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ABSTRACT Wireless communication system is expected to provide service with low latency and high
energy efficiency. To improve the energy efficiency, the transceiver prefers sending packets, when the
channel states are good. However, such opportunistic transmission may induce undesirably large latency.
Therefore, a fundamental tradeoff exists between the average transmission power and average queuing
delay, and is studied in this paper via cross-layer probabilistic scheduling. In particular, we consider the
delay-power tradeoff when the packet arrivals have arbitrary probabilistic distributions. A Markov reward
model is adopted to model the queue of the backlogged packets. Based on that, we formulate a nonlinear
optimization problem and convert it into a linear programming (LP) problem by using variable substitution.
The optimal solution to the LP problem allows us to derive the optimal scheduling parameters. Based on
the optimal solution, we can derive the optimal scheduling policy, which turns out to be threshold-based.
Besides, we consider the source scheduling with the specific packet arrival distribution being unknown.
Adaptive algorithms are proposed to achieve the corresponding delay-power tradeoff.

INDEX TERMS Cross-layer design, delay-power tradeoff, quality of service, probabilistic scheduling,
controllable queuing system.

I. INTRODUCTION
Recently, the Internet of Things (IoT) is one of the most
popular concepts since it provides us a vision, in which a
number of intelligent devices and things will be connected
to the Internet and share information [1]. The IoT such as
sensor networks, wearable devices and vehicular Ad hoc net-
work have been applied to our daily life to provide real-time
services like tracking, monitoring, e-healthcare and home
and industrial automation system. In such applications, low
latency is a key Quality of Service (QoS) metric to measure
the quality of serving delay-sensitive applications. On the
other hand, energy efficiency is a performance metric which
has been causing increasing attention because of the wide use
of wireless mobile terminals in IoT scenarios to which energy
resource is quite limited. To improve power efficiency, the
transmitter always seeks to transmit in the good channel state
since it spends less power. However, it may cause undesir-
ably large queuing delay to wait for a good channel state,
which is intolerable for serving delay sensitive traffics and
vice versa. Thus, there exists a fundamental tradeoff between
the average queueing delay and the transmission power.
What’s more, it turns out that analyzing and optimizing the

system performance such as queueing latency and energy
efficiency is not a trivial work due to the randomness of
packet arrival and channel state. Thus, to deal with the uncer-
tainties happen in different layers, cross-layer approach is
considered and has been widely studied in the past decades.

There have already been some work on cross-layer design
over energy efficient wireless transmission. Several topics
which are related to communication are reviewed and ana-
lyzed in [2] from an information-theoretic perspective. The
information-theoretic treatments usually ignore the bursty
nature of real sources, therefore, the queueing delay is
ignored. Thus, queueing theory can be adopted to study the
QoSmetric such as queueing delay. In [3], the authors consid-
ered a pure queueing model and developed a concept termed
effective capacity (EC) to model the link-layer. To the best
knowledge of us, Collins and Cruz firstly proposed the idea of
cross-layer scheduling jointly based on the queue and channel
states in [4] when minimizing the average power under the
constraints of average delay and peak transmission power.
Berry and Gallager aimed to regulate the average power
consumption and queueing delay based on user’s transmis-
sion rate and power under the framework of cross-layer in [5].
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In [6], a scheduling policy, referred as Lazy scheduling, was
proposed to minimize the transmission energy consumption
given the deadline constraint for each packet. The existence of
the optimal stationary scheduling strategy was shown in [7]
where some structural results were also obtained. Then [8]
studied on several cross-layer resource allocation problems
for wireless fading channels with power and transmit rate
adaptation. Ata aimed to minimize the consumed power
under the constraint of packet drop rate in [9], where fixed
channel, Poisson packet arrival and exponentially distributed
packet size are considered.

Various optimization methods were used to achieve the
optimal delay-power tradeoff. Two of the major meth-
ods are Dynamic Programming (DP) and Markov Decision
Process (MDP) [10]. The delay-power tradeoff problem was
investigated in the framework of MDP in [5], where DP was
used to numerically compute the optimal solution. DPmethod
was also used to obtain the optimal solution to the delay-
power tradeoff problem in [11] and [12]. Besides, constrained
Markov decision process (CMDP) was adopted to formulated
the delay and power tradeoff in [13], where the authors
obtained an optimal policy to achieve the power and delay
tradeoff for the considered single-user system and multi-user
system. Network calculus was used to model energy-efficient
transmission with deadline constraint in [6] and [14]. Based
on cumulative curves methodology, the optimal transmission
policy for minimizing the transmission power under the QoS
constraints was obtained in [14]. Fractional programming
was used to solve the scheduling problem in [15] and [16].
The authors aimed to minimize the total consumed power
under the constraints of rate, delay, contiguous allocation
and maximum power in [17]. They proposed two energy-
efficient iterative schedulers based on Binary Integer Pro-
gramming (BIP) and performed a low-complexity greedy
algorithm to solve the BIP problem.

Usually, it is not a trivial work to solve the optimiza-
tion problem which is derived in the cross-layer framework
and obtain its analytical solution [18]. Recently, we pre-
sented a joint queue-aware and channel-aware probabilistic
scheduling to achieve the optimal delay-power tradeoff of
fixed-rate wireless transmission in our previous work [19].
The probabilistic scheduling was applied to analyze the
delay-power tradeoff in the scenarios of two-user multiple
access system in [20] and cognitive multiple access network
in [21] and [22]. In [19], we considered the time-slotted
system, where data packets were assumed to obey Bernoulli
distribution for simplicity and transmitted via a discrete-time
blocking-fading channel.We proved that the optimal schedul-
ing policy to achieve the optimal delay-power tradeoff under
these system assumptions was the threshold-based policy.
The threshold-based policy determines packet transmission
based on the optimal thresholds imposed on the queue length,
defined as the number of backlogged packets in the buffer.
In [23], with same packet arrival model and channel model,
we considered two different cases which are based on the
relationship between the transmission time for a data packet

and the length of a time slot. We studied the delay-power
tradeoff for both the two cases and proved that the optimal
scheduling policy is also threshold-based. Part of this work
is shown in [24], where we studied the delay-power tradeoff
with generalized packet arrival distribution. Considering the
burstiness of traffic arrival in practical applications, it is
necessary to consider the system with an arbitrarily random
packet arrival distribution. In this work, we adopt an arbitrar-
ily random packet arrival distribution to capture the burstiness
of the traffic, namely, there is no limitation on the number
or the distribution of the arriving packets during one time
slot. We aim at analyzing the tradeoff between the average
queueing delay and the average consumption power under
this assumption and obtaining an optimal scheduling policy
to achieve the optimal delay-power tradeoff. However, due to
the general distribution, it becomes more complex when we
build the Markov chain and its balanced equations. Besides,
it is more complex to analytically describe the scheduling
strategy because more probability parameters are imported.
In this paper, by considering the sum of a series of transition
probabilities instead of a single one as in [19], we describe
the optimal delay-power tradeoff with an LP problem.
By analyzing the structure of its optimal solution, we obtain
the optimal scheduling policy as the threshold-based policy.
Based on the special format of the threshold-based policy, we
consider the delay-power tradeoff without the distribution of
the packet arrival and propose efficient algorithms to achieve
the minimum delay under average power constraint.

