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ABSTRACT Underwater images are degraded due to scatters and absorption, resulting in low contrast and
color distortion. In this paper, a novel self-similarity-basedmethod for descattering and super resolution (SR)
of underwater images is proposed. The traditional approach of preprocessing the image using a descattering
algorithm, followed by application of an SR method, has the limitation that most of the high-frequency
information is lost during descattering. Consequently, we propose a novel high turbidity underwater image
SR algorithm. We first obtain a high resolution (HR) image of scattered and descattered images by
using a self-similarity-based SR algorithm. Next, we apply a convex fusion rule for recovering the final
HR image. The super-resolved images have a reasonable noise level after descattering and demonstrate
visually more pleasing results than conventional approaches. Furthermore, numerical metrics demonstrate
that the proposed algorithm shows a consistent improvement and that edges are significantly enhanced.

INDEX TERMS Underwater imaging, descattering, super resolution, image fusion.

I. INTRODUCTION
Currently, underwater robots, such as autonomous underwa-
ter vehicles (AUVs) and remotely operated vehicles (ROVs),
are commonly used for underwater object recognition. For
short-range object recognition, vision sensors are typically
used to acquire high-quality images. In underwater observa-
tion, floating particles in high turbid water cause scattering.
Therefore, captured underwater images suffer from poor vis-
ibility. In addition, high resolution (HR) images are desirable
in ocean engineering applications such as biological and
sediment analysis [1]. Although 4K imaging systems were
first used in the past year, most recently installed vision
sensors have low resolution (LR) and thus do not satisfy the
requirements of future underwater observation [43].

Optical underwater imaging technologies, such as laser
imaging, high-quality cameras, and combined modalities,
have become available. Most of the imaging devices
limit the image’s quality. Meanwhile, it is difficult to
obtain visible pleasing images at long or short distances
owing to the absorptive and scattering nature of seawater.

Furthermore, noise reduces the details that could contain
important information. Thus, super-resolving underwater
scattered images is essential for ocean observation.

Image interpolation is typically used to increase the reso-
lution of a low resolution image. However, noisy and scat-
tered images are processed inefficiently during interpolation.
Moreover, interpolation can introduce blurring and aliasing
artifacts, and it also cannot reconstruct the original edges of
a scene. In the last two decades, super-resolution (SR) has
been studied for enhancing the resolution of an image rapidly.
SR methods can be categorized into two principal categories
by inputs: multi-input [2]–[5] and single input [6]–[15].

In the multiple image SR method, an HR image is got by
utilizing information from a large amount of subpixel-shifted
LR images of the same scene. The key step in this method is to
estimate themotion of the inputs correctly. However, themain
drawback of this method is that it is difficult to estimate focus
motions amongmultiple LR images accurately. Another issue
for underwater imaging is that when the sediments are float-
ing, it is hardly to capture the same scene in different frames
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at the same time. Thus, a multiple input SR method is hardly
applicable in practice.

The other method is single image SR, which is named
as the example-learning-based method. The merit of this
method is that it does not require a series of LR images or
as much motion estimation. In this method, each patch of an
LR image is compared to LR database in order to extract the
most similar LR patches. Depending on the training database,
the single-input SR method can be further divided into two
categories: external database-based [6]–[8], [14], [16] and
internal database-based [9], [12], [15], [17], [18].

One of the issues for external databases is that it is difficult
to set the amount and type of training images. Large-scale
training datasets are usually needed to learn a sufficiently
expressive LR and HR dictionary. Unfortunately, there are
few underwater image databases, and there is no difference
in resolution between underwater HR and LR image patch
pairs.

Glasner et al. [19] indicated that after converting a natural
image to gray scale, over 90% of the patches of an image have
nine or more similar patches at the same scale. Moreover,
more than nine patches have the same similarity at differ-
ent scales. Hence, the recurrence of patches across scales
provides the basis for applying example-based SR.

Scatter and noise corruption are ubiquitous phenomena in
underwater imaging affecting image processing tasks. The
conventional approaches [19] have previously been used
for denoising using non-local means (NLM) [20] or block-
matching and three-dimensional (3D) filtering (BM3D) [21]
and a regularization prior for inverse problems [22].
Potter et al. [23] proposed a SR method for gaining higher-
resolution video frames using the SR constraints to similar
patches. However, with regard to Singh et al.’s work [12],
although both denoising and super resolving involve the
same patch-based priors, they are utilized toward differ-
ent objectives. Denoising is intended to smoothen similar
patches to remove noise in the patch. The goal of SR is
to seek more similar patches at different scales to enhance
the textural content of each patch. Hence, Singh et al. [12]
proposed the fusion method to eliminate the signal loss
caused by denoising using SR and denoising simulta-
neously. However, both Singh et al.’s work and sparse-
coding-based super resolving methods can deal with low
levels of noise. These methods cannot solve the heavy
noisy images.

