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ABSTRACT In addition to being environment friendly, vehicle-to-grid (V2G) systems can help the
plug-in electric vehicle (PEV) users in reducing their energy costs and can also help stabilizing energy
demand in the power grid. In V2G systems, since the PEV users need to obtain system information
(e.g., locations of charging/discharging stations, current load, and supply of the power grid) to achieve the
best charging and discharging performance, data communication plays a crucial role. However, since the
PEV users are highly mobile, information from V2G systems is not always available for many reasons,
e.g., wireless link failures and cyber attacks. Therefore, in this paper, we introduce a novel concept using
cyber insurance to ‘‘transfer’’ cyber risks, e.g., unavailable information, of a PEV user to a third party, e.g.,
a cyber-insurance company. Under the insurance coverage, even without information about V2G systems,
a PEV user is always guaranteed the best price for charging/discharging. In particular, we formulate the
optimal energy cost problem for the PEV user by adopting a Markov decision process framework. We then
propose a learning algorithm to help the PEV user make optimal decisions, e.g., to charge or discharge and
to buy or not to buy insurance, in an online fashion. Through simulations, we show that cyber insurance is
an efficient solution not only in dealing with cyber risks, but also in maximizing revenue for the PEV user.

INDEX TERMS Cyber insurance, plug-in electric vehicle, vehicle charging, vehicle-to-grid,
Markov decision process.

I. INTRODUCTION
One challenge of the current power grid is to provide suffi-
cient capacity and cost-effective energy storage. The energy
storage is used as a tool by the power grid operator to
efficiently manage the generation and transmission of the
electricity, i.e., supply and delivery, to meet dynamic and
unpredictable consumer demand. A traditional approach is
to deploy large generators which can be relatively ineffec-
tive due to its long delay response (minutes) and can cause
underutilization (spare capacity). In smart grid, ancillary ser-
vices such as load regulation, spinning reserve, non-spinning
reserve, and replacement reserve to support the continuous
flow of electricity have been used to alleviate this prob-
lem. However, the introduction of renewable sources, the
energy supply of which depends on natural conditions, aggra-
vates the problem due to the fluctuating and unpredictable

characteristics. Therefore, the vehicle-to-grid (V2G) sys-
tems have been considered as a promising solution.
In V2G systems, battery vehicles (BVs) or plug-in electric
vehicles (PEVs) can be used as energy storage devices.
Although their battery capacity is limited, they are suitable
for short-time ancillary services given their small response
time as well as lower standby and capital costs.

The effectiveness of V2G systems depends on the number
of PEVs participated and how good the data, e.g., informa-
tion of PEVs and charging stations, is exchanged between
V2G operator and PEVs in order to optimize system oper-
ations. For example, the V2G operator can economically
manage its generators if the amount of energy reserved
from V2G systems can be accurately estimated. Likewise,
the PEVs can choose to charge or discharge their batter-
ies to maximize the performance and minimize the cost.
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However, since PEVs aremobile vehicles and the information
about V2G systems is transmitted to the PEVs through wire-
less links, the V2G data communication is unreliable and
vulnerable to cyber attacks which can violate confidentiality,
authenticity, integrity, and availability requirements of the
data exchange in V2G systems. A number of cyber risks
have emerged to the V2G systems. The majority of research
works focus on mitigating the risks by protecting the systems
and preventing adverse effects from the attacks. However, it
is well known that no single solution can completely avoid
the risks and their damage. Recently, cyber insurance has
been introduced as an efficient solution to alleviate damages
for cyber customers. With cyber insurance, PEVs’ risks are
‘‘transferred’’ to a third party [1], thus PEVs are protected
from cyber attacks and compensated for their losses if they
are victimized to such attacks.

In this paper, we introduce a novel idea of using cyber
insurance for PEVs in V2G systems. First, we present an
overview of V2G systems, including data communication and
cyber risks. Some related works on V2G system security
are also reviewed. We then introduce a short survey about
cyber insurance. This survey is used to provide basic concepts
as well as fundamental knowledge about cyber insurance.
Finally, we propose a novel model using cyber insurance
for a PEV user in a V2G system. Specifically, we use a
Markov decision process framework to formulate the energy
cost optimization problem with the aim of minimizing the
average total energy cost for the PEV user. In addition, we
also propose a learning algorithm to help the PEV user make
optimal decisions, i.e., charge or discharge and buy or not to
buy insurance, given its current state, e.g., battery level and
insurance status, in an online fashion. The proposed solution
not only minimizes the average total cost for the PEV user,
but also maximizes the PEV’s revenue without a need of
PEV’s prior knowledge on the risk, e.g., the probability of
information unavailability. The proof of the convergence for
the proposed learning algorithm is also provided in this paper.
Through simulations, we demonstrate that adopting a cyber
insurance model can provide an efficient solution to the cost
minimization problem for the PEVs.

The rest of the paper is organized as follows. In Section II,
an overview of V2G systems and their security problems
are presented. Section III provides basic concepts and fun-
damental knowledge about cyber insurance. Then, we intro-
duce the idea of using cyber insurance to mitigate the risks
and propose the learning algorithm to minimize the cost
for the PEV user in Section IV. Finally, future research
directions are highlighted in Section V before we conclude
in Section VI.

II. OVERVIEW OF V2G SYSTEMS
A. VEHICLE-TO-GRID (V2G) SYSTEMS
1) INTRODUCTION
Vehicle-to-grid (V2G) describes a system in which
plug-in electric vehicles (PEVs), e.g., electric cars and

plug-in hybrids, communicatewith the power grid to facilitate
demand response services by either charging or discharging
energy. On one hand, if the PEVs perform charging from
the power grid, the energy will be stored in their batteries
for traveling and storing. On the other hand, if the PEVs
perform discharging to the power grid, the energy from their
batteries will be returned to the power grid with the purpose of
stabilizing energy demand [2]. For example, when the energy
supply from generators exceeds demand, e.g., during off-
peak hours, a low energy price can be offered to incentivize
PEVs to charge their batteries from charging stations [3].
By contrast, when the energy supply cannot meet the demand,
e.g., during peak hours, PEVs can sell their energy back to
the power grid. Hence, PEVs can act as an energy reserve.
As such, PEVs are expected to potentially offer unprece-
dented benefits to the grid. For example, it is estimated that
ancillary services of PEVs account for 5-10% of electrical
cost, or about $12 billion per year in the U.S. [4].

2) ARCHITECTURE
Fig. 1 shows a general architecture of a V2G system with
interactions among power generation/transmission, power
consumers, and PEV users [5]. The power systems include
convention generators, renewable sources, and transmission
facility. The power systems supply energy to both consumers
(e.g., residential, industrial, and business) and V2G systems.
The V2G systems are composed of PEVs connected with
the power grid through public and private charging stations
and aggregators. An aggregator is a mediator controlling
and optimizing energy flow between power grid and V2G
systems. The V2G systems act as both energy storage and
consumers. V2G communication provides data and informa-
tion exchange among power systems, power consumers, and
V2G systems, and it consists of communication infrastruc-
ture (e.g., wireless networks) and processing facilities (e.g.,
cloud computing and data center). With the V2G communi-
cation infrastructure, the power system operators can collect
necessary data from V2G systems and consumers, then
optimize power generation and ancillary services from
PEVs efficiently.

PEV users can make a long-term agreement/contract with
the V2G operator to make charging and discharging more
predictable. For example, the operator can offer battery main-
tenance service in exchange for PEV users agreeing to charge
and discharge the battery to meet the requirements of the
V2G systems. With this approach, centralized control of
charging and discharging process can be implemented to
achieve the maximum efficiency. However, to achieve such a
goal, status monitoring and information update are necessary
for V2G systems. The V2G systems should be able to obtain
the timely conditions of both moving and parking PEVs. The
conditions can be PEVs’ locations, battery capacities, battery
state-of-charge, expected time to arrive at and leave charging
stations. Using this information, the V2G system can estimate
the amount of energy to charge and to receive from PEVs in
certain areas.
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FIGURE 1. V2G architecture.

TABLE 1. Advantages and disadvantages of centralized and decentralized control solutions.

Alternatively, some PEVs can participate in V2G systems
voluntarily without making long-term commitment with the
V2G operator. For example, the operator can offer different
incentives for charging and discharging energy by PEVs
depending on current load and supply of the power grid. The
PEV user individually considers the current location, i.e.,
charging stations’ locations, the battery state-of-charge, and
energy price to decide to charge (or discharge) its battery or
not. With this approach, charging and discharging decisions
are made by PEV users in a distributed fashion. Therefore, the
V2G systems must provide information about the incentive to
motivate the users in such a way that the system efficiency is
maximized.

3) SMART CHARGING/DISCHARGING CONTROL
As the population of PEVs grows, implementing smart
charging/discharging control solutions becomes increasingly
important to avoid large expenditures and negative impacts
on the power gird. In general, charging/discharging con-
trol can be classified into two groups, i.e., centralized and
decentralized solutions [6]. With centralized solutions, all
charging/discharging processes of PEVs are controlled by an
authorized energy service provider. In contrast, with decen-
tralized solutions, charging/discharging decisions are made
and executed by the PEVs themselves. Each solution has its
own advantages as well as disadvantages as shown in Table 1.
Although the centralized approach can achieve optimal
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TABLE 2. Battery capacity and technologies.

performance for both the provider and PEVs, it may not
be practical to implement since the PEVs cannot control
their charging/discharging processes by themselves. There-
fore, in actual systems, the decentralized solution is more
preferable [6].

4) BENEFITS
V2G systems offer many benefits to the power grid and also
PEV users [7].
• Diminishing environmental pollution: Different from
conventional vehicles using fossil fuel, PEVs can dimin-
ish significantly environmental pollution even when
considering power generation emissions. It is esti-
mated that by replacing a conventional car by a PEV,
CO2 emissions can be dropped by 2.2 tons per year [8].

• Enhancing ancillary services: In practice, there are
many cars traveling on the road for only 4-5% of the
day, while they spend the rest of time for parking. This
implies that we can utilize such electric vehicles to facili-
tate the ancillary services in V2G systems, e.g., spinning
reserves, reactive power support, frequency and voltage
regulation, to balance supply and demand for reactive
power. These services can be used to reduce the overall
cost of V2G systems, thereby decreasing energy prices
for customers and improving load factors.