The remainder of this paper is organized as follows.
In Section II, the system model for the problem is estab-
lished. A probabilistic scheduling strategy is introduced
in Section III, along with the formulation of theMarkov chain
model. The analytical expressions of the average queueing
delay and transmission power are obtained in Section IV.
We formulate a nonlinear optimization problem in Section V,
and convert it into an LP problem. By deriving the opti-
mal solution to the LP problem, we can obtain the optimal
scheduling policy theoretically. In Section VI, we consider
the delay-power tradeoff with the packet arrival distribu-
tion being unknown and propose an adaptive threshold algo-
rithm to obtain the optimal scheduling parameters. Numerical
results and concluding remarks are presented in Sections VII
and VIII, respectively.

Through this paper, let a ∧ b and a ∨ b denote max{a, b}
and min{a, b}, respectively.

II. SYSTEM MODEL
We study the scenario that a source node transmits packets
to its destination via a wireless link as shown in Fig.1(a).
In this section, we introduce our cross-layer system model,
consisting of the random data arrival in the network layer,
the queueing behaviour in the data link (DDL) layer, and
power adaptation and data transmission in the physical (PHY)
layer.

As shown in Fig.1(b), data packets arrive at the network
layer from upper layers or the other nodes randomly. In the
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FIGURE 1. System Model. (a) Communication Scenarios. (b) Cross-layer
System model.

time-slotted system, a[n] denotes the number of the packets
arriving at the source buffer in the nth time slot and is time-
varying but independent and identically distributed (i.i.d)
across time slots. Due to the bursty data arrival, a[n] is
supposed to be a random variable, which obeys an arbitrary
distribution. Its mass probability function is given by

Pr{a[n] = m} = pm, m = 0, 1, 2, · · · , (1)

where m is a nonnegative integer and pm belongs to the
interval [0, 1]. Due to the normalization constraint, we have

∞∑
m=0

pm = 1. (2)

We focus on the scenario with bounded data arrival, i.e., there
exists M ≥ 0, for all m > M , pm = 0, which accounts
for traffic shaping and admission control in wireless network.
From Eq. (1), the average packet arrival rate is obtained as

ā = lim
N→∞

sup
1
N

N∑
n=0

a[n] =
M∑
m=0

m · pm. (3)

The transmitter employs a buffer to backlog the packets.
Without loss of generality, the capacity of the buffer K is
assumed to be sufficiently large, thus, the buffer overflow
could be negligible.1

1Note that if the given average power is too small, packets will be sent
only in the good channel and a few bad channel. Thus, the queue length
will increase dramatically. For the finite buffer, packet drop will happen.
This situation should be avoided in practice. Thus, in this work, we focus
on the delay-power tradeoff under the assumption that the buffer capacity is
sufficiently large.

Let s[n] denote the number of packets transmitted in the
nth time slot. The queueing state, defined as the number of
packets stored in the buffer at the end of time slot n [25], is
updated as

q[n] =
{
min{q[n− 1]+ a[n],K } − s[n]

}+
=
{
q[n− 1]+ a[n]− s[n]

}+
, (4)

where the superscript ‘ + ’ denotes nonnegative, i.e., a+ =
max{a, 0}. The second equality holds because the buffer
capacity is assumed to be sufficiently large. If a[n] data
packets arrive at the source buffer and s[n] data packets are
transmitted in the nth slot, the queue length is updated based
on Eq. (4).

We consider discrete-time block-fading channel model,
i.e., the channel states are assumed to be invariant during
each time slot and time-varying but i.i.d across time slots.
In this paper, a two-state wireless channel model is adopted
to differ the good channel states from the deep fading ones [4].
Let h[n] denote the channel state. h[n] = ‘good’ means the
channel state is good, i.e., the channel gain is quite large or the
fading can be ignored in the nth time slot while h[n] = ‘bad’
indicates that the wireless channel remains in deep fading.
The probability mass function of h[n] is given by{

Pr{h[n] = ‘good’} = β,
Pr{h[n] = ‘bad’} = 1− β,

(5)

where β belongs to the interval [0, 1]. Two-state block-fading
channel model is applicable for many IoT applications such
as those shown in Fig.1(a). Taking environment monitoring
for example, a ‘good’ channel appears when the monitoring
devices (denoted by the red dots) are able to perform line-of-
sight transmission while a ‘bad’ channel appears when the
bad weather happens.

In our model, we assume that the channel state informa-
tion (CSI) is known to the transmitter through a feedback
channel [26], [27], as shown in Fig.1(b). Intuitively, the trans-
mitter can use power adaption to meet the targeted BER at the
receiver side. Let P1 denote the power needed to transmit one
packet successfully in the good channel state and P2 in the
bad channel state. It is reasonable to assume that P2 is larger
than P1. This is due to the fact that more power is required to
combat wireless channel fading when the channel condition
is bad.

For simplicity, we consider fixed-rate transmission
schemes which have been widely applied in practice [28].
Without loss of generality, the transmission data rate is
assumed to be one packet per slot. Hence, at most one data
packet can be delivered in each slot, i.e., s[n] takes value from
set {0, 1}.
The scheduling policy on the transmitter side is described

as follows: at the beginning of each time slot, the scheduler
makes a probabilistic decision on whether or not to transmit
a packet in the current time slot based on the collected infor-
mation including the arrival status a[n], the current channel
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state h[n] and the data buffer state q[n − 1]. At the end of
each slot, the scheduler updates the buffer state q[n] according
to Eq. (4). In this paper, we attempt to find an optimal schedul-
ing strategy to achieve the optimal delay-power tradeoff for
the considered system model.

III. PROBABILISTIC SCHEDULING MODEL
In this section, we introduce a general description of
probabilistic scheduling. Based on that, a discrete-time
Markov chain is established to model the queueing system.

A. PROBABILISTIC SCHEDULING
To improve power efficiency, a scheduler always seeks to
transmit in the good channel state since it spends less power.
However, it may cause undesirably large queuing delay to
wait for the channel to turn ‘good’, which is intolerable for
serving delay sensitive traffics. Thus, the scheduler should
try to achieve a good balance between the average queueing
delay and the average power consumption.

