongly lifted operations rises and
so does that of operations missed to be lifted. This is because
a sequence of operationsmay be interpreted in different ways,
e.g. when it is legal to combine one operation with either its
predecessor or successor.

EMO and CCDE are composite operation detecting algo-
rithms mentioned in [24] and [25], respectively. For EMO,
the overlapping sequences of composite operation patterns
would influence the recall value [24]. As shown in Case1,
the composite operation Flatten Hierarchy has not been
detected because the relative primitive operations are lifted
as Push Down Field. On the other hand, two issues should be
care about in the CCDE method. First, redundant composite
operations would be generated when overlapping sequences
existed in different composite operations, which would cause
a quite low precision value if without extra work. Second, the
order of operations seems to have an affection on the recall
value, e.g. one PullUpField operation failed to be composed
only because another delete AttributeOperation executed
early. Finally, both EMO and CCDE ignore the validation of
conflicts between potential composite operations and irrele-
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TABLE 3. Match result of case1.

vant operations, which have a negative impact on the preci-
sion value.

V. RELATED WORK
To obtain high-level operations, the most direct way is to
track the operations while they are executed, which requires
support from the model management tools and the operations
be well-defined. Operation recorder implemented in [28]
defines operations from low-level to high-level ones, while
provides an operation metamodel that all operations con-
forms to. As a operation-based tool, it can capture more
accurate information about operations than state-based tools
since the operations are recorded when executed. However,
this approach is only meant for EMF models [29] and
still under development. The by-example operation recorder
[30] provides support for user-specific operations, espe-
cially for high-level operations. The precondition of an oper-
ation is specified first by designing an example model,
after which a list of primitive operations are executed upon
this model and the postcondition can be extracted. The
characteristics of this high-level operation then, can be cal-
culated from the pre- and postcondition, i.e. the target ele-
ments this operation are operated on and how it can change
these elements. The primitive operations are not recorded
directly, which means the accuracy may suffer a little
loss.

There are some approaches that detect high-level opera-
tions in a posteriori way, i.e. obtain them according to their
executing effects. UMLDiff [31] leverages change pattern
queries to detect refactorings. The difference between the
initial model and the model after changing is obtained first
by model comparison, which is represented by a diff model.
Then user can query high-level operations out of this diff
model. Compared to our approach, UMLDiff does not sup-
port an iterative operation detection, which may leave some
high-level operation undetected.

Küster et al. [32] and Gerth et al. [33] derive changes in
a hierarchical way for business process models. The models
are separated into fragments with the benefit of the single-
entry-single-exit structure, with each fragments composed
by several activities. Therefore the operations are classified
into primitive ones that only manipulate single activity and
composite ones that modify a fragment that contains several
activities. Operations can be detected once some model ele-
ments change providing that the correspondences between
elements of two models are given. However, this approach is
only applicable for process models. Langer et al. [24] employ
a posteriori approach to detect both low- and high-level oper-
ations in general software models. A diff model is calculated
from the pre- and postcondition of a specified operation. By
comparing with diff models, potentially expected operations
are derived. The final assurance of the operation still relies on
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the comparison with pre- and postconditions of the operations
to bematched. Unfortunately, this approach does not consider
the Indefinite length problem and in some case it cannot detect
all the operations of a composite operation.

Khelladi et al. [25] propose a detection engine of com-
plex changes which can detects all possible candidates,even
in case of overlapping changes. However, as we have seen
in Table 3, this algorithm had not performed well in some
cases. The search-based detection approach [23] employs
a heuristic method to detect refactoring from the possible
refactoring sets. This approach does not consider the pre-
and postcondition of operations; instead it randomly applies
some refactoring sets to the initial model, and find the most
similar one to the real result model. The efficiency of this
method may be low for the generation of refactoring sets
is nontrivial. Unfortunately, all of these approaches ignore
conflicts between potential composite operations and some
irrelevant operations.

VI. CONCLUSION
As the operation-based modeling tools develop, high-level
operations are more comprehensible to users and can facili-
tate the supported functions such as model transformation. In
this paper we introduced an approach to iteratively raise the
level of operations. Each composite operation is defined by
hierarchical structure and low-level operations which match
this structure can be lifted to the corresponding composite
operation. To evaluate our approach, several contrast exper-
iments have been conducted, which showed that both preci-
sion and recall of composite operation detection are improved
compared to the EMO and CCDE algorithms. We have
implemented our algorithm based on EMFStore to detect
composite operations that are applicable for class diagrams
in UML models. In the future we plan to plug this tool
into more modeler platforms and to apply to more generic
models.
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