• Improving quality of services for PEV users: Due to
the development of battery technologies, V2G systems
enable very fast energy supply response time in which
the charging and discharging responses can be per-
formed in milliseconds. Furthermore, there is no signif-
icant running cost of the unit commitment operations.
Therefore, quality of services for PEV users, e.g., serv-
ing time, can be improved considerably.

• Supporting renewable energy: The power quality from
renewable sources such as solar and wind generators
can be greatly improved by using PEVs as storage and
filter devices. The combination of PEVs and renewable
energy sources can make the power grid more stable and
reliable.

• Rising revenue to PEV users: PEV users can receive
monetary reward for discharging energy or other support

benefits from V2G operators in participating in the sys-
tem. Thus, by adopting intelligent energy management
solutions, the PEV users can balance their demands and
charging/discharging processes, e.g., charging during
non-peak hours and discharging during peak hours, to
obtain more revenues.

5) ELECTRIC VEHICLE BATTERY
Different from conventional batteries used in electronic
devices such as mobile phones and laptops, batteries for
electric vehiclesmust be designed to prolong the running time
with high power (up to a hundred kW) and high energy capac-
ity (up to tens of kWh). In addition, these batteries should
have a limited space and weight. Extensive research efforts
are exerted worldwide to invent new advanced vehicle battery
techniques which are more suitable for PEVs. In Table 2, we
summarize the advanced vehicle battery technologies which
are currently implemented in the real world [9]. In Table 2,
it can be observed that batteries with heavy weights usually
offer longer traveling time. However, if the battery is heavy,
it will cause inefficient performance for PEVs because the
heavy battery will limit the PEVs’ speed and consume more
energy to carry. Therefore, the balance between the perfor-
mance and weight of the battery needs to be considered for
the future development of electric vehicle batteries.

6) DATA COMMUNICATIONS
In V2G systems, data communication between PEVs and
V2G infrastructure is the most crucial step to achieve the
best performance for both PEV users and V2G system oper-
ators because the operators need information about PEVs’
demands to control the energy resources distributed over
large geographical areas, meanwhile PEV users need V2G
infrastructure information to optimize their energy costs.
In this case, wireless communication is the best solution for
V2G applications for many reasons.
• Mobility: PEVs are mobile vehicles, hence wireless
communications are the best choice because V2G sys-
tems cannot use wires to connect to PEVs.

• Fast and convenient:Data exchanged between PEVs and
V2G infrastructure is often small in size and intermittent
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TABLE 3. Wireless communication technologies in V2G systems.

over time. So, by using wireless communications, the
information will be updated timely and quickly.

• Efficiency with low cost: Wireless communications
allow data to be transmitted to multiple PEVs simulta-
neously in a wide area coverage.

In Table 3, we list different wireless communications tech-
nologies which have been implemented and developed for
V2G systems. From Table 3, it is observed that each wireless
communication technology has its own advantages as well as
disadvantages, and it is suitable for PEVs in specific cases.
For example, for a short-range data communication, e.g.,
between a PEV and a charging station when the PEV is
charging at that station, ZigBee protocol can be adopted
since it consumes less energy for data communications. How-
ever, for a long-range data communication, IEEE 802.11p
and WiMAX technologies should be used as they are stan-
dard protocols for communication over long distances in
V2G systems.

B. SECURITY REQUIREMENTS AND CYBER RISKS
IN V2G SYSTEMS
Although wireless technologies bring many advantages, they
also raise some security issues for V2G systems. Therefore,
the cyber security for data communications between PEVs
and V2G infrastructure should be assured in order to protect
the smart grid from the cyber attacks such as price tamper-
ing and system congestions by malicious software. In this
section, we discuss security requirements and some potential
approaches to deal with cyber attacks in V2G systems.

1) SECURITY REQUIREMENTS
V2G systems possess the following cyber security
requirements.
• Confidentiality:Data exchanged between PEV users and
the V2G operator must be kept confidential. The identity
of PEVs users as well as their interaction, i.e., charging
and discharging, with the operator must be maintained
privately. The cyber attacks to the confidentiality of

V2G systems can cause business disadvantages to the
V2G operator if its competitor has important informa-
tion about system operations, e.g., energy price offered
to PEV users.

• Authenticity: The identities of PEVs and the operator
must be assured before and during data communica-
tions. The operator may miscalculate the V2G system
capacity if the identity of PEVs is falsely authenticated.
Authentication methods taking specific requirements of
V2G systems into account have to be developed. For
example, the authentication should be customized and
optimized for PEVs [6].

• Integrity: The integrity ensures that the data exchanged
between PEVs and operator will not be modified by
attackers. The maliciously modified data such as the
number of online PEVs, battery capacity and state-of-
charge, can cause suboptimal operation or even disrup-
tion to the V2G systems.

• Availability: Data communication facilitates a number
of functions in V2G systems. Therefore, its availability
is crucial to provide seamless and efficient data trans-
fer from mobile PEVs to fixed infrastructure. However,
V2G communication can be disrupted, e.g., denial-of-
service (DoS) attacks, which results in incomplete infor-
mation to the V2G operator in operating the system.

2) SOLUTIONS
Given the above requirements, V2G communication infras-
tructure has to be designed and implemented accordingly.
A few works have proposed different approaches to address
different issues. Yang et al. [7] designed a security frame-
work to protect the privacy of PEV users, thereby encour-
aging them to participate V2G systems. In the framework,
all privacy information of PEV users and their aggregators
are sent directly to a trusted authority. The trusted authority
then adopts the ID-based restrictive partially blind signature
technique to generate public/private key pairs, and sends them
back to the PEV users and the aggregators. Based on these
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public/private key pairs, the aggregators can authenticate par-
ticipated PEVs without knowing their identities while the
PEV users can provide V2G services with secured infor-
mation. As such, PEV users’ information is protected from
aggregators as well as from eavesdroppers since their infor-
mation is encrypted by the trusted authority. As the method
is relatively simple, its overhead is minimal. However, the
system relies heavily on the trusted authority, which can
become a single point of failure.

Different from [7], the solutions proposed in [16] con-
sidered security for different states of vehicle’s battery.
In particular, the battery has three states, i.e., charging, fully-
charged, and discharging. At each state, the PEV user has
different security requirements such as identity, location, and
energy status, and thus the corresponding security protocols
were introduced. Similar to [7], these protocols mainly focus
on the authentication between PEV users and aggregators
and the confidential information protection for PEV users.
Nevertheless, Liu et al. [16] also considered the data integrity
issue for PEV users through using Hash functions together
with signature algorithms. As such, the transmitted data from
PEV users can be protected from malicious modification
by cyber attackers. However, the solutions in [16] are more
complicated and have considerable overheads.

Shuaib et al. [17] discussed the jamming attack prob-
lem in smart grids as well as V2G systems. For such kind
of networks, the useful information from service providers,
e.g., energy price and locations of charging stations, may be
unavailable to the PEV users due to diverse types of jamming
attacks such as constant jamming, deceptive jamming, ran-
dom jamming, and reactive jamming [18]. The information
unavailability problem can cause serious damage not only
to the PEV users, but also to the service providers. On the
one hand, the PEV users are unable to find the best charging
station for charging/discharging to minimize the overall cost,
e.g., traveling and energy costs. On the other hand, the ser-
vice providers cannot maximize their profits because optimal
economic policies cannot be applied to the PEVs, e.g., offer-
ing a low energy price in off-peak hours and/or for stations
with redundant energy. Consequently, the PEV users may
not be interested in participating in V2G systems due to the
high cost, resulting in a significant revenue reduction to the
V2G service providers.

Different approaches were proposed in [19] to deal with
jamming attacks, namely channel surfing and spatial retreats.
For the channel surfing approach, the wireless nodes will
move their communications to another channel once jamming
attacks are detected. For the spatial retreats, wireless nodes
change their locations to outside the interference range of
the jammers. Both approaches can mitigate the impact of
the jamming attacks, but they are difficult to implement in
V2G systems. This is from the fact that PEV users are mobile,
and the communication channel between the PEV users and
V2G systems are usually fixed. In [20], a new solution
based on the deception tactic to deal with smart jamming
attackswas proposed. Basically, the core idea of the deception

mechanism is using fake transmissions to undermine the
attack ability of enemies, e.g., by wasting the energy of
their adversaries. Thus, jammers may not be able to attack
when V2G systems transmit actual information. Although
this solution can effectively reduce adverse effects from smart
jammers even when they use different attack strategies, it
is inefficient if the jammers are powerful devices and have
constant power supply.

In practice, there are also many solutions proposed to
address the jamming attacks in wireless networks as pre-
sented in [21]. However, they can only reduce the impact of
the attacks. A perfect solution which can completely avoid
jamming attacks is impossible in practice. Hence, in this
paper, we introduce a novel concept using cyber insurance
to ‘‘transfer’’ cyber risks, e.g., unavailable information, of
PEV users to a third party, e.g., a cyber insurance com-
pany. Under the insurance coverage, even without informa-
tion about V2G systems, PEV users are always guaranteed
the best price for charging/discharging. As a result, the PEV
users’ profits will be maximized, and thus they are encour-
aged to participate in V2G systems, yielding to a considerable
revenue for the V2G service providers.

III. OVERVIEW OF CYBER INSURANCE
In this section, we present an overview of cyber insurance.
Cyber insurance is considered to be a promising solution to
‘‘transfer’’ risks from stackholders, i.e., the insured, to a third
party, i.e., an insurer. Such risks include system failure and
cyber attacks which can cause damage to PEV users.

A. DEFINITION, FUNDAMENTAL CONCEPTS,
AND COVERAGE
With the prevalent applications of Internet-of-Things, every-
thing can be connected to the Internet by wireline or wire-
lessly including V2G systems and PEVs. Internet has brought
numerous advantages, but it also involves cyber risks includ-
ing reliability and security. When such a connection is
unavailable due to system failure or cyber attacks, not only
financial losses, but also catastrophic danger to humans can
happen. Hence, we need efficient and effective solutions to
deal with cyber risks. Although there are many proposed
reliable designs and security solutions, it was pointed out
in [22] that it is impossible to achieve a perfect or near-perfect
system reliability and cyber security protection. Therefore,
cyber insurance can be considered to be a potential and effi-
cient solution for cyber risk elimination and Internet security
improvement.