Building on some initial work [24], we propose further
development in a novel framework for scattered-image SR.
Our algorithm begins with initial descattering and color cor-
rection. The first descattered image is obtained in accordance
with [24]. After large amounts of scatter are removed, the
resulting image contains a low level of scatter and substantial
noise. Thus, a fast denoising and descattering algorithm is
proposed. We call this result the preprocessed LR image.
After this, we super-resolve the descattered and preprocessed
LR images using an example-based SR algorithm, resulting
in descattered and preprocessed SR images, respectively.

Finally, we obtain the noise-free SR image by fusing the
visual information in two images.

In this paper, we have contributed the following items.
First, we can super-resolve a highly turbid underwater image
using the proposed framework. This overcomes limitations in
the conventional SR methods. Second, the proposed method
can obtain a visually pleasing result with better textures.
Third, unlike the conventional SR methods in natural scenes,
the SR method we propose takes light compensation into
consideration. Abundant experimental results show that our
method achieves excellent SR results and also removes arti-
facts and scattering effectively.

II. RELATED WORK
This paper concerns super-resolving underwater images
and descattering. To the best of our knowledge, there are
few SR reconstruction algorithms for underwater imaging.
Zhu et al. [38] proposed a preprocessing step for remov-
ing noise and simply applied SR to images. This method
does not consider scatter effects, light absorption, or texture
loss. Thus, we propose a novel scheme for underwater SR
and descattering simultaneously in this article. In the next
section, we introduce the recent trends of descattering and
super-resolution methods.

A. DESCATTERING
Descattering and SR are two principal methods in this paper.
Let us recall most of the recent methods regarding these
technologies. In reviewing recent studies, research related
to image descattering or dehazing can be classified into the
following two principal groups.

1) MULTI-LIGHTING
Narasimham et al. [25]–[27] and Tsiotsios et al. [28] pro-
posed the useage of multiple lights to estimate the backscatter
from a scene. Treibitz and Schechner [29] proposed fusing
images obtained using two-directional illumination to create
a single clearer image. However, it is difficult to recover the
time variations adverse to visibility in the presence of floating
turbidity sediments.

2) PRIOR
Fattal [30] proposed to use principal component analy-
sis (PCA) for descattering. He et al. [31] analyzed a large
amount of natural sky images and concluded that there is
a dark channel in most of color images. They accordingly
proposed a dark channel prior algorithm. However, these
methods resulted in regional contrast shading that could cause
halos or aliasing.

B. SUPER RESOLUTION
The principal idea of image super resolution is to reconstruct
an HR image using interpolation and reconstruction of LR
image patches, learning, and indexing for the best match-
ing patches as the HR map. In this paper, we focus on a
single-image SR method. As mentioned in the introduction,
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according to the source of training data, single-image SR can
be summarized to 3 principal categories.

1) EXTERNAL DATABASE-DRIVEN SR
These kind of methods use learning algorithms to study the
LR-HR mapping from an existing LR-HR database. There
are many learning algorithms for super-resolving LR images,
such as nearest neighbor [6], kernel ridge regression [32],
sparse coding [8], manifold learning [33], and CNNs [14].
The principal challenge is how to model the patch space
effectively. Instead of studying a global mapping over the
entire database, some models attempt to reduce compu-
tational complexity by partitioning or pre-clustering the
external database [15], [34]. Other approaches such as
dimensionality reduction [16], [35] and higher-level fea-
tures extraction [36] are also used for learning LR-HR
mapping.

2) INTERNAL DATABASE-DRIVEN SR
Glasner et al. [19] proposed a self-similar patch-based
SR algorithm using a natural statics model.
Freeman and Fattal [18] determined further that self-similar
patches is existed in spatial neighbor patches. Gao et al. [9]
first introduced sparse neighbor embedding for searching
self-similar patches. Singh et al. [12] used the self-similarity
ideas for solving noisy image SR.

3) UNIFIED DATABASE-DRIVEN SR
Singh and Ahuja [37] proposed a sub-band texture patterns
similarity-based method for SR. Zhu et al. [38] used optical
flow-based patch deformation as a dictionary searching rule.
Huang et al. [13] proposed a transformed self-exemplars
method for single-image SR. Textures can be recovered well
through the use of geometric variation.

