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ABSTRACT TheWasserstein metric or earth mover’s distance is a useful tool in statistics, computer science
and engineering with many applications to biological or medical imaging, among others. Especially in the
light of increasingly complex data, the computation of these distances via optimal transport is often the
limiting factor. Inspired by this challenge, a variety of new approaches to optimal transport has been proposed
in recent years and along with these newmethods comes the need for a meaningful comparison. In this paper,
we introduce a benchmark for discrete optimal transport, called DOTmark, which is designed to serve as a
neutral collection of problems, where discrete optimal transport methods can be tested, compared with one
another, and brought to their limits on large-scale instances. It consists of a variety of grayscale images, in
various resolutions and classes, such as several types of randomly generated images, classical test images
and real data from microscopy. Along with the DOTmark we present a survey and a performance test for
a cross section of established methods ranging from more traditional algorithms, such as the transportation
simplex, to recently developed approaches, such as the shielding neighborhood method, and including also
a comparison with commercial solvers.

INDEX TERMS Optimal transport, benchmark, Wasserstein metric, earth mover’s distance.

I. INTRODUCTION
Despite being a classical problem, optimal transport appears
in a plethora of modern applications, such as image
retrieval [1], phishing web page detection [2], measuring
plant color differences [3] or shape matching [4]. Motivated
by the availability of ever larger and more complex data,
which often can be cast into the form of one or several
measures, and the corresponding development of analytical
methods for such data, came the need for more efficient ways
of computing optimal transportation plans and evaluating
their costs. Accordingly, the last few years have seen the
advent of many new methods for obtaining or approximating
solutions to large transport problems.

While many of these methods undoubtedly mean substan-
tial progress compared to what was available a decade ago,
it is nearly impossible from the current literature to figure
out how various of these methods compare to one another
and which method is most suitable for a given task. This
is mainly due to the fact that only for a few of the modern
methods user-friendly code is publicly available. What is
more, many articles that introduce new methods compare

their computational performance only on a restricted set of
self-generated ad-hoc examples and typically demonstrate
improved performance only in comparison to some classical
method or to a simplified version that does not use the novelty
introduced.

The purpose of the present article is twofold. First, we
propose a collection of real and simulated images, the
DOTmark, that is designed to span a wide range of dif-
ferent mass distributions and serves as a benchmark for
testing optimal transport algorithms. To the best of our
knowledge this is the first initiative to establish a sub-
stantial benchmark of this type that is publicly available.
The data can be downloaded at www.stochastik.math.uni-
goettingen.de/DOTmark/. We invite other researchers to use
this benchmark, report their results, and thus help building a
more transparent picture of the suitability of different meth-
ods for various tasks.

The second purpose is to provide a survey and a time
performance test based on the DOTmark for a cross section
of established methods. Since not much code is freely avail-
able, we have used previous implementations of our own
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FIGURE 1. Left panels: Two tiny clippings A (top) and B (bottom) from STED microscopy images of mitochondrial networks. Right panel: The difference
A− B of the first two panels with an optimal transference plan for p = 2 superimposed. Arrows show from where to where mass is transported in the
optimal transference plan. The colors indicate the amount of mass from dark red (small) to bright yellow (large). Since mass from individual sites is split
(indicated by several arrows leaving the site), this transference plan cannot be represented by a transport map.

(done to the best of our knowledge) of various methods,
added an implementation of the recently proposed shielding
neighborhood method [5] and let them compete against each
other. This also allows us to draw conclusions about the
behavior of different methods on different types of input data.
In order to make this comparison as meaningful as possible,
we restricted ourselves to using only singlescale methods and
the squared Euclidean distance as a cost function. We hope
this comparison will provide a first spark for a healthy com-
petition of various methods in the public discussion.

II. BRIEF THEORETICAL BACKGROUND
For the present context it is sufficient to consider optimal
transport onRd . Let X ,Y be subsets ofRd and let µ and ν be
probability measures on X and Y , respectively. In this paper
it is always assumed that X = Y , but using different notation
for domain and target space makes definitions easier to grasp.