1) DEFINITIONS AND FUNDAMENTAL CONCEPTS
Cyber insurance can be defined in different contexts. For
example, in the Internet context, cyber insurance is consid-
ered to be a set of policies that provide coverage against losses
from Internet-related breaches in information security [1].
In the business context, cyber insurance is a risk management
technique via which network users’ risks are transferred to
an insurance company, in return for a fee [22]. In the market
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context, cyber insurance can be interpreted as a powerful
tool to align market incentives towards improving Internet
security [23]. Therefore, in general, cyber insurance can be
regarded as an insurance product that is used to protect
businesses and individuals from cyber risks.

The followings are important fundamental concepts of
cyber insurance.
• Cyber risks: are potential threats in the cyber world
which can cause losses/damage to humans and society.

• Cyber insured: is the user/customer who wants to be
protected from cyber risks.

• Cyber insurer: is the insurance company which wants
to take users’ cyber risks together with a commensurate
profit.

• Cyber insurance premium: is the amount of money that
the cyber insured has to pay to the cyber insurer to be
protected.

• Cyber insurance contract: is the signed deal between the
cyber insured and the cyber insurer.

• Claim: is a formal request activated by the insured when
a cyber risk has occurred.

• Indemnity: is the compensation from the cyber insurer
to the insured for the loss/damage caused by cyber risks.

Basically, in a cyber insurance contract, the insured will
agree to pay the insurance premium to the insurer in order
to receive the protection from the insurer. In other words, the
insured’s risks are now ‘‘transferred’’ to the insurer, and the
insurer can profit from the premium and efficient manage-
ment of taking the risks.

2) COVERAGE
Currently, cyber insurance covers losses and damage caused
by cyber attacks to IT systems and the Internet. In general,
cyber risks are categorized into two types, i.e., first-party and
third-party, and thus cyber insurance policies are designed to
cover either or both types of risks. In particular, the first-party
insurance (www.abi.org.uk) covers the insured’ own assets,
and it involves:
• Losses or damage to digital assets
• Business interruption
• Cyber extortion
• Reputational damage
• Theft of money or digital assets

Meanwhile, the third-party insurance covers the assets of
subjects which are damaged by the insured. The third-party
may involve:
• Security and privacy breaches
• Multi-media liability
• Loss of third party data
• Third-party contractual indemnification

B. BENEFITS OF CYBER INSURANCE
Cyber insurance has been considered to be an alternative
solution to traditional security methods. In the following, we
highlight and discuss benefits of cyber insurance in practice.

1) BENEFITS TO THE THE INSURED
• Mitigate damage:By transferring risks to the insurer, the
insured’ damage will be significantly reduced when the
risks happen.

• Protected from insurers: To avoid paying high com-
pensation, the insurers have to make more efforts in
implementing countermeasures to protect the insured.

• Improve self-defense: The insured will be stimulated to
implement self-protectionmethods in order to reduce the
premium.

2) BENEFITS TO INSURERS
According to a recent report from the PwC Global State
of Information Security Survey 2016, it was predicted that
cyber insurance market will grow from $2.5 billion in 2015 to
$7.5 billion by 2020 [24]. This reveals that cyber insurance is
a promising and attractive market because it will open many
new business opportunities for insurers.

3) BENEFITS TO THIRD-PARTY AND SOCIETY
Unlike conventional insurance, cyber insurance requires
insurers to have specialized knowledge about cyber security
as well as network systems. This opens new opportunities
for network security providers for consultation, support, and
monitoring for insurers. Consequently, the development of
cyber insurance results in a higher overall social welfare [25].

C. IMPLEMENTATION AND EFFECTIVENESS
OF CYBER INSURANCE
With aforementioned benefits, many applications of cyber
insurance were implemented in practice especially for Inter-
net security. In particular, in 1990, the first known cyber
insurance policy was introduced by security software com-
panies partnering with insurance companies in order to offer
insurance-bundled software security services (software +
insurance services) [26]. The aim of these services is to not
only mitigate losses, but also reduce residual risks for the
insured. In 1998, the International Computer Security Asso-
ciation (ICSA Inc.) corporation introduced the hacker-related
insurance packages, namely TRSecure service, to against
hacker attacks to its clients [27]. This is also known as the
first stand-alone cyber insurance service which creates prece-
dent for the development of later cyber insurance services
of Lloyd’s of London (https://www.lloyds.com/), AT&T
(http://www.mmc.com/), and AIG (www.aig.com) [23].

Recently, the rapid growth of cyber insurance has been
receiving a lot of attentions from the literature. Many
research works have demonstrated the effectiveness as
well as applicability of cyber insurance. In particular,
Srinidhi et al. [28] developed an analytical model for allocat-
ing optimal investments, and evaluated the role of cyber insur-
ance in mitigating the influence on breach costs. Through
analysis on impacts of insurance coverage, the authors
showed that insurance is able to reduce over-investments
for specific security-enhancing assets. Different from [28],
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Ishikawa and Sakurai [29] adoptedMonte Carlo simulation to
evaluate the effectiveness of cyber insurance. In particular, the
authors simulated a virtual company running the e-commerce
site under cyber attacks and performed around 100 million
simulation trials to estimate losses and evaluate efficiency
of using cyber insurance. Through simulation results, the
authors showed that cyber insurance can reduce the cost for
the company up to 65%. In addition, there are also some other
research works studying the applicability as well as efficiency
of using cyber insurance for software security [30], university
networks [31], and Nigeria market [32].

FIGURE 2. Cyber insurance process.

D. CYBER INSURANCE PROCESS
A cyber insurance process involves four main steps as illus-
trated in Fig. 2. In the following, we will discuss step-by-step
process of a cyber insurance.

1) RISK IDENTIFICATION
This is the first step of a cyber insurance process. After
receiving a request from a customer, the insurer has to iden-
tify potential risks which may have negative impacts to the
customer. To do so, the insurer needs to study the customer’s
coverage requirement, e.g., first-party and/or third-party cov-
erage, then carries out investigations based on information
provided by the customer to find threats and vulnerability of
protected objects.

2) RISK EVALUATION
In this step, the insurer will analyze and evaluate the risks
by assessing the possibility of risks occurring as well as their
potential damage. This is the most important step in the cyber
insurance process because it will decide how tomake a proper
contract. If the insurer underestimates the risks, they will
loose profits. By contrast, if the insurer overestimates the
risks, the customer may not be interested in the insurance.
However, in practice, this step is always the most difficult
step in the cyber insurance process because it is often hard
to estimate accurately the risks due to many reasons, e.g.,
asymmetry information between the insured and the insurer.

3) ESTABLISH CONTRACT
After the risks are well investigated, the insurer proposes
an insurance policy which prescribes terms, conditions, and
exclusions for the insured. If the customer accepts this policy,
a legal contract is signed between the insurer and the insured,
i.e., the customer. On the other hand, if the customer disagrees
with that offer, the insurer and the customer can negotiate to
find a joint agreement. In the case if the customer does not
accept any offers from the insurer, the process ends here.

4) IMPLEMENT AND MONITOR
Once the contract is made, the insurer will carry out solutions
to protect the insured as well as to minimize its damage
if cyber attacks happen. The solutions can include periodic
monitoring and inspecting processes so as to make timely
appropriate countermeasures if the risks occur. If the risks
occur and cause losses to the insured, the insurer will verify
the risks and handle claims from the insured as agreed in the
contract.

E. CHALLENGES AND SOLUTIONS
Although there are many benefits and applications, cyber
insurance has to face some challenges which hinder its devel-
opment. In the following, we discuss some important chal-
lenges and potential solutions proposed in the literature.

1) RISK CLASSIFICATION
In the first step of the cyber insurance process, the insurer
needs to identify the cyber risks which may cause losses
to the customer and itself. However, different from the tra-
ditional insurance, cyber risks are diverse and there is cur-
rently no standard to classify and determine the cyber risks.
Cebula and Young [33] presented the first taxonomy of oper-
ational cyber security risks with the aim to identify and
organize the sources of operational cyber security risks. The
taxonomy organizes the definition of operational risks into
four main categories with elements and descriptions as shown
in Table 4. Although the empirical information about cyber
risks in [33] is still relatively limited, the taxonomy provides
the fundamental classification of cyber risks which is espe-
cially important in evaluating cyber risks in the second step
of the cyber insurance process.

2) RISK ASSESSMENT
In the second step of the cyber insurance process, based on
the risk analysis in the first step, the insurer needs to evaluate
the risks in order to figure out an appropriate cyber insurance
policy for the customer. To do so, one of the most common
methods used in the literature as well as in practice is using
Risk Assessment Matrix (RAM). The insurer can create a
RAM to visualize the important areas of focus within their
risk assessments, e.g., frequency, probability, severity, speed
of development, and reputational impact as shown in Fig. 3.
All of these factors serve as important guides in understand-
ing the holistic nature of potential vulnerabilities and the
probability of individual risks which impact the insured.
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TABLE 4. Categories of cyber risks.

FIGURE 3. Risk assessment matrix.

3) INTERDEPENDENT RISKS
Another problem in evaluating cyber risks is the interde-
pendence or correlated nature of the cyber-risks. Different
from conventional insurance models, cyber insurance has
to face the network security externalities due to the inter-
dependence of entities. Specifically, cyber security of an
entity depends on the operations as well as security levels
of other entities in the network. To deal with this problem,
insurance companies often impose insurance policies which
do not cover such kind of risks. For example, in 2005,
AIG offered cyber policies which exclude electric and
telecommunication failures. However, this solution fails to
prevent the infection spread, e.g., worms and virus, in the
computer networks. Pal andGolubchik [34] adopted a general
mathematical framework to analyze policies of cooperative
and non-cooperative Internet users under cyber-insurance
coverage. An important conclusion drawn is that full insur-
ance contracts encourage cooperative users to invest more
for their self-defense, while partial insurance contracts moti-
vate non-cooperative users to pay more for their self-defense
mechanisms.