III. SR USING DESCATTERING AND FUSION
Considering that scattering and noise are included in
underwater imaging, the observation model is

Yλ(x) = DLIλ(x)+ n, λ ∈ {r, g, b} (1)

where Yλ(x) is the LR underwater image, Iλ(x) is the HR
underwater image, the matrices D and L represent downsam-
pling and blurring, respectively, and n is the noise generated.
The SR reconstruction problem is to estimate the underlying
HR image Iλ(x) of Yλ(x). We assume the noise to be inde-
pendent and identically distributed (I.I.D.), with variance σ 2.
Considering that the HR image Iλ(x) contains scatters, (1) can
be written as

Yλ(x) = DL (Jλ(x)tλ(x)+(1−tλ(x))Aλ)+ n, λ ∈ {r, g, b}

(2)

where Jλ(x) is the clean image, tλ(x) is the transmission map,
and Aλ is the ambient light. Assuming that the ambient light
and transmission map are known, the estimated Ĵλ(x) is (3),
as shown at the top of the next page.

Because tλ(x) ∈ [0, 1], (3) implies that except when haze
is absent (tλ(x) = 1), the noise contribution is amplified.
Hence, in this paper, we propose a new framework for recov-
ering the HR turbidity of underwater images.

As shown in Figure 1, we first consider performing simul-
taneous underwater descattering and denoising (SUDD) to
remove the scattering and noise. Next, we super-resolve the
preprocessed and further denoised images using the SR algo-
rithm. We propose an image fusion method for combining
the texture, spatial, frequency, luminance, and chrominance
components. Our proposed framework preserves richer edge
information than that obtained using the traditional process-
ing method. Meanwhile, the super-resolved image has no
color shifts.

FIGURE 1. Pipeline of proposed approach for obtaining a noise-free HR image from a turbid LR image.
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Ĵλ(x) =
Yλ(x)− DL ((1− tλ(x))Aλ)

DLtλ(x)

=
DL (Jλ(x)tλ(x))+ DL ((1− tλ(x))Aλ)+ n− DL ((1− tλ(x))Aλ)

DLtλ(x)

= Jλ(x)+
n

DLtλ(x)
, λ ∈ {r, g, b} (3)

A. SIMULTANEOUS DESCATTERING AND DENOISING
Most descattering algorithms can remove heavy haze per-
fectly, but because they use local patches for estimating
the transmission, the algorithms cause additional noise in
the final descattered result. In this paper, we propose the
noisy-scatter model

Y sλ(x) = Iλ(x)tλ(x)+ Bλ(x)+ n (4)

where Bλ(x) = (1 − tλ(x))Aλ(x). Following the non-
parametric kernel regression [39], we can write the estimation
problem of each color channel as

min
Iλ,Bλ

∑
xi∈�(x)

[
Y sλ(xi)− Iλ(xi)tλ(xi)− Bλ(xi)

]2KHi (xi − x) (5)

where �(x) is a neighborhood around the pixel x, and KHi is
the locally adaptive regression kernel. We estimate the ambi-
ent light Aλ(x) according to the color lines. As described in
[39] and [40], the orientation of the atmospheric light vector
is calculated by utilizing the abundant small image patches in
the image.

Since Eq. (5) is a minimization operation with two
unknowns, our purpose is to find the solution iteratively. We
solve it as two separate minimization problems, and alter-
nate between them for solving Iλ(xi) and Bλ(xi). We further
assume a 0-th order regression model

min
Iλ

∑
xi∈�(x)

[
Y
′s
λ (xi)− Iλ(xi)tλ(xi)

]2
KHi (xi − x) (6)

min
Bλ

∑
xi∈�(x)

[
Y
′′s
λ (xi)− Pλ(xi)Bλ(xi)

]2
KHi (xi − x) (7)

where Y
′s
λ (xi) = Y sλ(xi) − Bλ(xi), Y

′′s
λ (xi) = Y sλ(xi) − Iλ(xi),

and Pλ(xi) = 1− 1
Aλ(xi)

Iλ(xi). Then, we can use the weighted
least-squares solution are

Îλ(x) =

∑
xi∈�(x)

KHi (xi − x)tλ(xi)Y
′s
λ (xi)∑

xi∈�(x)
KHi (xi − x)tλ(xi)2

(8)

B̂λ(x) =

∑
xi∈�(x)

KHi (xi − x)Pλ(xi)Y
′′s
λ (xi)∑

xi∈�(x)
KHi (xi − x)Pλ(xi)2

(9)

Although the filtering is linear, the steering kernels are com-
puted on the received data and the result is a non-liner filter.
In this algorithm, we utilize Mean Square Error (MSE) of
scene radiance to stop the regression.