A transport map T is any (measurable) map T : X → Y
that transforms the measure µ into the measure ν. More
precisely it satisfies µ(T−1(B)) = ν(B) for every measurable
B ⊂ Y . A transference plan is a measure π on X × Y with
marginals π (· × Y ) = µ and π (X × ·) = ν. The set of

transference plans from µ to ν is denoted by 5(µ, ν). Any
transport map T from µ to ν defines a transference plan πT
from µ to ν as the unique measure satisfying πT (A × B) =
µ(A ∩ T−1(B)) for all measurable A ⊂ X and B ⊂ Y . Not
every transference plan π can be represented in this way,
because transference plans allow mass from one site x ∈ X to
be split between multiple destinations, which is not possible
under a transport map. Figure 1 shows such an example.
Assuming that the cost of transporting a unit mass from

x ∈ X to y ∈ Y is cp(x, y) = ‖x − y‖p for some p ≥ 1, the
minimum cost for transferring µ to ν is then given by

Cp(µ, ν) = min
π∈5(µ,ν)

∫
X×Y
‖x − y‖p dπ (x, y). (1)

Taking the p-th root, we obtain theWasserstein metric Wp.
More precisely we have

Wp(µ, ν) = Cp(µ, ν)1/p

for any measures µ and ν that satisfy
∫
X ‖x‖

p dµ(x) < ∞
and

∫
Y ‖y‖

p dν(y) <∞. In order to evaluate the Wasserstein
metric, we need to find an optimal solution to (1), i.e., a min-
imizing transference plan π . This problem is often referred
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to as the Kantorovich formulation of optimal transport. Note
that by [6, Th. 4.1] a minimizing π always exists. However,
it neither has to be unique nor representable in terms of an
optimal transport map.

Often one would like to compare data sets that are avail-
able as images from a certain source, e.g. real photography,
astronomical imagery, or microscopy data. We may think of
such images as discrete measures on a grid. For example, the
first two panels in Figure 1 show tiny clippings from STED
microscopy images of mitochondrial networks. A question of
interest might be whether both images stem from the same
part of the network, which can in principle be answered by
finding an optimal transference plan (third panel in Figure 1)
and computing theWasserstein distance. Note that this coarse
resolution is not representative for a serious analysis, but was
only chosen for illustrative purposes.

Even if the measures we would like to consider are more
general probability measures, we can always approximate
them (weakly) by a discrete probability measure, e.g. by
considering the empirical distribution of a sample from the
general measure or based on a more sophisticated quanti-
zation scheme. In most practical settings, e.g. if X and Y
are bounded subsets of Rd as in the present article, both
the optimal cost and the optimal tranference plans are then
approximated by the corresponding objects based on the dis-
cretized measures. For general conditions and further details
see [7, Lemma 8.3] for approximation of optimal costs and
[6, Th. 5.20] and the subsequent discussion for approximation
of optimal transference plans.

Assume now that we have discrete measures of the form
µ =

∑m
i=1 µiδxi and ν =

∑n
j=1 νjδyj , where δx is the Dirac

mass at point x, and write cij = ‖xi − yj‖p. In what follows,
we always have m = n = r2, and (xi)1≤i≤m = (yj)1≤j≤n form
a regular square grid of resolution r × r in R2, but since it is
more intuitive, we keep different notation for source locations
and target locations. Letπij be the amount ofmass transported
from xi to yj. Then, the problem (1) can be rewritten as a linear
program:

OT min
m∑
i=1

n∑
j=1

cijπij

subject to
n∑
j=1

πij = µi ∀i = 1, . . . ,m

m∑
i=1

πij = νj ∀j = 1, . . . , n

πij ≥ 0.

This is the classic transportation problem from linear pro-
gramming. Efficient ways of solving this problem for small
to medium sized (m and) n, up to a couple of hundred, have
been known since the middle of the last century. However,
in the context of modern optimal transport problems it has
become necessary to solve such problems efficiently at a scale
where (m and) n aremany thousands or even tens of thousands

and more. Currently, this cannot be done with the classical
algorithms and requires to utilize the geometry of the problem
in one way or the other.

III. BENCHMARK
Our philosophy in compiling this benchmark was to represent
a wide range of theoretically different structures, while incor-
porating typical images that are used in praxis and/or have
been used for previous performance tests in the literature.
We refer to it as DOTmark, where DOT stands for discrete
optimal transport.