4) ADVERSE SELECTION
In order tomake a cyber insurance contract with the customer,
the insurer must establish cyber insurance policies taking the
adverse selection into consideration. In particular, adverse
selection is an information asymmetry problem between the
insured and the insurer where the insured has a complete
awareness about his/her situation, while the insurer does not
know, and thus it leads to the adverse selection problem
for the insurer. To protect the insurer from this problem,
insurance companies typically require their clients to have a
current situation certification, e.g., life insurance companies
require their clients to take certificatedmedical examinations.
However, this problem becomes more difficult for cyber-risk
insurance because there is currently no safety standardization
for cyber systems.

In order to deal with this problem, an insurance firm,
called J.S. Wurzler, proposed insurance contracts to cover
damage caused by hackers’ attacks with additional fee for
clients using Microsoft’s NT software [1]. However, this
is not an effective solution since cyber risks are not only
governed by the insured’s security system, but also by many
cyber incidents, e.g., insured objects and their relations.
As an effort to address this problem, Elnagdy et al. [35]
introduced a model to link cyber incidents and risks with
security insurance policies. Specifically, they developed a
model, namely semantic cyber incident classification, which
adopts semantic techniques to build a consistent and con-
vincing knowledge representation for entities in cyber insur-
ance system. Nevertheless, the authors did not consider all

740 VOLUME 5, 2017



D. T. Hoang et al.: Charging and Discharging of PEVs in V2G Systems

entities, and thus relations in cyber insurance need to be
further investigated.

5) MORAL HAZARD
The second major challenge in designing cyber insurance
policies is moral hazard that refers to the problem when
the insured under the insurance coverage relies on insurance
contracts and pays less attention in preventing cyber risks.
To prevent the insured from free-riding, a typical way is to
issue additional terms for insurance contracts. For example,
INSUREtrust (http://www.insuretrust.com/) offers a policy
‘‘You agree to protect and maintain your computer system
and your e-business information assets and e-business com-
munications to the level or standard at which they existed and
were presented...’’, or Lloyd’s of London insurance company
requires ‘‘The inured company maintains system security
levels that are equal to or superior to those in place as at the
inception of this policy’’.

However, these solutions do not encourage users in
improving network security, thereby raising cyber risks for
both the insurer and the insured. Thus, promotion policies
can be used to handle this problem. For example, AIG pro-
vides discounts for clients who use Invicta Network’s security
devices or Lloyd’s of London offers promotions for firms
using Tripwire’s Integrity security software. Nevertheless,
different clients have different risk levels, and thus we cannot
apply the same promotion for all clients. It was pointed out
in [22] that for monopolistic cyber insurance contracts with-
out client discrimination, there always exists an inefficient
market in which the social welfare of users is not maximized
at Nash equilibrium. However, if clients’ discriminating pre-
mium policies are applied, the moral hazard problem is miti-
gated, thereby maximizing the overall network security.

6) SETTING PREMIUM
This is the last step before an insurance contract is signed.
There are two typical ways to determine the premium for
an insurance contract in practice, i.e., through actuarial data
and normative standards. However, both ways are unable
to apply to the cyber insurance because cyber insurance is
relatively new and there is currently no standard to establish
cyber insurance premiums, while cyber actuarial data is not
available since many companies are either unaware of a cyber
attack or unwilling to disclose such attacks. Furthermore,
there are also some other challenges in setting premiums
for cyber contracts as pointed out in [36], e.g., underwriting
process and premium-setting produces, and thus the authors
suggested a research agenda developed by three main direc-
tions, i.e., policy, management, and technology.

7) OTHER PROBLEMS
There are also other problems which have been also studied
in the literature for the development of cyber insurance. For
example, Pandey and Snekkenes [37] examined the applica-
bility of prediction markets [38] in forecasting and assessing
information security events. In practice, prediction markets

can be used as an efficient tool to improve aggregation of
information, thereby improving the process of risk assess-
ment and risk mitigation. In [39], a financial mechanism
was introduced to incentivize coordinated efforts by security
stakeholders in improving the information security ecosys-
tem. The proposed solution is expected to address the prob-
lem of information asymmetry, negative externality and free
riding for the insurer, and to negotiate a lower premium for the
insured. In [40], a consumer pricing mechanism was exam-
ined to improve the profit for the insurer when a security ven-
dor becomes a cyber-insurer. Through the simulation results,
the authors showed that by using the proposed method, the
security vendor’s profit can be raised up to 25%.

F. CYBER INSURANCE MODELS
Cyber risks are becoming more and more exacerbated to
business and society, while countermeasures are still lim-
ited due to many reasons, e.g., information asymmetry and
the complexity of cyber networks. Therefore, to attain effi-
cient solutions, cyber insurance models which can quantify
risks and measure effectiveness of cyber security and risk
management strategies need to be taken into consideration.
In this section, we discuss cyber insurance models with the
aim of investigating the different characteristics offered by
the insurer which tend to maximize the total outcome of the
insurer as well as the insured.

1) CLASSICAL MODEL
We consider a classical model for cyber insurance in which
an agent (i.e., the insured) attempts to maximize its util-
ity function u[.]. The agent is assumed to be rational and
risk averse, i.e., its utility function is concave as shown in
[41, Proposition 2.1]. We denote w0 as the initial wealth of
the agent, π as the risk premium which is defined by the
maximum amount of money that the agent is ready to pay
to eliminate a pure risk X (i.e., E(X ) = 0), l as the potential
loss of the agent caused by risk X which is assumed to be a
fixed value, and p as the probability of loss. Then, the amount
of moneymwhich the agent is ready to invest to eliminate the
risk X is derived as follows:

pu[w0 − l]+ (1− p)u[w0] = u[w0 − m]. (1)

Then, from the results obtained in [42], we can derive the
value of m as follows:

m = pl + π [p], (2)

where π [p] is the risk premium when the loss probability
equals p, and the term pl represents the fair premium, i.e.,
the expected loss. The relation of terms in (1) and in (2) can
be seen clearer in Fig. 4.

For the classical cyber insurance model, m can be
expressed as the maximum acceptable premium for full cov-
erage. This implies that if the insurer offers a full coverage
with premium �, the agent will accept the offer if � ≤ m.
Thus, it can be observed that the premium � depends on
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TABLE 5. The expected payoff matrix.

FIGURE 4. Utility function.

the distribution of the loss, i.e., p and l, and the existence of
the insurance market will be determined by three parameters,
i.e., u, l, and p.

2) CYBER INSURANCE WITH SELF-PROTECTION
In [43], a cyber insurance model with self-protection for the
insured was introduced. Different from the classical model
where the agent has only two options, i.e., either purchase or
do not purchase insurance, in the self-protection model, the
agent has three options, i.e., self-protection, purchase insur-
ance, or do not purchase. First, in the case without insurance,
the agent has to decide whether to buy insurance or not.
If we denote c as the cost of self-protection and p[c] as the
corresponding probability of loss, we need to find the optimal
value of c∗ to maximize the following utility function:

max
c
f (c) = p[c]u[w0 − l − c]+ (1− p[c])u[w0 − c)]. (3)

Obviously, when the agent invests money to protect itself,
it will expect a lower probability of loss, and thus it is
reasonable to assume that p[c] is a non-increasing function
of c. As a result, the optimization problem in (3) has a
unique solution, i.e., either 0 or ct , as demonstrated in [43].
The authors then showed that if the cost for self-protection
is less than a predefined threshold c†, then the agent will
invest ct for self-protection. Otherwise, it will not invest for
self-protection.

Now, given the cyber insurance, the agent will have more
choices. In the first case when c < c†, i.e., the agent will
invest ct for self-protection, if the cost to buy insurance
c(�) is less than ct , the agent will buy insurance instead of
investing for self-protection. Otherwise, if c(�) > ct , the
agent will invest for self-protection only. In the second case

when c ≥ c†, i.e., the agent will not invest for self-protection,
the model becomes the classical model where the agent has
to decide to buy insurance or not, and we can use analysis in
the previous section to find the optimal strategy for the agent.

In general cases of cyber insurancewith self-protection, the
agent can choose a hybrid solution for self-protection and pur-
chasing insurance. Specifically, the agent can invest a portion
of cost, i.e., γ c, for self-protection, and the rest of cost, i.e.,
(1 − γ )c, for insurance based on its demands. For example,
for companies with good security system, it may invest more
money for self-protection, and less money for insurance.
In this case, the optimal value of γ will be determined by
the cost function of self-protection and insurance as shown
in [43]. However, for cyber insurancemodels with partial self-
protection, the insurer has to face the moral hazard problem
because when the agent is covered by insurance, it may take
fewer measures to prevent losses. In this case, the insurer
should tie up the premium to the amount of self-protection
to avoid moral hazard behaviors from the insured [44].

Obviously, cyber insurance models with self-protections
bring more flexible and appropriate insurance policies for the
agent compared with the classical model. Nevertheless, it was
also highlighted in [43] that there are still many difficulties
as well as challenges in developing self-protection strategies
in cyber insurance because the level of self-protection of the
agent is still representing a complex and time-intensive task.

3) INTERDEPENDENT MODEL
Kunreuther andHeal [45] introduced a cyber insurancemodel
for interdependent security (IDS) for the case with only two
agents, and these agents have to face interdependent risk
problem in the same network. In the IDS model, agents have
to decide whether or not to invest in self-protection given a
risk of losses which depends on the state of the other agents
in the network. There are two causes of losses for an agent.
The loss can be caused by an agent itself, i.e., direct loss, with
probability p, and this loss can be caused by the other agents
in the network, i.e., indirect loss, with probability q. Then,
the utility function for these two agents can be determined
as shown in Table 5. Here, it is assumed that two agents are
symmetric and p and q are independent parameters.

Denote c1 = pl + π[p] and c2 = p(1 − pq)l + π [p +
(1 − p)pq] − π [pq], then by using game theory, Bolot and
Lelarge [43] showed the following results:

• If c ≤ c2: The Nash equilibrium of the game is (S,S),
i.e., both agents will invest in self-protection.