The full scatter and noise removal procedure are
summarized in Algorithm 1.

Algorithm 1 Simultaneous Descattering and Denoising
1. Initial
Estimate Î by using NLM to denoise input image Y sλ
Estimate transmission tλ and ambient light Aλ from Î

using color lines [41]
Descatter Î through an underwater dark channel prior [24]
2. Second round estimation of Iλ
3. Iterate between the estimates for Îλ and B̂λ until the
minimum mean square error (MSE) is reached
WhileMSE ≥ MSEmin do

Estimate Îλ using B̂λ (Eq. 6)
Estimate B̂λ using Îλ (Eq. 7)

end while

B. SR
High-resolution cameras tend to be used for high resolu-
tion of underwater images. However, most recent AUVs
or ROVs are equipped with low-resolution cameras. Using
a SR method is one of the most effective approaches for
resolving this issue. As a result of the complexity of under-
water environments, such as heavy scatters and low contrast,
it is difficult to use external database-driven SR methods.
Consequently, the proposed algorithm has the advantage of
requiring neither external training databases nor fully self-
internal SR algorithms [13].

After that, let us consider the estimate Înewλ of recovered
image Îλ that is obtained by taking a convex combination of
denoised image Îdnλ and noisy image Înλ

Înewλ = (1− R) · Îdnλ + R · Î
n
λ (10)

where ‘•’ is the Hadamard product, and the weighting matrix
R contains values in [0, 1].

We transfer Eq. (10) into the frequency domain as

F̂new(r,s)λ = (1− R(r,s)) ∗ F̂dn(r,s)λ + R(r,s)
∗ F̂n(r,s)λ (11)

where r and s denote its scale and orientation bands per
scale, respectively. We further re-parameterize R(r,s) to the
form

R(r,s)
= αT · V ·W (r,s) (12)

where α is the scalar parameter (0 < α < 1). It globally
controls the relative weights of the overly smooth Îdnλ and
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FIGURE 2. Simulation results of water tank. (a) Captured image without sediments and noise. (b) Captured image with 200 mg/L
turbidity and additional noise. (c) Super-resolved result using the method in [12]. (d) Super-resolved result using the method
in [9]. (e) Super-resolved result using the method in [13]. (f) Super-resolved result using the proposed method. (a) Captured
image without sediment (b) Captured noisy image. (c) NLM denoising and super-resolving [12]. (d) Descattering [31] and
super-resolving [9]. (e) NLM denoising and super-resolving [13]. (f) The proposed method.

the noisy Înλ in the result. T is the value that evaluates
the target patch to its best matching source patch when
super-resolving [13]. W (r,s) is the frequency constraint that

facilitates selective blending of the frequency and orientation
band [12]. V is the variance map that measures the ‘‘texture-
less’’ of the local patches [12].
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FIGURE 3. Underwater objects. (a) Captured image without sediments
and noise. (b) Captured image with turbidity and additional noise.
(c) Super-resolved result using the method in [12]. (d) Super-resolved
result using the method in [9]. (e) Super-resolved result using the method
in [13]. (f) Super-resolved result using the proposed method. (a) Captured
image without sediment (b). Captured noisy image. (c) NLM denoising
and super-resolving [12]. (d) Descattering [31] and super-resolving [9].
(e) NLM denoising and super-resolving [13]. (f) Proposed method.

IV. EXPERIMENTAL RESULTS
A. IMAGE QUALITY METRICS
We also use some quality assessment rules to compare
the results of different methods. This analysis includes the
peak signal to noise ratio (PSNR) [42], structural similar-
ity (SSIM) [42], and color distance [43]. Here, we propose
a new quality assessment rule for underwater images. First,
we recall some conventional image quality indices.

Metric1E represents the Euclidean distance between two
colors in the Lab color space. It is calculated from their L, a,
and b values as follows:

1E(A,B) =
√
(LA − LB)2 + (aA − aB)2 + (bA − bB)2

(13)

where smaller1E values indicate greater similarity between
images A and B. Table 1 shows that the SSIM and1E values
of the proposed method is superior than the others.