In this work, we propose a probabilistic scheduling policy
as follows. When the channel state is ‘good’, the source will
transmit as long as the buffer is non-empty, i.e., s[n] = 1,
when h[n] = ‘good’, q[n − 1] + a[n] > 0. When the
channel state is ‘bad’, the scheduler determines to transmit
with probability f mk or keep silent with probability 1 − f mk ,
given the buffer state q[n − 1] = k and the data arrival state
a[n] = m. In the sequel, we will discuss the service process
of the queuing system in two cases based on the queue state
at the end of the (n− 1) time slot.
Case 1: q[n − 1] = 0. In this situation, if a[n] = 0, the

source node has no packet to send. Data transmission could
happen only when a[n] > 0. The service process can be
described as

s[n] =


1 w.p. 1, a[n] = m, h[n] = ‘good’,
1 w.p. f mk , a[n] = m, h[n] = ‘bad’,
0 w.p. 1− f mk , a[n] = m, h[n] = ‘bad’,
0 w.p. 1, a[n] = 0,

(6)

where m ∈ {1, 2, · · · ,M} and the abbreviation ‘w.p.’ repre-
sents ‘with the probability of ’.
Case 2: q[n− 1] = k > 0. In this situation, there must be

packets waiting in the buffer. The source determines whether
to transmit or not based on the data arrival state a[n] and the
current channel state h[n]. Thus, the service process can be
described as

s[n] =


1 w.p. 1, h[n] = ‘good’,
1 w.p. f mk , a[n] = m, h[n] = ‘bad’,
0 w.p. 1− f mk , a[n] = m, h[n] = ‘bad’.

(7)

where m ∈ {0, 1, · · · ,M}.
The proposed scheduling strategy depends on probabilistic

parameters {f mk |0 ≤ k ≤ K , 0 ≤ m ≤ M}. We aim to
find the optimal scheduling strategy by deciding the optimal
probabilistic parameters.

B. MARKOV CHAIN MODEL
Based on the mathematical description of the probabilistic
scheduling strategy we developed in Eqs. (6)-(7), the queue-
ing system can be formulated as a discrete-time Markov
chain, where each state presents the buffer state q[n]. Due to
the Markovian effect, the one-step transition probability from
state {q[n− 1] = k} to state {q[n] = l} can be denoted by

τk,l = Pr{q[n] = l|q[n− 1] = k, q[n− 2] = k1 · · · }

= Pr{q[n] = l|q[n− 1] = k}. (8)

We use λk,m (0 ≤ k ≤ K , 0 ≤ m ≤ M ) and µk
(1 ≤ k ≤ K ) to characterize the transition probabilities of
the Markov chain. An example of the Markov chain of the
buffer state withM = 3 is shown in Fig.2, where λk,m is used
to denote the transition probability τk,k+m while µk is used
to denote the transition probability τk,k−1. In each time slot,
the queue length is at most increased byM = 3 due to a new
data arrival, while decreased by one due to the transmission
of one data packet. The transition probability λk0 = τk,k is
the probability that the queue length remains the same.
Theorem 1: The queue length q[n] can be described by a

(K + 1)-state Markov chain, the transition probability τk,l
of which satisfies τk,l = 0 for |k − l| > M. The transition
probabilities characterized by λk,m are expressed as

λk,m = βpm+1 + (1− β)
[
pm+1f

m+1
k + pm(1− f mk )

]
, (9)

where 0 ≤ k ≤ K and 1 ≤ m ≤ M. And µk are given by

µk = βp0 + (1− β)p0f 0k , (10)

where 1 ≤ k ≤ K. The probabilities that the queue states
remain the same are given by

λk,0 = τk,k =


1−

M∑
m=1

λk,m, k = 0,

1−
M∑
m=1

λk,m − µk , 1 ≤ k ≤ K .

(11)

Proof: From Eq. (4), we obtain the following inequality∣∣q[n]− q[n− 1]
∣∣ ≤ ∣∣a[n]− s[n]∣∣. (12)

Since a[n] and s[n] are both nonnegative integers, we have∣∣q[n]− q[n− 1]
∣∣ ≤ |a[n]− s[n]|
≤ max{a[n], s[n]} (13)

= M .

Hence, the increase of the queue length is upper bounded
by M in each slot, i.e., no transition takes place from state
{q[n− 1] = k} to state {q[n] = k + l} for any l > M .
We derive Eqs. (9) and (10) according to the probabilistic

scheduling policy described in Section III-A. The queue state
{q[n − 1] = k} transits to {q[n] = k + m} with probability
λk,m if a[n]−s[n] = m. This event takes place in the following
three cases. Case 1): one packet is delivered (s[n] = 1) with
probability 1 when there is new data arrival (a[n] = m + 1)
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FIGURE 2. An example of Markov chain of the buffer state with M = 3.

and the current channel state is ‘good’. Accordingly, the
transition probability is equal to βpm+1. Case 2): one packet is
delivered (s[n] = 1) with probability f m+1k when there is new
data arrival (a[n] = m + 1) and the current channel state is
‘bad’. Thus, the probability in this case is (1− β)pm+1f

m+1
k .

Case 3): no packet is delivered (s[n] = 0) with probability
1 − f mk when there is new data arrival (a[n] = m) and the
current channel state is ‘bad’. The probability in this case
is (1 − β)pm(1 − f mk ). By summarizing the probabilities of
above three cases, the expression of λk,m is obtained and
given in Eq. (9).

The queue state {q[n] = k} transits to state {q[n] = k − 1}
with probability µk , when one packet is delivered over good
channel state or over bad channel with probability f 0k while
there is no data arrival (a[n] = 0). Hence, the transition
probability µk can be obtained as βp0 + (1− β)p0f 0k .
Eq. (11) holds because of the probability normalization.

Since
∑M

l=−1 τk,l = 1, we have

λk,0 = τk,k

= 1− τk,k−1 −
∑M

l=1
τk,k+l

= 1− µk −
∑M

l=1
λk,m.

Since no packets will be transmitted when the buffer is empty,
λk,0 (k = 0) is given specially.
We use πk to denote the steady state probability

of {q[n] = k} and vector π to denote [π0, π1, · · · , πK ].
By exploiting the property of the Markov chain, we present
the stationary distribution of the Markov chain in the follow-
ing theorem.
Theorem 2: The steady-state probability πk is given by

πk =
1
µk

M∨k∑
i=1

πk−i

M∑
j=i

λk−i,j, 1 ≤ k ≤ K . (14)

Proof: The balance equations of the Markov chain can
be expressed as

πk = πk+1µk+1 +

k∑
i=(k−M )∧0

πiλi,k−i, 1 ≤ k ≤ K . (15)

We prove the following equations instead of Eq. (14) for
convenience.