• If c2 < c ≤ c1: Both equilibria, i.e., (S,S) and (N,N), are
possible and thus there is no Nash equilibrium solution
for this game.
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• If c1 < c: The Nash equilibrium of the game is (N,N),
i.e., both agents will not invest in self-protection.

Then, the authors integrated aforementioned analysis
results into the insurance model in which the agents can
choose whether to invest in self-protection and/or in a full
coverage insurance. In this case, each agent will have three
actions, i.e., purchase insurance, invest in self-protection, or
do nothing, and similar to the case without insurance, the
expected payoff matrix can be built and game theory can
be adopted to analyze the Nash equilibrium solution for this
IDS game with insurance. This model then can be extended
to the case with N agents with different kinds of network
topoloty [43] and/or to the case with partial insurance cov-
erage [34].

Therewere also some other cyber insurancemodels studied
in the literature. For example, Pal [46] introduced a cyber
insurance model to deal with the information asymmetry
problem; Aegis model was introduced in [47] to deal with
the case when the agent cannot discriminate between types
of losses and risks; and Copulas was proposed in [48] to
forecast the value of losses and allow a proper pricing of
cyber insurance. Each model has its own advantages and can
be used in specific circumstances depending on the agent’s
situation.

G. EVOLUTION OF CYBER INSURANCE MARKET
Over the last two decades, the cyber insurance market has
experienced great development steps with huge revenues for
insurance companies. However, the cyber insurance market is
still under the expectations. The reason is that cyber insurance
companies mainly focus on exploiting conventional security
market, i.e., Internet security market, which is gradually sat-
urated due to the fierce competition among insurers. Thus,
exploring new markets will be a potential solution for the
development of cyber insurance in the future.

Recently, the rapid development of social networks and
cloud computing has opened a great opportunity for cyber
insurance. In particular, in early 2011, INSUREtrust imple-
mented the social media insurance package which allows
social media companies to tailor the cover they buy to the
risks they face. This insurance policy covers many problems
related to the social networks such as defamation including
libel and slander, intellectual property rights infringement,
and so on. In 2013, the first cloud insurance platform was
introduced by Cloudinsure (http://www.cloudinsure.com) to
specifically address emerging privacy and security risks
within the cloud environment. In the literature, there were a
couple of research works proposing the idea of using cyber
insurance to cloud security. In particular, Chaisiri et al. [49]
proposed a framework for cloud customers to manage the
allocation of cloud security services and cyber insurance.
The main aim of this framework is to maximize the profits
for customers using cloud services, while minimizing their
risks through insurance policies and their costs incurred in the
process of using cloud services. Alternatively, a framework
was introduced in [50] to reduce the implement cost, while

remaining the security level for cyber insurance contracts.
The core idea of [50] is using big data techniques to improve
cyber security levels without a need of increasing financial
budget.

It is clear that there are still many potential markets which
insurers can benefit, and this is the motivation for us to
introduce a novel framework using cyber insurance in V2G
systems. In the next section, we will show that cyber insur-
ance is an efficient solution to address the cyber risks and
optimize the benefit for PEV users. In addition, V2G systems
are potential markets for cyber insurance companies.

IV. RISK MIGRATION THROUGH CYBER INSURANCE
IN PEV CHARGING AND DISCHARGING
A. SYSTEM MODEL
1) PEV CHARGING/DISCHARGING AND V2G SYSTEMS
We consider a V2G system in which a PEV user obtains the
information about the energy price and the location of the
charging stations through a V2G communication infrastruc-
ture. Different charging stations may have different prices at
different time due to various factors, e.g., supply of renewable
energy, consumer demand, and market influence. Therefore,
based on the information provided by the V2G communica-
tion infrastructure, the PEV user can find the charging station
which yields the lowest cost for charging or the highest profit
for discharging. The cost for charging includes traveling cost
and charging fee, while the profit for discharging equals the
revenue obtained from discharging minus the traveling cost.

Time is divided into P periods, e.g., morning, afternoon,
evening, and night. Thus, with the information about the
charging stations, the cost (per unit of energy) to replenish
energy for the PEV user in period p is denoted by ccp, and
ccp ≥ 0,∀p = 1, . . . ,P. Similarly, we denote by cdp the

discharging cost in the period p. However, different from ccp,
cdp ≤ 0,∀p = 1, . . . ,P since it represents the revenue of the
PEV user. In practice, the information about charging stations
may not be available to the PEV user for many reasons such
as network failure and/or cyber attacks. Thus, if the PEV user
decides to charge or discharge in period pwithout information
about charging stations, the cost for charging, denoted by Cc

p ,
could be higher, i.e., ccp ≤ Cc

p , and the cost for discharging,
denoted by Cd

p , could also be higher, i.e., cdp ≤ C
d
p .

Furthermore, we denote lp as the probability when the
V2G communication infrastructure is unavailable in period
p. Moreover, the PEV user has a battery with fixed capacity,
denoted by B, and hence the energy storage is divided into
B levels, i.e., 1, 2, . . . ,B.

2) CYBER INSURANCE FOR PEV CHARGING
AND DISCHARGING
For V2G systems, when the information about charging sta-
tions is unavailable, there will be a risk to the PEV user.
In particular, the PEV user may receive a higher cost for
charging and a lower revenue for discharging. Therefore, we
introduce the idea of using cyber insurance to transfer the
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risk from the PEV user, i.e., an insured, to an insurer who
provides the price-guaranteed service. The insurer can be a
third party, e.g., an insurance company, or in a form of extra
services offered by the company owning charging stations
and aggregators. The PEV user can buy the insurance by
paying a premium, denoted by m. The insurer will then issue
an insurance which is valid for a period of time to reserve
the best price for the PEV user. In particular, if the PEV
is under the insurance coverage, and it wants to be charged
or discharged, the PEV user will pay the cost of ccp or cdp ,
respectively, no matter whether the information about the
charging stations is available or not. However, if the PEV
user is not covered by the insurance and the information
infrastructure is not available, the PEV user will incur the cost
of Cc

p or Cd
p , if it wants to charge or discharge, respectively.

Again ccp ≤ Cc
p and cdp ≤ Cd

p as discussed in the previous
section.

FIGURE 5. Cyber insurance for PEV charging.

In Fig. 5, we show the system model of PEV charg-
ing/discharging and the cyber insurance which involves five
main steps as follows.
• Firstly, the energy price information is collected from all
charging stations at the energy price database.

• Secondly, the information is transmitted to the PEV user
through V2G communication channels.

• Thirdly, the PEV user considers its battery level and uses
the information to choose a suitable charging station.

• Fourthly, the PEV user can also choose to buy an insur-
ance from the insurer by paying a certain premium to
guarantee low charging fee and high discharging price.

• Fifthly, if the V2G communication infrastructure is not
available, the PEV user can still charge the battery with
the guaranteed price while the extra cost is covered by
the indemnity paid by the insurer.

From Fig. 5, given the current state, the PEV user has to
make two concurrent decisions. First, the PEV should charge,
discharge, or do nothing in the current period. Second, the
PEV should buy insurance or not. If the PEV buys insurance
in this period, it will be guaranteed the best price for charg-
ing and discharging in next ν periods. The objective of the
PEV user is to minimize the total cost, i.e., energy cost and
insurance cost. To obtain optimal decisions, in the following,
we will formulate a stochastic optimization problem based on
Markov decision process (MDP).

B. PROBLEM FORMULATION
1) STATE SPACE
We define the state space of the PEV user as follows:

S , B × P × I, (4)

where × is the Cartesian product, b ∈ B = {1, . . . ,B} is the
battery level of the PEV user, p ∈ P = {1, . . . ,P} represents
the time period, and i ∈ I = {0, 1} expresses the current
insurance status of the PEV user. Thus, the state of the PEV
user is then defined as a composite variable s = (b, p, i) ∈ S.

2) ACTION SPACE
The action space is defined by:

A , A1 ×A2, (5)

where a1 ∈ A1 = {0, 1, 2}, a2 ∈ A2 = {0, 1}, and they can
be defined as follows:

a1 =


0, if the PEV user does neither charging nor

discharging,
1, if the PEV user performs charging,
2, if the PEV user performs discharging,

(6)

and

a2 =

{
0, if the PEV user does not buy insurance,
1, if the PEV user buys insurance.

(7)

While choosing a2 depends on the demand of the PEV user
only, i.e., the PEV can choose either to buy or not to buy
at any period without concerning its current state, a1 must
be selected based on the current state of the PEV user. For
example, when the current battery level is zero, the PEV user
cannot choose action ‘‘discharging’’. Therefore, the action
space A1 can be redefined as follows:

A1 =


{0, 1}, if b = 0,
{0, 1, 2}, if b > 0 and b < B,
{0, 2}, if b = B.

(8)

3) IMMEDIATE COST FUNCTION
We denote fc as the immediate cost function for the PEV user,
and it can be defined depending on different cases as shown
in Fig. 6. In Fig. 6, when the battery level is zero, i.e., b = 0,
if the PEV user takes action ‘‘do nothing’’, i.e., a1 = 0, then
the PEV user will receive a heavy cost h1 or h2 corresponding
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FIGURE 6. Immediate cost function.

to the cases when the PEV user is not under or under the
insurance coverage, respectively. These costs are to prevent
the PEV user from the energy depletion status, and in general
we have h2 > h1. In Fig. 6, IA and IU stand for ‘‘insurance
is available’’ and ‘‘insurance is unavailable’’, respectively.

In this paper, we aim to find the optimal policy 9∗ to
minimize the expected average cost of the PEV user in a long
run which can be defined as follows:

min
9

C(9) = lim
T→∞

1
T
E9
[ T∑
t=1

fc
(
st , 9(at )

)]
, (9)

where st and at are the state and action at the t-th time period,
respectively.

C. OPTIMAL POLICY WITH LEARNING ALGORITHM
In our considered system, cyber risks are random and unpre-
dicted, and thus it is intractable to estimate the probability of
cyber risks at each time period, i.e., lp. As a result, we are
unable to derive the transition probability matrix to find the
optimal policy for the PEV user. Therefore, in this section, we
introduce a learning algorithm based on the simulation-based
method to help the PEV user make optimal decisions in an
online fashion.