B. WATER TANK SIMULATION
Twenty underwater images were selected, including five
images from the Internet, five images from JAMSTEC
JDI Datasets, and ten images from our water tank experi-
ments. In the water tank experiments, an underwater camera
(OLYMPUS µTough TG2) was placed in the water. The
objects were placed at a depth of 30 cm. The distance between
the objects and the camerawas approximately 60 cm.We used
Intel Core i7 CPU, 4G RAM computer for computing. The
size of input image was 400×470 pixels. The performance
of the proposed algorithm is evaluated both analytically and
experimentally using ground truths.We also compare the pro-
posed method with other currently proposed state-of-the-art
methods. The results demonstrate that the proposed method
shows superior scatter/noise removal without ring artifacts.
The computational time of this image is about 10 seconds.
Figure 2 shows the experimental results in detail.

Figure 2 shows the simulation results in the water tank. We
added deep-sea soil to the clean ocean water at a turbidity of
200 mg/L, and we also added additional noise to the captured
image (σ = 10). Figure 2(c) presents the super-resolved
image using Singh et al.’s method [12]. In that method, noise
and edge information were fully considered. However, the
resulting image retains some haze. The most recent dehazing
method [31] and the SR method [9] were used to remove
the scatter as well as to enlarge the image. However, as a
result of non-ideal dehazing, the final result contains non-
uniform haze and additional artifacts. While Huang et al.’s
method [13] considered the use of transferred self-examples
in super-resolving, the remaining heavy noise leads to an
uncomfortable result with ring artifacts. Compared with the
other methods, the proposed method performs better in pre-
serving color and super-resolving. Table 1 shows the numer-
ical metrics of different methods. Although PSNR value of
the proposed method is lower than NLM+SR method, but the
SSIM and 1E is better than the others.

VOLUME 5, 2017 675



H. Lu et al.: Underwater Image Super-Resolution by Descattering and Fusion

FIGURE 4. Underwater objects. (a) Captured image. (b) Cubic interpolation result. (c) Super-resolved result using the method in [12].
(d) Super-resolved result using the method in [9]. (e) Super-resolved result using the method in [13]. (f) Super-resolved result using the proposed
method. (a) Input image. (b) Cubic interpolation. (c) NLM denoising and super-resolving [12]. (d) Descattering [31] and super-resolving [9].
(e) NLM denoising and super-resolving [13]. (f) Proposed method.

C. REAL-WORLD EXPERIMENT
In the second experiment, we take underwater images from
the Internet [44]. Figure 3 indicates the experimental results

of a real-world scene that was captured in turbid water. The
size of the image is 350 × 227 pixels. The super-resolved
image is 700 × 454 pixels (2×). From Figure 3, we can
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TABLE 1. Comparison of the different methods in Figure 2

TABLE 2. Comparison Results of Different Methods in Figure 3

FIGURE 5. Mean PSNR (dB) results of the different methods.

also conclude that the proposedmethod outperforms the other
state-of-the-art methods.

Table 2 shows the quantitative analysis results. The
results show that the proposed method outperform the other
methods. The images were offered at https://sites.google.
com/site/kyutech8luhuimin. Figure 4 shows the other exper-
iment of real-world underwater images super resolution by
different methods.We can conclude that the proposedmethod
can achieve a visual pleasing result.

D. PERFORMANCE EVALUATION
To complement the discussions in the previous sections,
we provide experimental evaluations for representative tech-
niques by 200 images. The evaluation for image SR and
descattering can be measured by PSNR, SSIM etc. Figure 5
shows themean PSNR (dB) results of thesemethods. Figure 6
shows the mean SSIM values of these methods. In summary,
the proposed method has the highest mean PSNR and mean
SSIM values.

FIGURE 6. Mean SSIM results of the different methods.

V. CONCLUSIONS
In this paper, we presented SR method for recovering dis-
torted images in high turbid water. We have overcome the
noise or artifacts in high resolved scattered images. The
HR image of scattered and descattered images is obtained
using a self-similarity SR algorithm. Then, a proposed convex
fusion rule is applied to recover the final HR image. The
super-resolved images have a reasonable noise level after
descattering and demonstrate visually more pleasing results
than images obtained using conventional approaches. Fur-
thermore, numerical metrics demonstrated that the proposed
algorithm shows consistent image improvement, with signif-
icant improvement for the edges. In future, we will focus
on solving the inhomogeneous scatters and artificial lighting
issues in SR. Furthermore, the cloud computing [45]–[48]
should be applied in the proposed SR system.
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