πkµk =

M∨k∑
i=1

πk−i

M∑
j=i

λk−i,j, 1 ≤ k ≤ K . (16)

Eq. (16) is proved by mathematical induction.
In the first step, we show that Eq. (16) holds when k = 1.

Specifically, by substituting k = 1 into Eq. (15), we obtain

π0 = π1µ1 + π0λ0,0. (17)

By substituting λ0,0 given by Eq. (11) into Eq. (17), we get

π1µ1 = π0

M∑
m=1

λ0,m. (18)

In the second step, we assume that Eq. (16) holds for
k = 2, 3, · · · , s − 1, where s is a positive integer greater
than 2. In particular, when k = s− 1, the following equation

πs−1µs−1 =

M∨(s−1)∑
i=1

πs−1−i

M∑
j=i

λs−1−i,j (19)

is satisfied.
At last, we prove that Eq. (16) holds when k = s.

According to balance equation Eq. (15),

πs−1 = πsµs + πs−1λs−1,0 +

M∨(s−1)∑
i=1

πs−1−iλs−1−i,i. (20)

Recalling Eq. (11), we can obtain λs−1,0 = 1 −
M∑
j=1
λs−1,j −

µs−1. By inserting λs−1,0 into Eq. (20) and extracting πsµs,
we arrive at

πsµs = πs−1

M∑
j=1

λs−1,j + πs−1µs−1

−

M∨(s−1)∑
i=1

πs−1−iλs−1−i,i

= πs−1

M∑
j=1

λs−1,j +

M∨(s−1)∑
i=1

πs−1−i

M∑
j=i+1

λs−1−i,j

=

M∨s∑
i=1

πs−i

M∑
j=i

λs−i,j. (21)
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The second equation holds due to the assumption in Eq. (19).
By far, Eq. (16) is verified. Dividing µk on both sides
of Eq. (16), we obtain Eq. (14).
Remark 1: From Theorem 2 and its proof, one can see that

the steady-state probability πk (1 ≤ k ≤ K ) is a linear com-
bination ofπl

(
l = (k−M )∧0, (k−M+1)∧0, · · · , k−1

)
with

their coefficients relating to the transition probabilities τl,k .
More specifically, from Eq. (18), we can conclude that πk is
actually a linear function of π0.
Corollary 1: The steady probability πk (1 ≤ k ≤ K ) can

be described by π0, i.e.

πk = Fk (π0), 1 ≤ k ≤ K . (22)
Intuitively, we have the following normalization equation

π0 +

K∑
k=1

Fk (π0) = 1. (23)

IV. DELAY & POWER ANALYSIS
After obtaining the stationary distribution of the Markov
chain, we will evaluate the interested performance metrics
that are the average queueing delay and the average power
consumption in this section.

We can express the average queue length with the
steady-state probability distribution.

E{q[n]} =
K∑
k=0

kπk (24)

By applying the Little’s Law [25], we derive the average
queueing delay as

D =
1
ā

K∑
k=0

kπk . (25)

The expression of average consumed power Paver will be
derived in the following part by extending the Markov chain
model built in Section III-B into a Markov reward model.
Specifically, we attach a transmit power to each state of the
Markov chain as a reward. The reward may take a value as P1,
P2 and 0, corresponding to the power consumption for one
packet delivery over the good channel, one packet delivery
over the bad channel, and no data transmission, respectively.
Let random variable c[n] denote the power consumption
given the queue state q[n − 1] = k during time slot n. Let
P0 = 0. We can define the conditional probabilities that
c[n] = Pi, (i ∈ {0, 1, 2}) as ψki.
Lemma 1: The expression of ψki is described as

ψk1 = Pr{c[n] = P1
∣∣∣q[n− 1] = k}

=

{
β(1− p0), k = 0,
β, k ≥ 1,

(26)

ψk2 = Pr{c[n] = P2
∣∣∣q[n− 1] = k}

=


(1− β)

M∑
m=1

pmf m0 , k = 0,

(1− β)
M∑
m=0

pmf mk , k ≥ 1,
(27)

ψk0 = Pr{c[n] = 0
∣∣∣q[n− 1] = k} = 1− ψk1 − ψk2. (28)

Proof: In Eq. (26), we give the probability that one
packet delivery occurs over the good channel. This happens
with probability 1 if and only if the channel state is good and
the queue is not empty, i.e., a[n]+ q[n− 1] > 0. In Eq. (27),
we give the probability that one packet delivery occurs over
the bad channel. This happens with probability f mk if and only
if the channel state is bad and the queue length is not empty,
i.e., a[n] + q[n − 1] > 0. Eq. (28) is obtained based on the
normalization equation.

Given the current buffer state {q[n − 1] = k}, the power
consumption c[n] ∈ {P1,P2, 0} is determined by the schedul-
ing probabilities. The overall average power consumption
is the weighted sum of the power consumed in all states.
We give the following two lemmas in order to derive the
expression of the average transmission power more clearly.
Lemma 2: The transition probabilities of the

Markov chain can be expressed as
µk = βp0 + (1− β)p0f 0k ,
M∑
i=m

λk,i = (1−
m∑
i=0

pi)+ (1− f mk )(1− β)pm,
(29)

where 1 ≤ m ≤ M. The sending probabilities can be
extracted from Eq. (29) and shown as

f mk =


µk − βp0
(1− β)p0

, m = 0,

1−

M∑
i=m

λk,i − (1−
m∑
i=0

pi)

(1− β)pm
, 1 ≤ m ≤ M .

(30)

Proof: In Eq. (9), we can get λk,M as

λk,M = (1− β)pM (1− f Mk ) (31)

and λk,M−1 as

λk,M−1 = βpM + (1− β)
[
pM f Mk + pM−1(1− f

M−1
k )

]
.

(32)

Summarizing Eq. (31) and Eq. (32), we get

λk,M + λk,M−1 = pM + pM−1(1− β)(1− f
M−1
k ). (33)

Similarly, the following equality can be obtained

M∑
i=m

λk,i = (1−
m∑
i=0

pi)

+ (1− f mk )(1− β)pm, 1 ≤ m ≤ M (34)

The conclusion about µk is exactly the same as Eq. (10), we
move it here for convenience.