The benchmark consists of 10 classes of 10 different
images (in what follows sometimes called mass distributions
or measures), each of which is available at the 5 different
resolutions from 32 × 32 to 512 × 512 (in doubling steps
per dimension). This allows for a total of 45 computations
of Wasserstein distances between two images for any one
class at any fixed resolution. Table 1 gives an overview of
how the classes were created. Classes 1–7 are random simula-
tions of scenarios based on various probability distributions.
Images at different resolutions are generated independently
from each other but according to the same laws. Classes
8–10 were obtained by ad-hoc choices of simple geomet-
ric shapes, classic test images and images of mitochondria
acquired using STED super-resolution microscopy [8]–[10].
For geometric shapes and classic test images the various
resolutions available are coarsenings of a single image. For
the microscopy images different clippings of various sizes
have been selected from larger images to obtain the various
resolutions.

TABLE 1. The 10 classes in the DOTmark with details about their creation.
GRF stands for Gaussian random field. For technical details and the
meaning of the parameters see text.

We shifted and scaled the pixel values for all classes and
randomly redistributed a small percentage of the mass in
order to achieve non-negative integer values at each pixel
with an average of 105. We chose integer values to make the
benchmark (directly) accessible to a wide range of algorithms
and to be able to verify correctness of the optimal transport
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FIGURE 2. Top row: One representative at resolution 128× 128 for each of the completely randomly generated classes 1–6. Bottom row: Average
histograms of all images at resolution 128× 128 in classes 1–6. The x-axis gives the pixel values in multiples of 104, the lengths of the bars give the
relative frequencies (total area of the bars is 1). All histograms are on the same scale, but the second from the right is truncated, having full domain of
[0, 198]× 104.

FIGURE 3. The images in the classes 7–10 at resolution 128× 128.

cost precisely, at least in the case p = 2, where integer
transportation costs between grid points may be assumed.

Figure 2 shows the first image of each of the
classes 1–6 alongwith average histogram over all members of
the class. Figure 3 shows the complete collection of images in
classes 7–10.

We provide some more details on how classes 2–6 are
generated. The images are simulated from stationary centered
Gaussian random fields (GRF) on [0, 1]2 with Matérn covari-
ance function k := kσ 2,ν,γ : R2

× R2
→ R,

kσ 2,ν,γ (x, y) = σ
2 2

1−ν

0(ν)

(
√
2ν
‖x − y‖
γ

)ν
Kν
(√

2ν‖x−y‖/γ
)
,

where Kν is the modified Bessel function of the second kind
of order ν. In brief this means that the pixel values are dis-
tributed according to a multivariate normal distribution with

mean vector zero and covariance matrix (k(xi, xj))1≤i,j≤m,
where xi, 1 ≤ i ≤ m, is an enumeration of the pixel centers.
The Matérn covariance function is a popular choice in spatial
statistics. Its significance comes from the fact that in addition
to having parameters σ 2 > 0 for the variance and γ > 0 for
the range of the covariance, it also has a parameter ν > 0
that allows to control the regularity of the random image
created from very rough (ν small) to very smooth (ν large).
Accordingly, classes 2–4 go from very rough with short range
dependence to quite smooth with long range dependence.
Class 5 is rough with long range dependence, which is hard
to see from Figure 2 because of the exponential function
applied to the pixel values. Class 6 is very smooth with
medium range dependence and the logistic functionψ : R→
[0, 1], ψ(x) = ex

/
(1 + ex) was applied to the pixel values.

See [11] for more theoretical details about Gaussian random
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fields. Our simulations were performed using the R package
RandomFields; see [12], [13].

Histograms 4 and 6 in the second row of Figure 2 deviate
quite a bit from the theoretical histograms expected due
to the rescaling and redistribution of mass that we apply
in order to obtain mass distributions that are non-negative,
integer-valued, and have an average of 105. Also, due to long
range dependence and smoothness, histogram 4 is based on
a sample of much smaller effective size from the normal
distribution than histograms 2 and 3.