1) PARAMETERIZED POLICY
We consider a randomized parameterized policy which is
well studied in the literature [51]–[53]. Under the randomized
parameterized policy, when the PEV user is at state s, it will
select action a with the probability µ2(s, a) as follows:

µ2(s, a) =
exp(θs,a)∑

ai∈A exp(θs,ai )
, (10)

where 2 = {θs,a ∈ R} is the parameter vector of the PEV
user. Furthermore, every µ2(s, a) must not be negative and∑

a∈A µ2(s, a) = 1.
Under the randomized parameterized policy µ2(s, a),

the transition probability function will be parameterized as
follows:

pb(s′|s, 9(2)) =
∑
a∈A

µ2(s, a)pb(s′|s, a), (11)

for all s, s′ ∈ S, and pb(s′|s, a) is the transition probability
from state s to state s′ when action a is taken. Similarly, we
have the parameterized immediate cost function defined as
follows:

fc(s,2) =
∑
a∈A

µ2(s, a)fc(s, a). (12)

Our objective is to minimize the average cost of the PEV
user under the randomized parameterized policy µ2(s, a),
which is denoted by 9(2). Then we make some necessary
assumptions as follows.
Assumption 1: The Markov chain is aperiodic and there

exists a state s∗ which is recurrent for each of such Markov
chain.
Assumption 2: For every state pair s, s′ ∈ S, the transition

probability function pb(s′|s, 9(2)) and the immediate cost
function fc(s,2) are bounded, twice differentiable, and have
bounded first and second derivatives.

Assumption 1 implies that the system has a Markov prop-
erty, and Assumption 2 ensures that the transition probability
function and the immediate cost function depend ‘‘smoothly’’
on the parameter vector 2. Then, we can define the param-
eterized average cost (i.e., the cost under the parameter
vector 2) by

C(2) = lim
T→∞

1
T
E2
[ T∑
t=0

fc(st ,2)
]
, (13)

where st is the state of the PEV user at time step t .E2[·] is the
expectation under parameter vector 2. Under Assumption 1,
the average cost C(2) is well defined for every 2, and does
not depend on the initial state 20. Moreover, we have the
following balance equations∑

s∈S
π2(s)pb(s′|s, 9(2)) = π2(s′),∀s′ ∈ S,∑

s∈S
π2(s) = 1, (14)

where π2(s) is the steady-state probability of state s under
the parameter vector 2. These balance equations have a
unique solution defined as a vector52 =

[
· · · π2(s) · · ·

]>.
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Then, the average cost can be expressed as follows:

C(2) =
∑
s∈S

π2(s)fc(s,2). (15)

2) POLICY GRADIENT METHOD
We define the differential cost d(s,2) at state s by

d(s,2) = E2

T †
−1∑

t=0

(fc(st ,2)− C(2)) |s0 = s

, (16)

where T †
= min{t > 0|st = s∗} is the first future time

that state s∗ is visited. Here, it is worth to note that, the main
aim of defining the differential cost d(s,2) is to represent
the relation between the average cost and the immediate
cost at state s, instead of the recurrent state s∗. Additionally,
under Assumption 1, the differential cost d(s,2) is a unique
solution of the Bellman equation defined as follows:

d(s,2) = fc(s,2)− C(2)+
∑
s′∈S

pb(s′|s, 9(2))d(s′,2),

(17)

for all s ∈ S. Then, we propose Proposition 1 to calculate the
gradient of the average cost as follows:
Proposition 1: Let Assumption 1 and Assumption 2 hold,

then

∇C(2)=
∑
s∈S
π2(s)

(
∇fc(s,2)+

∑
s′∈S
∇pb(s′|s, 9(2))d(s′,2)

)
.

(18)
Proposition 1 represents the gradient of the average
cost C(2), and the proof of Proposition 1 is provided in
Appendix A.

3) AN IDEALIZED GRADIENT ALGORITHM
Using Proposition 1, we can formulate the idealized gradi-
ent algorithm based on the form proposed in [54] given as
follows:

2t+1 = 2t − ρt∇C(2t ), (19)

where ρt is a step size and ∇C(2t ) is the gradient of
average cost function. Under a suitable step size satisfying
Assumption 3 and Assumption 1 is hold, it is proved that
limt→∞ ∇C(2t ) = 0 and thus C(2t ) converges [54].
Assumption 3: The step size ρt is deterministic, nonnega-

tive and satisfies the following conditions,
∞∑
t=1

ρt = ∞, and
∞∑
t=1

(ρt )2 <∞. (20)

4) LEARNING ALGORITHM
The idealized gradient method can minimize the average cost
C(2), if we can calculate the gradient of the function C(2t )
with respect to 2 at each time step. However, if the system
has a large state space, it is impossible to compute the exact
gradient of C(2t ). Therefore, we alternatively consider an

approach that can estimate the gradient of C(2t ) and update
parameter vector 2 accordingly in an online fashion.
Since

∑
a∈A µ2(s, a) = 1, we can derive that∑

a∈A ∇µ2(s, a) = 0 for every 2. From (12), we have

∇fc(s,2) =
∑
a∈A
∇µ2(s, a)fc(s, a)

=

∑
a∈A
∇µ2(s, a)

(
fc(s, a)− C(2)

)
, (21)

since
∑

a∈A ∇µ2(s, a) = 0.
Moreover, we have∑

s′∈S
pb(s′|s, 9(2))d(s′,2)

=

∑
s′∈S

∑
a∈A
∇µ2(s, a)pb(s′|s, a)d(s′,2), (22)

for all s ∈ S.
Therefore, along with Proposition 1, we can derive the

gradient of C(2) as follows:

∇C(2)

=

∑
s∈S

π2(s)
(
∇fc(s,2)+

∑
s′∈S
∇pb(s′|s, 9(2))d(s′,2)

)
=

∑
s∈S

π2(s)
(∑
a∈A
∇µ2(s, a)

(
fc(s, a)− C(2)

)
+

∑
s′∈S

∑
a∈A
∇µ2(s, a)pb(s′|s, a)d(s′,2)

)
=

∑
s∈S

π2(s)
∑
a∈A
∇µ2(s, a)

((
fc(s, a)− C(2)

)
+

∑
s′∈S

pb(s′|s, a)d(s′,2)
)

=

∑
s∈S

∑
a∈A

π2(s)∇µ2(s, a)q2(s, a),

where

q2(s, a) =
(
fc(s, a)− C(2)

)
+

∑
s′∈S

pb(s′|s, a)d(s′,2)

= E2
[ T †
−1∑

t=0

(
fc(st , at )− C(2)

)
|s0 = s, a0 = a

]
.

(23)

Here, q2(s, a) can be interpreted as the differential cost if
action a is taken based on policy µ2 at state s. Then, we
present Algorithm 1 that updates the parameter vector 2 at
the visits to the recurrent state s∗.
InAlgorithm1, κ is a positive constant and ρm is a step size

that satisfies Assumption 3. The term Fm(2m, ψ̃m) represents
the estimated gradient of the average cost, and it is calcu-
lated by the cumulative sum of the total estimated gradient
of the average cost between two successive visits (i.e., the
mth and (m + 1)th visits) to the recurrent state s∗. Further-
more, ∇µ2m (st ′ , at ′ ) expresses the gradient of the random-
ized parameterized policy function that is provided in (10).
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Algorithm 1 Algorithm to Update the Parameter Vector2 at
the Visits to the Recurrent State s∗

At the time step tm+1 of the (m + 1)th visit to state s∗, we
update the parameter vector 2 and the estimated average
cost ψ̃ as follows:

2m+1 = 2m − ρmFm(2m, ψ̃m), (24)

ψ̃m+1 = ψ̃m + κρm

tm+1−1∑
t ′=tm

(
fc(st ′ , at ′ )− ψ̃m

)
, (25)

where

Fm(2m, ψ̃m) =
tm+1−1∑
t ′=tm

q̃2m (st ′ , at ′ )
∇µ2m (st ′ , at ′ )
µ2m (st ′ , at ′ )

, (26)

q̃2m (st ′ , at ′ ) =
tm+1−1∑
t=t ′

(
fc(st , at )− ψ̃m

)
. (27)

Algorithm 1 enables us to update the parameter vector 2
and the estimated average cost ψ̃ iteratively. Accordingly, we
derive the following convergence result for Algorithm 1.
Proposition 2: Let Assumption 1 and Assumption 2 hold,

and let (20,21, . . . ,2∞) be the sequence of the parameter
vectors generated by Algorithm 1 with a suitable step size ρ
satisfying Assumption 3, then ψ(2m) converges and

lim
m→∞

∇C(2m) = 0, (28)

with probability one.
The proof of Proposition 2 is given in Appendix B.

5) ONLINE LEARNING ALGORITHM
InAlgorithm 1, to update the value of the parameter vector2
at the next visit to the state s∗, we need to store all values of
q̃2m (st ′ , at ′ ) and

∇µ2m (st′ ,at′ )
µ2m (st′ ,at′ )

between two successive visits.
However, this method could result in a slow processing.
Therefore, we modifyAlgorithm 1 to improve the efficiency.
First, we rewrite Fm(2m, ψ̃m) as follows:

Fm(2m, ψ̃m)

=

tm+1−1∑
t ′=tm

q̃2m (st ′ , at ′ )
∇µ2m (st ′ , at ′ )
µ2m (st ′ , at ′ )

,

=

tm+1−1∑
t ′=tm

∇µ2m (st ′ , at ′ )
µ2m (st ′ , at ′ )

tm+1−1∑
t=t ′

(
fc(st , at )− ψ̃m

)
,

=

tm+1−1∑
t=tm

(
fc(st , at )− ψ̃m

)
zt+1, (29)

where

zk+1 =


∇µ2m (st , at )
µ2m (st , at )

, if t = tm,

zt +
∇µ2m (st , at )
µ2m (st , at )

, t = tm + 1, . . . , tm+1 − 1.