We have arrived at Eq. (29) by far. By extracting f mk
(m = 0) and f mk (1 ≤ m ≤ M ) from Eq. (29), the conclusion
in Eq. (30) can be derived, respectively.
Lemma 3: The weighted sum of steady-state π under

probability ψk2 is given by

K∑
k=0

πkψk2 = ā− β + βπ0p0. (35)
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Proof: From Eq. (27), we know that
K∑
k=0

πkψk2 = π0(1− β)
M∑
m=1

pmf m0

+

K∑
k=1

πk (1− β)
M∑
m=0

pmf mk (36)

Two terms on the right-hand side of Eq. (36) are shown
respectively as follows. The first term is given in the follow-
ing Eq. (37).

π0(1− β)
M∑
m=1

pmf m0

= π0

M∑
m=1

(1− β)pm

(
1−

M∑
i=m

λ0,i − (1−
m∑
i=0

pi)

(1− β)pm

)

= π0

M∑
m=1

{
(1− β)pm −

[ M∑
i=m

λ0,i − (1−
m∑
i=0

pi)
]}

= π0(1− β)(1− p0)− π0
M∑
m=1

[ M∑
i=m

λ0,i − (1−
m∑
i=0

pi)
]

(37)
In Eq. (37), the first equality is obtained by substituting f m0
with f mk , (k = 0) from Eq. (30).

The second term in the right-hand side of Eq. (36) is given
in the following Eq. (38).
K∑
k=1

πk (1− β)
M∑
m=0

pmf mk

=

K∑
k=1

πk (1− β)p0f 0k +
K∑
k=1

πk (1− β)
M∑
m=1

pmf mk

=

K∑
k=1

πk (µk − βp0)

+

K∑
k=1

πk

M∑
m=1

{
(1− β)pm − [

M∑
i=m

λk,i − (1−
m∑
i=0

pi)]
}

=

K∑
k=1

πkµk − βp0(1− π0)+ (1− β)(1− p0)(1− π0)

−

K∑
k=1

πk

M∑
m=1

[ M∑
i=m

λk,i − (1−
m∑
i=0

pi)
]

(38)

The second equality holds because we substitute f 0k and f mk
(1 ≤ m ≤ M ) with f mk from Eq. (30), respectively.
Thus, by summarizing Eq. (37) and Eq. (38), we get

K∑
k=0

πkψk2

= βπ0p0 − β + 1− p0 +
K∑
k=1

πkµk −

K∑
k=0

πk

M∑
m=1

M∑
i=m

λk,i

+π0(1−
m∑
i=0

pi)+
K∑
k=1

πk (1−
m∑
i=0

pi)

= βπ0p0 − β + 1− p0 + π0
M∑
m=1

(1−
m∑
i=0

pi)

+

K∑
k=1

M∑
m=1

πk (1−
m∑
i=0

pi)

= βπ0p0 − β + 1− p0 +
M∑
m=1

(1−
m∑
i=0

pi)

= βπ0p0 − β + ā (39)

The second equality holds due to Eq. (15), i.e., the equilib-
rium equations of the Markov chain. The third equality holds
due to

∑K
k=0 πk = 1. The last equality holds due to the fact

that 1− p0 +
M∑
m=1

(1−
m∑
i=0

pi) = ā.

Transmission powers P1 and P2 are given system parame-
ters and usually optimized based on the network settings and
users’ quality of experiences, but beyond the scope of this
paper. Let 1P denote (P2 − P1) and η = 1P

P1
, we normalize

Paver by P1 as P̄ = Paver

P1
.

Theorem 3: The average transmission power is

Paver
= P1 · ā+4P(ā− β + βπ0p0). (40)

Hence, the normalized average transmission power can de
described as

P̄ = ā+ η(ā− β + βπ0p0). (41)

Proof: By applying the law of total probability, the
average transmission power is equal to

Paver
=

K∑
k=0

πk (ψk0 · 0+ ψk1 · P1 + ψk2 · P2) (42)

=

K∑
k=0

πk (ψk1P1 + ψk2P2) (43)

= P1β(1− π0p0)+ P2
K∑
k=0

πkψk2, (44)

where the last equality is obtained by substituting the expres-
sion of ψk1 given by Eq. (26) into Eq. (43).
By substituting Eq. (35) from Lemma 3 into Eq. (44), we

obtain the expression of the average transmission power as
given by Eq. (40). Normalizing Eq. (40) with P1, We arrive
at Eq. (41).

The analytical expressions of the average queueing delay
and the average transmission power are both determined
by the steady-state probabilities. It provides us a way to
achieve the optimal delay-power tradeoff by optimizing the
steady-state probabilities, which is discussed in next section.

V. OPTIMAL DELAY-POWER TRADEOFF
In this section, a non-linear optimization problem is formu-
lated to minimize the average queueing delay under average
power constraint. It is converted to an LP problem in order to
obtain its solution. Besides, an optimal transmission strategy
named threshold-based policy can be obtained based on the
optimal solution to the LP problem.
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A. OPTIMIZATION PROBLEM
In this paper, the analytical expressions of the average queue-
ing delay and average transmisson power allow us to optimize
the overall performance via an LPmethodwhich is in contrast
to the usual MDP method.

Notice that the average transmission power can be
expressed by a linear combination of π0 in Eq. (41) and the
average queueing delay is a linear combination of the steady-
state probabilities {πk} (0 ≤ k ≤ K ) in Eq. (25). Moreover,
recall Corollary 1 and Remark 1, πk (1 ≤ k ≤ K ) is a linear
function of π0 and the coefficients are related to the state
transition probabilities. At the mean time, we have shown
that the state transition probabilities can be expressed by the
scheduling probabilities {f mk } in Lemma 2. Let Pth denote the
given normalization power constraint. We then formulate the
following nonlinear optimization problem with π0 and {f mk }
being optimization variables.

min
{f mk ,π0}

D =
1
ā

K∑
k=0

kπk

s.t.



ā+ η(ā− β + βπ0p0) ≤ Pth (a)

πk =
1
µk

M∨k∑
m=1

πk−m

M∑
i=m

λk−m,i, 1 ≤ k ≤ K (b)

K∑
k=0

πk = 1 (c)

πk ≥ 0, 0 ≤ k ≤ K (d)
f mk ∈ [0, 1], 0 ≤ k ≤ K , 0 ≤ m ≤ M (e)

(45)

Inequality (45.a) is the maximum average power constraint.
Constraints (45.b) and (45.c) are derived directly from the
property of the Markov chain. Constraint (45.d) describes
the non-negativity of the steady-state probabilities. Constraint
(45.e) shows that as a probability, f mk ∈ [0, 1].
In problem (45), the optimization object and constraints[

45.(a-d)
]
are linear combination of steady-state probabilities

π . Based on this observation, we can convert optimization
problem (45) to the following LP problem with steady-state
probabilities π being optimization variable.
Theorem 4: The optimization problem (45) is equivalent to

the following LP problem

min
{πk }

D =
1
ā

K∑
k=0

kπk

s.t.