On the whole we consider this a reasonable and versatile
benchmark for many (planar and typically grid-based) opti-
mal transport algorithms. It covers a wide selection of types
of mass distributions whose comparisons are useful for the-
oretical or practical investigations. Similar types have been
considered individually in the literature before. Gottschlich
and Schuhmacher [14] have considered a sparse version of
the WhiteNoise class. Schmitzer [5] considered sums of ran-
domly scaled and positioned Gaussian densities (sometimes
filtered by discontinous masks), which is a somewhat dif-
ferent type of random function generation along the lines of
our classes 2–7. Further random or deterministic functions
and geometric shapes were considered by Benamou, Carlier,
Cuturi, Froese, Nenna, Oberman, Peyré, Ruan and others; see
e.g. [15]–[17]. The use of real grayscale images as in class 9,
but also color images, is abundant in the computer science
literature (e.g. [1], [18]), where optimal transport is typi-
cally considered on some feature space. Mérigot [19] illus-
trated and tested his algorithm on grayscale images directly.
Biological imagery has been used in [20] (fingerprints in
feature space), [21] (brain MRIs) and elsewhere.

Another example that is frequently used, in partic-
ular in the statistics and machine learning literature,
are images from the MNIST handwritten digit database
(http://yann.lecun.com/exdb/mnist/). Due to the low resolu-
tion of these images we do not consider them, but we might
include other images of handwritten text in later revisions of
the benchmark.

IV. TESTED METHODS
In what follows, we describe the methods that we have
tested on the DOTmark. Due to the large number of sug-
gested methods, which unfortunately is not well reflected
in the number of user-friendly implementations available,
some restrictions had to be made. We chose methods with
a good track record, such as the AHA method [19], as well
as some new and promising methods, such as the shielding
method [5]. In order to make our comparison as meaningful
as possible, we abstained from using methods of a purely
approximative nature, such as Sinkhorn scaling [22].

For all of the testedmethods there exist multiscale versions.
Sometimes these are tailor-made, like for the AHA and the
shielding methods (see [5], [19]). Sometimes these are just
relatively simple but efficient procedures exploiting the fact
that all mass distributions considered live on a square grid
in R2. Such a simple strategy may be as follows: First solve

the transport problem on coarsened images (e.g. obtained
by adding up the pixel values in contiguous squares of four
pixels); then refine the obtained transport plan in a suitable
way so that a feasible transport plan for the finer images is
obtained; finally solve the original (fine) problem using this
transport plan as a starting value.

In our experience this simple strategy already results in
an improvement by a factor of 2 to 5 in the transportation
simplex at resolution 64 × 64. A more elaborate, efficient,
but not entirely rigorous alternative was proposed in [17].
Since the precise variant and implementation of a multiscale
method may distort competition and distract from the merit
of an algorithm as such, we decided not to use anymultiscale
methods for this first comparison.

A. TRANSPORTATION SIMPLEX
One of the classical optimal transport methods we test in this
paper is the transportation simplex, sometimes also referred
to as the revised simplex. It is a specialized version of the
network simplex and described in detail for example in [23].
Like other simplex variants, the transportation simplex has
two phases: one phase to construct an initial basic feasible
solution and another phase to improve this solution to opti-
mality. Typically, the majority of time is spent in the second
phase, as an initial solution to optimal transport is easily
obtained.

There are quite a few different ways to construct an initial
basic feasible solution. For a selection, see [14]. In the present
test the modified row minimum rule is used, which has a
universally solid performance both in runtime and quality of
the solution constructed. We iterate over all source locations
(rows) xi ∈ X that still have mass left and choose for each
source the available transport πij with the least cost and
include it with the maximal amount possible in our solution.
This process is repeated until all sources are depleted. The
resulting solution is automatically basic.

If the source and target locations are interpreted as nodes
in a graph and arcs are inserted for every possible transport,
this yields a complete bipartite graph. Every (non-degenerate)
basic feasible solution can now be represented by a spanning
tree in this graph by choosing all the arcs belonging to active
transports in the solution. Given a basic feasible solution, a
simplex step is performed as follows:
• A new variable (transport πij) is selected to enter the
basis.

• This creates a cycle in the previous tree, which is then
identified.

• The maximal amount of mass possible is shifted along
this cycle, i.e., alternately added to and subtracted from
consecutive transports.