(30)

We then derive Algorithm 2, which is able to update the
parameter vector 2 at each time step as follows:

Algorithm 2 Algorithm to Update 2 at Each Time Step
At time step t , the state is st , and the values of 2t , zt , and
ψ̃(2t ) are available from the previous iteration. We update
zt , 2t , and ψ̃ according to:

zt+1 =


∇µ2t (st ,at )
µ2t (st ,at )

, if st = s∗

zt +
∇µ2t (st ,at )
µ2k (st ,at )

, otherwise,
(31)

2t+1 = 2t − ρt
(
fc(st , at )− ψ̃t

)
zt+1, (32)

ψ̃t+1 = ψ̃t + κρt
(
fc(st , at )− ψ̃t

)
. (33)

In Algorithm 2, κ is a positive constant, ρt is the step size
of the algorithm, and ψ̃t can be expressed as the estimated
average cost of the PEV user at time step t .

D. PERFORMANCE EVALUATION
In this section, we perform simulations using MATLAB to
evaluate the performance of the proposed solution. We first
show the impact of the infrastructure information unavailabil-
ity to the cost of the PEV user. We then evaluate the benefits
of using cyber insurance for the V2G system. We will show
that, by using cyber insurance, the PEV user can reduce her
average cost for charging and increase her average profit for
discharging as well.

1) COST DUE TO V2G COMMUNICATION INFRASTRUCTURE
UNAVAILABILITY
We consider an area with the size of 10×10 km. The positions
of charging stations are fixed, while the position of the PEV
user will be located randomly in this area. In Fig. 7, we show
a topology to illustrate our simulation in this section. There
are 20 charging stations with fixed locations, i.e., circles with
numbered labels. The position of the PEV user is located ran-
domly at each simulation and it is illustrated by a blue square
in Fig. 7. There are three prices for charging and discharging,
i.e., 0.15, 0.2, 0.25 monetary units (MUs), corresponding to
three types of circles, i.e., empty circles, circles with green
large grids, and circles with red vertical lines, respectively.
For example, if the PEV goes to a charging station which is
illustrated by an empty circle, it will pay/receive 0.15 MUs
for charging/discharging energy, respectively. The amount of
energy to charge/discharge the PEV battery is 60kWh, and
the energy consumption is 200Wh per km for traveling.
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FIGURE 7. The topology setup.

In Fig. 8(a) and Fig. 8(b), we consider two scenarios,
i.e., when the PEV user wants to charge and discharge,
respectively. In the case when the infrastructure information
is unavailable, the PEV user will find the nearest charging
station for charging/discharging, while if the infrastructure
information is available, the PEV user will find a charging
station which minimizes its cost for charging or maximizes
its profit for discharging. The cost of the PEV for charging
is equal to the charging cost at the selected station plus the
traveling cost, while the discharging profit is equal to the rev-
enue of discharging at the selected station minus the traveling
cost. To obtain the average cost as well as the average profit
of the PEV user, we perform 50, 000 simulations to calculate
the average value. This means that given the topology with a
fixed number of stations, the position of the PEV is generated
randomly 50, 000 times to find the average value.

In Fig. 8, for the case without information, as the number
of stations is increased, the average charging cost and dis-
charging profit will be reduced. The reason is that given this
topology, when the number of stations is increased, the prob-
ability which the PEV user is near the stations with low price
will be higher. As a result, both the average charging cost
and discharging profit will be decreased in this case (since
we set the charging cost and discharging profit to be the same
at a station). However, in the case when the information is
available, the average cost/profit slightly increases/decreases
as the number of stations increases because the PEV user
always can find the best station for charging/discharging
to minimize/maximize its cost/profit. In both cases, it is
observed that given the infrastructure information, the aver-
age cost/profit of the PEV user can be decreased/increased
remarkably comparedwith the casewithout information. This
is from the fact that the PEV has more choices to find a charg-
ing station which is not only nearest, but also has the best
energy price. This gain is referred to as ‘‘value of informa-
tion’’ which quantifies the benefit of the V2G communication
infrastructure.

FIGURE 8. (a) Average cost for charging and (b) average profit for
discharging.

However, for the case when the information about V2G
infrastructure is unavailable, e.g., due to cyber risks, the PEV
user incurs a high cost of charging and gains a low profit
from discharging. The cyber insurance can be implemented to
‘‘transfer’’ the risks from the PEV user to the insurer. Under
the insurance coverage, the PEV user will be guaranteed
the best price for charging/discharging at any time. In the
following, we will demonstrate the efficiency of using cyber
insurance to the V2G system.

2) BENEFITS OF CYBER INSURANCE TO THE V2G SYSTEM
a: EXPERIMENT SETUP
The PEV user has a battery with a fixed capacity of 6, i.e.,
B = 6, e.g., extremely low, very low, low, moderate, high, and
very high levels. There are four periods of time, e.g., morning,
afternoon, evening, and night, and there are two insurance
status, i.e., insured and not insured. The average charging
price when the information is available and unavailable over
periods are [10.5, 10, 9.5, 9] and [14.5, 14, 13.5, 13] MUs,
respectively. Similarly, the average discharging prices when
the information is available and unavailable over periods
are [15.5, 15, 14.5, 14] and [11.5, 11, 10.5, 10] MUs, respec-
tively. In the first simulation, i.e., Fig. 9, the energy consump-
tion rate of the PEV user is set at 0.6, the risk probability
is 0.1, the premium cost is 1 MU, and the coverage period
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FIGURE 9. (a) The convergence of the learning algorithm and (b) the PEV user’s policy.

FIGURE 10. (a) Average total cost, (b) average cost for charging, and (c) average profit of discharging when the energy consumption rate is varied.

is 4 periods (i.e., ν = 4). The values of these parameters
will be varied later to evaluate the efficiency of the proposed
learning algorithm. Here, note that when the information is
unavailable and the PEV is under the coverage, the PEV user
will be charged at the same price when the information is
available.

In order to evaluate the efficiency of the proposed learning
algorithm, i.e.,Algorithm 2, we consider two other schemes,
i.e., always insured policy (IP) and the policy without insur-
ance (WP). For the IP, the PEVwill be always insured, i.e., the
PEV will buy insurance every ν-period. For example, if the
PEV user buys insurance at time slot t = 1, then it will buy
insurance in time slots t = 1+ν, 1+2ν, . . .. For both policies,
i.e., the IP and the WP, when the energy level is at the lowest
level, i.e., b = 1, the PEV user will always choose action
‘‘charging’’ to avoid the heavy cost and prevent energy deple-
tion status. However, when the energy level is higher, i.e.,
b ≥ 2, the PEV user will select randomly one of three actions,
i.e., ‘‘do nothing’’, ‘‘charging’’, or ‘‘discharging’’. For the
learning algorithm, the value of the parameter vector2 is set
at 0, i.e., the PEV user will select 2 actions, i.e., a1 and a2,
randomly at the beginning. In other words, at the beginning,
the PEV user will select actions ‘‘do nothing’’, ‘‘charging’’,

and ‘‘discharging’’ with the same probabilities, i.e., 1
3 , and

actions ‘‘buy insurance’’ and ‘‘do not buy insurance’’ with
the same probabilities, i.e., 1

2 . The initial average cost is set
at 0.

b: SIMULATION RESULTS
In the simulation, we first show the convergence through the
average cost of the proposed learning algorithm. As shown in
Fig. 9(a), the average cost of the proposed learning algorithm
will converge to approximately 3 when the number of itera-
tions is 105, while the IP and the WP converge to 4.7 and 4.6,
respectively, after 5×104 iterations. This means that with the
proposed learning algorithm, the average cost for the PEV
user can be reduced approximately 34.5% compared with
those of the IP and the WP. The efficiency of the proposed
learning algorithm can be interpreted through the PEV user’s
policy in Fig. 9(b). In particular, for the learning algorithm,
when the premium cost is set at m = 1, the PEV user will
buy insurance to be insured almost all the time. However,
different from the IP, with the learning algorithm, the PEV
user can balance among ‘‘charging’’, ‘‘discharging’’, and ‘do
nothing’’ actions to obtain higher profits in discharging and
lower cost in charging.
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FIGURE 11. (a) Average total cost, (b) average insurance buying rate and (c) average profit of discharging when the unavailability information
probability is varied.

FIGURE 12. (a) Average total cost, (b) average insurance buying rate, and (c) average insurance buying cost when the premium cost is varied.

In Fig. 10, we vary the energy consumption rate of
the PEV user, while other parameters remain unchanged.
As the energy consumption rate increases, the average total
costs obtained by all policies will be increased as shown
in Fig. 10(a) because the PEV user needs more energy for
its operation. Since the PEV user needs more energy for its
operation, the average charging cost is increased as shown
in Fig. 10(b). Consequently, the discharging process will be
reduced which results in a lower discharging profit as shown
in Fig. 10(c). However, in all cases, the learning algorithm
always achieves the best performance in terms of the lowest
cost for the PEV user. In Fig. 10(a), there is a very interesting
point that when the energy consumption is less than 0.3, the
average cost of the learning algorithm is less than 0. The
reason is that when the energy demand is low, the PEV user
still buys energy, i.e., charging, when the energy price is low,
and then it will sell, i.e., discharging, when the energy price
is high, and thus it can obtain more profits. As a result, the
discharging profit is higher than the charging cost (for the
casewith a low demand of the PEVuser), and thus the average
total cost is lower than zero.

We then vary the probability of information unavailability
and evaluate the average total cost and the insurance buy-
ing rate of the PEV user. Interestingly, at the premium cost

m = 1 MU, when the probability of information unavail-
ability increases from 0.1 to 0.9, the average total cost of
the WP increases remarkably, while the average total costs
of the IP and learning algorithm do not change as shown in
Fig. 11(a). The reason can be explained through the insurance
buying policy of the learning algorithm shown in Fig. 11(b).
In particular, at a low premium cost, i.e., m = 1 MU for
4 periods, the PEV user will always choose to buy insurance
because under the coverage, the PEV user is guaranteed not
only the lowest price for charging, but also the highest price
for discharging. As a result, the discharging profit obtained
by the learning algorithm is always remained at a high level
as shown in Fig. 11(c), and thus the average cost obtained by
the learning algorithm is remained at a low level as shown
in Fig. 11(a).