π0 ≤ 1 ∨
[
(Pth − ā)η−1 − ā+ β

]
(βp0)−1 (a)

πk ≤ β
−1r0

M∨k∑
m=1

× (rm1 + rm2)πk−m, 1 ≤ k ≤ K (b)

πk ≥ r0
M∨k∑
m=1

rm2 · πk−m, 1 ≤ k ≤ K (c)

πk ≥ 0, 0 ≤ k ≤ K (d)
K∑
k=0

πk = 1 (e)

(46)

where r0 = 1/p0, rm1 = (1 − β)pm, rm2 = 1 −∑m
i=0 pi.
Proof: The average power constraint introduced

in (45.a) also describes a constraint of π0. The following
inequality can be obtained by extracting π0 from (45.a).

π0 ≤
(Pth − ā)η−1 − ā+ β

βp0
(47)

Clearly, π0 ≤ 1. Thus, we obtain constraint (46.a).
Since f mk ∈ [0, 1], the state transition probabilities λk,j

(0 ≤ k ≤ K ) and µk (1 ≤ k ≤ K ) given by Eq. (29) should
satisfy the following inequalities

βp0 ≤ µk ≤ p0. (48)

1−
m∑
i=0

pi ≤
M∑
i=m

λk,i ≤ (1− β)pm + 1−
m∑
i=0

pi, (49)

where 1 ≤ m ≤ M .
In Eq. (48), we get the minimum of µk referred as βp0

when f 0k = 0 and the maximum referred as p0 when f 0k = 1.
In Eq. (49), we get the maximum of

∑M
i=m λk−m,i referred as

(1 − β)pm + 1 −
∑m

i=0 pi when f
m
k−m = 1 and the minimum

referred as 1 −
∑m

i=0 pi when f
m
k−m = 0 (m ∈ M+). Notice

that the upper bound of
∑M

i=m λk−m,m and the lower bound of
µk can be reached at the same time. Recalling the constraint
(45.b), we then obtain the maximum of πk

πk ≤ β
−1r0

M∨k∑
m=1

(rm1 + rm2)πk−m. (50)

Similarly, we can obtain the minimum of πk

πk ≥ r0
M∨k∑
m=1

rm2 · πk−m. (51)

Replacing constraints (45.b) and (45.e) with Eq. (50) and
Eq. (51), we arrive at optimization problem (46).
For a given average power constraint Pth, we will solve

optimization problem (46) in order to get the minimum queu-
ing delay D∗ and the optimal steady-state probability π∗.
Remark 2: D∗ is a monotonically decreasing function

of Pth, and is expressed as

D∗ = d(Pth). (52)
Proof: Supposeπ = [π0, π1, · · · , πK ] is a set of steady-

state probabilities which minimize the average delay D
under constraints

(
46.(a-e)

)
. The corresponding transmis-

sion power P̄ = ā + η(ā − β + βπ0p0). We will show
that if there exists another set of steady-state probabilities
π ′ = [π ′0, π

′

1, · · · , π
′
K ] which cost more power P̄ ′ (P̄ ′ > P̄)

to transmit, a smaller queueing delay D′ will be induced.
Considering the normalization equation

∑K
k=0 πk = 1 and

the formula of the average delay, we should set steady-state
probability πk with a bigger value for smaller index k while
set a smaller value for larger index k in order to achieve a
smaller delay. Let integer kth > 0. We add a non-negative
value δπk to πk for k ≤ kth while subtract δπk from πk
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for k > kth. Thus, a new set of steady-state probabilities are
obtained,

π ′k =

{
πk + δπk , k ≤ kth,
πk − δπk , k > kth,

(53)

where δπ0 satisfies the constraint

δP = P ′ − P
= ηβ(π ′0 − π0)p0
= ηβδπ0p0 > 0, (54)

and {δπk } satisfy constraints [46.(b-e)].

Since
K∑
k=0

πk =
K∑
k=0

π ′k = 1, we have

kth∑
k=0

(π ′k − πk ) =
K∑

k=kth+1

(πk − π ′k ). (55)

Thus, we have

D′ − D =
1
ā
(
K∑
k=0

kπ ′k −
K∑
k=0

kπk )

=
1
ā

[ kth∑
k=0

k(π ′k − πk )−
K∑

k=kth+1

k(πk − π ′k )
]

<
1
ā

[
kth

kth∑
k=0

(π ′k− πk )− (kth+ 1)
K∑

k=kth+1

(πk− π ′k )
]

< 0. (56)

Thus, we can draw a conclusion that if P < P ′, then
D∗ = d(P) > D′ = d(P ′) ≥ D∗′ = d(P ′). Therefore,
the minimum queueing delay d(·) is a decreasing function of
average power Pth.

B. OPTIMAL SOLUTION
In this subsection, we will present the optimal solution to
optimization problem (46). Let Pmax and Pmin denote the
consumed power when transmission always happen whatever
the channel state is and transmission happens only in the good
channel which refers to opportunistic communication [29],
respectively. When Pth > Pmax , the transmission will be
not constrained by the average power. In this situation, one
packet will always be sent out as long as the buffer is not
empty. When Pth < Pmin, the transmitter may not even
afford to transmit one packets during every good channel.
More packet will be backlogged in the buffer, and the queue
is not stable in this situation. Thus, we focus on the situation
Pmin ≤ Pth ≤ Pmax .
In optimization problem (46), the objective function has

the format that πk with larger k has bigger weight. Thus,
in order to minimize the objective function, πk should be
assigned its maximum for smaller index k and its minimum
for larger index k . Due to constraint (46.e), there exists an
optimal threshold k∗ imposed on the queue length. According
to the above analyses and constraints

(
46.(b-c)

)
, the optimal

solution to problem (46) can be derived and shown in the
following theorem.
Theorem 5: The optimal solution to optimization problem

(46) can be described as

π∗k = 1 ∨
[
(Pth − ā)η−1 − ā+ β

]
× (βp0)−1, k = 0,

π∗k = β
−1r0

M∨k∑
m=1

π∗k−m(rm1 + rm2), 1 ≤ k < k∗,

π∗k = ·r0
M∨k∑
m=1

π∗k−mrm2, k > k∗,

(57)

where k∗ and πk∗ can be exclusively determined by

k∗−1∑
k=0

π∗k + π
∗
k∗ +

K∑
k=k∗+1

π∗k = 1. (58)

Theorem 5 shows the optimal solution to the delay-power
tradeoff. Based on the optimal steady-state probability, we
can further derive the optimal scheduling probabilities.

C. THRESHOLD-BASED POLICY
According to Theorem 5, there exists a threshold k∗ imposed
on the queue length. Steady-state probability π∗k will be
assigned its maximum if k < k∗ and its minimum if k > k∗.
Combining with the bounds of µk and

∑M
i=m λk−m,i in

Eqs. (48) and (49), we know that
∑M

i=m λ
∗
k−m,i achieves its

upper bound while µ∗k achieves its lower bound when k < k∗

and
∑M

i=m λ
∗
k−m,i achieves its lower bound while µ

∗
k achieves

its upper bound when k > k∗, that is

M∑
i=m

λ∗k−m,i =

{
rm1 + rm2, k < k∗,
rm2, k > k∗,

(59)

µ∗k =

{
βp0, k < k∗,
p0, k > k∗,

(60)

wherem ∈ {1, 2 · · · ,M}. The case that k = k∗ can be derived
by a determined π∗ based on Theorem 2 and given as

π∗k∗ =
1
µ∗k∗

M∨k∗∑
i=1

π∗k∗−i

M∑
j=i

λ∗k∗−i,j. (61)

We can derive many pairs of
M∑
i=m

λ∗k∗−m,i and µ
∗
k∗ , each of

them can derive the optimal steady-probability thus achieve
the minimum queueing delay.

Due to this special structure, a threshold-based schedul-
ing strategy can be presented. By inserting Eq. (59) and
Eq. (60) into Eq. (30), the scheduling probability can be
determined as:

f m ∗k−m =

{
0, k < k∗,
1, k > k∗.

(62)

In Eq. (62), if k − m < 0, we will ignore the situation
or set f mk−m as 0 since the buffer state cannot be negative.
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We calculate f mk∗−m
∗ by the following equation which is

derived from Eq. (30).

f m∗k∗−m =


µ∗k∗−m − βp0

rm1
, m = 0,

1−

M∑
i=m

λ∗k∗−m,i − rm2

rm1
, m > 0.

(63)

From Eqs. (62) and (63), the transmit probabilities are only
determined by the queue length after a new packet arrival,
i.e., the queue length at the end of last time slot q[n − 1]
plus the new packet arrival a[n]. The optimal scheduling
policy can be described as a threshold-based policy. On one
hand, minimizing the average queueing delay requires the
scheduler to conduct transmission frequently, therefore, the
queue length can’t be too large. On the other hand, the power
resource is limited which restricts the frequency of transmis-
sion especially when the channel state is poor. Thus, there
exists a threshold queue length to compromise the two above
limitations. Specifically, no packet transmission happens if
q[n − 1] + a[n] < k∗, one packet will be transmitted if
q[n−1]+a[n] > k∗, and one packet will be transmitted with
the threshold transmit probability if q[n− 1]+ a[n] = k∗.

VI. DELAY-POWER TRADEOFF POLICY FOR UNKNOWN
ARRIVAL DISTRIBUTION
In this section, we consider the delay-power tradeoff problem
with the packet arrival distribution being unknown which is
in contrast to the assumption of packet arrival in Section
II. To achieve the minimum queueing delay, an intuitive
method is using the historic transmission parameters for refer-
ence. However, the historic parameters is probably not opti-
mal. Thus, adaptive algorithms are proposed to achieve the
optimal delay-power tradeoff based on the threshold-based
policy.

A. POWER CONSTRAINT AND QUEUE THRESHOLD
ANALYSES
On one hand, a given power constraint Pth corresponds to
an optimal queue threshold k∗ and an optimal threshold
transmit probability f ∗k based on the threshold-based policy.
A sketch of this relationship is given in Fig.3. Particularly,
for similar power constraints, same threshold may be derived
but different threshold transmit probabilities will be assigned.
On the other hand, this relationship provides us a way to
approach the power constraint by adjusting the threshold k
and the threshold transmit probability fk . Specifically, if k
increases which means less packets will be transmitted, the
consumption power will decrease, and vice versa. As given by
the dash lines with arrow in Fig.3, a definite k can determine
an approximate scope of the consumption power [Pkl,Pku].
If we further decide fk , the real power consumption can be
approached approximately. Base on the above analyses, if
we need to approach the given power, the first step is to
determine k∗, the next step is to find f ∗k .

FIGURE 3. The relationship between Pth and k : A sketch.

B. ADAPTIVE THRESHOLD ALGORITHM
The optimal delay-power tradeoff can be achieved by the
threshold-based policy, regardless of the specific arriving
packets’ distribution is known or not. With this guidance
and analyses in Section VI-A, algorithms are proposed to
determine the queue threshold k∗ and the threshold transmit
probability f ∗k .

We first elaborate the main idea on how to obtain the
optimal queue threshold. The scheduler is assumed to be
capable of collecting the historical data of the consumption
power. An arbitrarily chosen threshold k0 is given before
the transmission starts. The scheduler transmits packets with
k0 being the queue threshold for a certain time window δ.
Then, it collects the present consumption power P(n) and
compares P(n) with the given power constraint Pth. Based
on the comparison results, a decision of how to adjust k will
be made. Specifically, if P(n) > Pth, the threshold should
be increased. Otherwise, the threshold should be decreased.
The scheduler repeats the above operations till the threshold
approaches its real value.

The effectiveness of Algorithm 1 is shown in Fig.3. Any
given power constraint Pth, which is described by the hor-
izontal solid line, will have an intersection with the Pth-k
curve. Thus, for any given power constraint Pth, there always
exists a corresponding queue threshold k∗.
Given the power constraint Pth, Algorithm 1 will output

the exact optimal queue threshold k∗. To precisely achieve
the optimal delay-power tradeoff, the threshold transmit prob-
ability f ∗k , ranged from 0 to 1, will be optimized by using
searching method like dichotomy and so on.

There are three input parameters in Algorithm 1, namely,
the given power constraintPth, the presupposed threshold k0,
and the adjustment step of threshold δ. The power constraint
Pth is fixed and given by the system. The initialized k0 can be
chosen arbitrarily. Because the algorithm will limit to the the
optimal threshold eventually. However, a rough estimation of
the optimal value will decrease the convergence time. As for
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Algorithm 1 Dynamic Programming for Searching the
Optimal Queue Threshold: Algorithm 1
Input:

Given power constraint, Pth;
Presupposed threshold, k0;
Adjustment step of the threshold, δ.

Output:
Threshold imposed on the queue, k∗.