Last, we vary the premium cost to evaluate the pro-
posed learning algorithm. In Fig. 12(a), as the premium cost
increases, the average total costs of the IP and the learn-
ing algorithm increase remarkably. In particular, when the
premium cost is higher than 7 MUs, the average total cost
obtained by the learning algorithm is close to the average total
cost obtained by theWP. The reason is that when the premium
cost is too high, the cost to buy insurance will be high (as
shown in Fig. 12(c)), diminishing the profit obtained by the
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insurance, e.g., reducing the charging cost and increasing
the discharging profit. Consequently, when the probability
of information unavailability is 0.1, if the premium cost is
higher than 5 MUs, the insurance buying rate obtained by the
learning algorithmwill be reduced. This analysis is especially
important to the insurer to set an appropriate premium to
maximize its profits, while still attracting the PEV user in
purchasing insurance.

V. FUTURE RESEARCH DIRECTIONS OF CYBER
INSURANCE IN V2G SYSTEMS
In the following, we introduce some future research direc-
tions of cyber insurance in V2G systems which not only
mitigate risks for PEV users, but also maximize the profit for
service providers.

A. SELF-PROTECTION STRATEGY
Currently, we consider the case when the PEV user has only
two decisions, i.e., either to buy or not to buy insurance, to
mitigate the risk. However, in practice, the PEV user also can
implement self-protection solutions to deal with information
unavailability problem, e.g., using a backup energy storage or
employing a backup channel to communicate with the V2G
system. Thus, the PEV user has to decide to implement its
self-protection strategy, buy insurance, or do nothing. In this
case, cyber insurance models with self-protection strategy
introduced in Section III-F.2 can be adopted to find the opti-
mal policy for the PEV user.

B. MULTIPLE INSURERS
There often exist multiple insurers in practice. Different
insurers may have different insurance policies with differ-
ent charging stations’ locations. Furthermore, different PEV
users may have different energy demand with different trav-
eling routines. Thus, how to find the best insurer to meet the
PEV’s requirements and how to set the best insurance price
for an insurer given its topology of charging stations are still
open questions. To address this problem, stochastic geometry
and graph theory can be used. For example, we can model
the spatial distribution of the charging stations of an insurer
as an α-Ginibre point process, and then given the location of
a PEV user, we can evaluate the performance for that PEV
user in terms of its average overall cost in a similar way as
shown in [55].

C. SMART CYBER INSURANCE PRICING
In all of the aforementioned scenarios, we assumed that the
energy provider is also the service provider, i.e., the insurer,
but they can be different entities in general. Consequently,
setting a premium is a challenge due to the conflict of inter-
est between the energy provider and the service provider
as well as among the service providers. To address this
problem, smart pricing strategies can be used. For example,
the bundling strategy introduced in [56] can be adopted by
multiple service providers to form a coalition and to offer
their energy insurance services as a bundle. With bundling,

the profit of the service providers can be improved by encour-
aging PEV users to buy insurance, while the PEV users will
be offered more attractive services, e.g., they may have more
charging stations to choose from with better insurance prices.

D. CYBER INSURANCE FOR V2G SYSTEMS
WITH COGNITIVE RADIOS
Due to a large number of PEV users, cognitive radios can
be considered to be a potential solution to address commu-
nication problems for V2G networks [57]. In cognitive radio
networks, P2V users can communicate with V2G infrastruc-
ture through primary channels as long as their communication
does not cause harmful interference to the primary users [58].
However, for such networks, the PEV users’ communica-
tions are uncertain depending on the primary users’ demands.
Consequently, the information unavailability due to the pri-
mary users’ communications can cause loss to the PEV users.
In this case, cyber insurance can be used as an efficient
economic solution to protect the PEV users from risks due
to the information unavailability.

VI. CONCLUSION
We have first presented a comprehensive overview on
Vehicle-to-Grid (V2G) systems and cyber insurance includ-
ing basic concepts, general architectures, advantages, and
challenges for the development of V2G systems as well as
cyber insurance. We have also discussed potential solutions
and highlighted some promising future research directions for
each topic. Then, we have introduced a new idea of using
cyber insurance to mitigate information risks for the V2G
system with the aim to mitigate the loss and improve the
profit for the Plug-in-Electric Vehicle (PEV) user. In partic-
ular, we have demonstrated that without V2G infrastructure
information, the average charging cost will be very high,
while the average discharging profit will be very low for the
PEV user. In addition, we have proposed the learning algo-
rithm which helps the PEV user to make best decisions, i.e.,
charge/discharge energy and buy/do not buy the insurance,
at each time period in an online fashion. Through simulation
results, we have showed that the proposed learning algorithm
not only minimizes the charging cost, but also maximizes
the discharging profit for the PEV user. Furthermore, we
have also presented proofs and simulation results to show the
convergence of the learning algorithm.

APPENDIX A
THE PROOF OF PROPOSITION 1
This is to show the gradient of the average cost. In (14), we
have

∑
s∈S π2(s) = 1, so

∑
s∈S ∇π2(s) = 0.

Recall that

d(s,2) = fc(s,2)− C(2)+
∑
s′∈S

pb(s′|s, 9(2))d(s′,2),

and C(2) =
∑
s∈S

π2(s)fc(s,2).
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∇C(2) =
∑
s∈S

π2(s)∇C(2)+
∑
s∈S
∇π2(s)

(
d(s,2)−

∑
s′∈S

pb(s′|s, 9(2))d(s′,2)
)

=

∑
s∈S

π2(s)∇C(2)+
∑
s∈S
∇π2(s)d(s,2)+

∑
s,s′∈S

(
π2(s)∇pb(s′|s, 9(2))−∇

(
π2(s)∇pb(s′|s, 9(2))

))
d(s′,2)

=

∑
s∈S

π2(s)∇C(2)+
∑
s∈S
∇π2(s)d(s,2)+

∑
s,s′∈S

π2(s)∇pb(s′|s, 9(2))d(s′,2)

−

∑
s′∈S
∇

(∑
s∈S

π2(s)pb(s′|s, 9(2))
)
d(s′,2)

=

∑
s∈S

π2(s)∇C(2)+
∑
s∈S
∇π2(s)d(s,2)+

∑
s,s′∈S

π2(s)∇pb(s′|s, 9(2))d(s′,2)−
∑
s′∈S
∇π2(s′)d(s′,2)

=

∑
s∈S

π2(s)
(
∇C(2)+

∑
s′∈S
∇pb(s′|s, 9(2))d(s′,2)

)
(35)

2m+1 = 2m + ρm

tm+1−1∑
t ′=tm

( tm+1−1∑
t=t ′

(fc(st , at )− ψ̃m)
)
∇µ2m (st ′ , at ′ )
µ2m (st ′ , at ′ )

 ,
ψ̃m+1 = ψ̃m + κρm

tm+1−1∑
t ′=tm

(fc(st , at )− ψ̃m) (36)

Then, we derive the following results:

∇C(2)

=

∑
s∈S

π2(s)∇fc(s,2)+
∑
s∈S
∇π2(s)fc(s,2),

=

∑
s∈S

π2(s)∇fc(s,2)+
∑
s∈S
∇π2(s)fc(s,2)

− C(2)
∑
s∈S
∇π2(s) (since

∑
s∈S
∇π2(s) = 0),

=

∑
s∈S

π2(s)∇fc(s,2)+
∑
s∈S
∇π2(s)

(
fc(s,2)− C(2)

)
,

=

∑
s∈S

π2(s)∇fc(s,2)

+

∑
s∈S
∇π2(s)

(
d(s,2)−

∑
s′∈S

pb(s′|s, 9(2))d(s′,2)
)
.

We define

∇

(
π2(s)pb(s′|s, 9(2))

)
= ∇π2(s)pb(s′|s, 9(2))+ π2(s)∇pb(s′|s, 9(2)), (34)

and from (14),
∑

s∈S π2(s)pb(s
′
|s, 9(2)) = π2(s′). Then,

we have the derivations as given in (35) (this page).
The proof now is completed.

APPENDIX B
THE PROOF OF PROPOSITION 2
Wewill prove the convergence of theAlgorithm 1. The update
equations of Algorithm 1 can be rewritten in the specific form
as in (36) (this page).

We define the vector rkm =
[
2m ψ̃m

]>, then (36)
becomes

rkm+1 = rkm + ρmHm, (37)

where

Hm=

∑tm+1−1
t ′=tm

(∑tm+1−1
t=t ′ (fc(st , at )− ψ̃m)

)
∇µ2m (st′ ,at′ )
µ2m (st′ ,at′ )

κ
∑tm+1−1

t ′=tm
(fc(st , at )− ψ̃m)

 .
(38)

Let F = {20, ψ̃0, s0, s1, . . . , sm} be the history of the
Algorithm 1. Then from Proposition 2 in [51], we have

E[Hm|Fm]

= hm=
[
E2[T ]∇C(2)+ V (2)

(
C(2)− ψ̃(2)

)
κE2[T ]

(
C(2)− ψ̃(2)

) ]
, (39)

where

V (2) = E2
[ tm+1−1∑
t ′=tm+1

(
tm+1 − t ′

)∇µ2m (st ′ , at ′ )
µ2m (st ′ , at ′ )

]
.

Consequently, (37) has the following form

rkm+1 = rkm + ρmhm + εm, (40)

where εm = ρ(Hm−hm) and note that E[εm|Fm] = 0. Since
εm and ρm converge to zero almost surely, along with the fact
that hm is bounded, we have

lim
m→∞

(rkm+1 − rkm ) = 0. (41)

After that, based on [51, Lemma 11], it is proved that
ψ(2) and ψ̃(2) converge to a common limit. This means the
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parameter vector 2 can be represented in the following way

2m+1 = 2m + ρmE2m [T ]
(
∇C(2m)+ em

)
+ εm, (42)

where em is an error term that converges to zero and εm is
a summable sequence. (42) is known as the gradient method
with diminishing errors [59], [60]. Therefore, following the
same way in [59] and [60], we can prove that ∇C(2m) con-
verges to 0, i.e., ∇2C(2∞) = 0.
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