1: k = k0,P(0) = 99, n = 1;
2: Transmit packets with threshold-based policy and with k

being the queue threshold for finite time δ;
3: Collect consumed power information P(n);
4: Compare P(n) with the Pth.
5: if P(n) < Pth & P(n− 1) > Pth
6: exetute (12);
7: elseif P(n) > Pth
8: k = k + δ, n = n+ 1, execute (2);
9: else
10: k = k − δ; n = n+ 1, execute (2);
11: endif
12: return k∗ = k

Algorithm 2 Dynamic Programming for Searching the
Queue Threshold: Algorithm 2
Input:

Given power constraint, Pth;
Output:

Threshold imposed on the queue, k∗.
1: know = 0, kpre = −1, n = 0, i = 0,P(0) = 999;
2: Transmit packets with know as queue threshold for finite

time δ, n = n+ 1;
3: Collect consumed power information P(n);
4: Compare P(n) with the Pth.
5: if P(n) < Pth &P(n−1) > Pth & |know−kpre| == 1
6: exetute (12);
7: elseif P(n) > Pth
8: kpre = know, i = i+ 1, know = 2i, execute (2);
9: else
10: kpre = know, know = know − 1, execute (2);
11: endif
12: return k∗ = know

the adjustment step δ, a fixed step is adopted in Algorithm 1,
thus, the convergence is linear. Algorithm 2 is introduced as
a different threshold adjustment method, where the threshold
is initialized with a small value, increased exponentially to
approach the optimal value quickly, and adjusted slightly
such as in a linear way once approaching the real value. The
convergence process of Algorithm 2 is shown in Fig.4.

VII. NUMERICAL RESULTS
In this section, we validate the threshold-based policy and
the proposed adaptive threshold algorithm via Monte-Carlo
simulation results. In the simulation, packets are generated

FIGURE 4. Dynamic programming: Algorithm 2.

TABLE 1. Simulation parameter settings.

obeying a probabilistic distribution {pm}. The maximum
number of arrival packet is limited by M = 2. We adopt
two-state block fading channel model. The probability dis-
tribution of the channel state β is set as 0.6. The transmis-
sion power P1 and P2 for different targeted BER and the
distributions of the packet arrival {pm} with different average
arrival rates and variances are presented in Table 1 for each
simulation for convenience. The scheduler collects the above
information and transmits packets based on the threshold-
based policy. Each simulation runs 107 time slots.
In Fig.5(a), the targeted BER on the receiver side is

set as 10−3. Thus, P1 and P2, which denote the transmis-
sion power in the good channel and bad channel, are set to
0.103 and 10.14 respectively from Table 1. The delay-power
tradeoff curves are given under different average packet
arrival, i.e., ā = 0.55, 0.50 and 0.45, respectively (the unit
of the queuing delay is timeslot.). Firstly, we validate the
threshold-based policy. We draw the delay-power tradeoff
curves in Fig.5(a) where the theoretical results are presented
as the solid lines while the simulation results are marked by
symbol ‘ + ’. We show that the theoretical results are match
well with the simulation results. The optimal delay-power
tradeoff curve is piece-wise linearly. Each knee point denotes
threshold changing. The points on the segment between two
knee points have identity k∗ but different f ∗k . Secondly,
the average minimum queueing delay is a decreasing func-
tion with the average power as expected. What’s more, as
the available power decreases, the average queueing delay
increases dramatically. At last, to achieve the same average
queueing delay, more power will be consumed for a higher
average packet arrival rate. Because more packets will be
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FIGURE 5. Simulation Results. (a) Different arrival rates. (b) Different
arrival variances. (c) Different targeted BERs.

backlogged in the queue, the threshold will be reduced to
increase the frequency of transmission to meet the identity
queueing delay. As a result, this will increase the probability
of suffering bad channel states and thus consumemore power.

Fig.5(b) describes the optimal delay-power tradeoff curves
under different packet arrival variances when the average
packet arrival rate ā is identical and set as 0.5. As given
in Table 1, the variance Var is set as 0.53, 0.46, and 0.39,
respectively. The targeted BER is 10−3. In Fig.5(b), given
the identical power constraint, a greater queueing delay will
be induced for higher variance. This is due to the fact that
higher variance indicates a more bursty packet arrival pattern.
As a result, the threshold will increase if the available power
remains the same. What’s more, we draw and magnify the
curves when available power is more than the maximum con-
sumption powerPmax . Theminimum queueing delay remains
the same in this situation because packets are transmitted
in every slot whatever the channel state is, i.e., the optimal
threshold is zero.

In Fig.5(c), we present the delay-power tradeoff curves
when different targeted BERs are considered on the receiver
side, i.e., BER is set to 10−2, 10−3, and 10−4, respectively.
Let the average packet arrival rate ā = 0.5. A higher queueing
delay will be for a more strict targeted BER requirement if
the available consumption power is identity. To meet a more
strict targeted BER, the transmitter has to improve the power
to transmit one packet. If the power constraint is given, the
scheduler will make a decision of increasing the threshold out
of energy efficiency. Hence, the queueing delay will increase.

FIGURE 6. Threshold-power Curves.

In Fig.6, we describe the relationship between the opti-
mal threshold k∗ and the given power constraint Pth. The
targeted BER is 10−2. The average packet arrival rate is set
to 0.45, 0.50, and 0.55, respectively. The results validate
our conclusion in Section VI-A. The k-Pth curves are stair-
step. As the available power increases, the queue threshold
decreases since the transmitter is afford to transmit more
frequently in the bad channel. What’s more, under the same
power constraint, the optimal threshold k∗ is an increasing
function of the average arrival rate.

At last, we focus on the proposed adaptive threshold
algorithm and present the performance of Algorithm 2. Let
p1 = 0.32 and p2 = 0.09. The distribution is used
to generate the arrival packets and will be an unknown
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FIGURE 7. Iteration performance with Logarithmic coordinate axis.

parameter to our algorithm. In Fig.7, we present the itera-
tion results of Algorithm 1and plot them in the logarithmic
coordinate. Let zero be the start threshold. The threshold
firstly increases as a power function of 2, then changes in
a linear way with the adjustment step δ = 1. The iteration
results eventually approaches the theoretical result in finite
steps.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we aimed to achieve the optimal delay-power
tradeoff of fixed-rate wireless transmission with arbitrarily
bursty traffics by presenting a joint channel-aware and queue-
aware scheduling. We proposed a Markov chain model to
model the queueing state and extended it to a Markov reward
model to analyze the average delay and power consump-
tion. A cross layer optimization problem was formulated to
minimize the average queueing delay given a power con-
straint. The optimization problemwas converted into a Linear
Programming problem, the optimal solution of which gave
a threshold-based probabilistic scheduling along with the
optimal delay-power tradeoff. Furthermore, we presented a
threshold adaptation policy to achieve the optimal delay-
power tradeoff with unknown packet arrival distributions.
An the end of this paper, simulation results were given to
validate the threshold-based policy and the adaptive threshold
algorithms. Interesting future works include the delay-power
tradeoff in generalized system models.
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