• One variable that has become zero in the process is
removed from the basis.

A row minimum strategy is employed when searching for
a new basic variable: Based on the current solution the values
of dual variables ui for each source xi and vj for each target
yj are computed. Scanning the non-basic variables πij row
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by row the reduced costs rij = cij − ui − vj are examined.
If a variable with negative reduced costs is encountered, the
scanning of the current row is completed and the variable with
the least reduced cost encountered thus far is chosen as a new
basic variable. If no candidates are found among all rows, the
current solution is optimal and the algorithm terminates.

The second phase of the transportation simplex is very
similar to the network simplex. The only difference is that
the network in the optimal transport problem is always a
complete bipartite graph. In phase one, however, this struc-
ture is very beneficial and allows for easy construction of
a feasible solution, whereas in the more general network
case the introduction of artificial variables is often neces-
sary. More details on the network simplex can also be found
in [23].

B. SHORTLIST METHOD
At its core, the shortlist method is a variant of the transporta-
tion simplex. It comes with three parameters:
• A parameter s for the shortlist length.
• Parameters q and l that control how many variables are
searched to find a new basic variable.

Before the optimization starts, a shortlist is created for
every source, consisting of the s targets with least transport
costs, ordered by cost. The basic feasible solution is again
constructed by a modified row minimum rule, where the
shortlists are prioritized. After that, the solution is improved
by simplex steps similar to the transportation simplex, but
the search is limited to the shortlists. The lists are scanned,
until either l variables with negative reduced costs are found
or q percent of the shortlists have been searched. Then the
candidate with least reduced costs is chosen to enter the basis.
If no improvement can be achieved within the shortlists, the
last solution is improved to global optimality by the same
simplex steps as in the transportation simplex. For further
details, see [14].

We use the default parameters presented in [14]. They
were chosen with regard to the problems considered in that
paper— a version of theWhiteNoise class with the Euclidean
distance as cost function (p = 1) and sparse source and target
locations picked uniformly at random.

C. SHIELDING NEIGHBORHOOD METHOD
The shielding neighborhood method, or shortcut method,
was introduced by Schmitzer [5]. Its main idea is to solve a
sequence of sparse (i.e. restricted) optimal transport instances
instead of the dense (full) problem. The algorithm is proposed
as a multiscale method, but the singlescale variant basically
works in the same way:

Starting with a basic feasible solution generated with the
modified row minimum rule a shielding neighborhood for
that solution is constructed as described in [5] for the squared
Euclidean distance as cost function. This neighborhood is a
small subset N ⊆ X × Y of the product space and imposes a
restricted instance of the problem by only considering trans-
port variables πij such that (xi, yj) ∈ N . Due to the significant

reduction in the amount of variables, this instance is much
faster to solve.

The idea behind the shielding neighborhood is the so-
called shielding condition, which ensures that for (xi, yj) 6∈ N
a shortcut exists, i.e., a sequence of transports through the
neighborhood whose combined cost is not higher than the
cost of the direct transport. The algorithm alternates between
optimizing the sparse instance of the problem and generating
a new shielding neighborhood for the current solution. If a
solution is optimal for two successive shielding neighbor-
hoods the algorithm stops. In [5] it is proved that such a
solution is always globally optimal.

D. AHA METHOD
The acronym AHA stands for Aurenhammer, Hoffmann and
Aronov, who showed in their seminal paper [24] that the
transport problem with squared Euclidean cost is equivalent
to an unrestricted continuous minimization problem for a
certain convex objective function 8.

Our concrete implementation is largely based on [19],
except for the multiscale scheme. The algorithm computes
the optimal transport from an absolutely continuous measure
µ on R2 to a discrete measure ν on R2, a problem sometimes
referred to as semidiscrete optimal transport. The key obser-
vation utilized by the AHAmethod is that any power diagram
(a.k.a. Laguerre tesselation) governed by the support points
y1, . . . , yn of ν and arbitrary weights w1, . . . ,wn ∈ R char-
acterizes an optimal transport plan from µ to some measure
living on these support points. By minimizing the function8
in the weights w1, . . . ,wn we can find a power diagram that
defines an optimal transport to the correct measure ν.

Evaluating 8 at a given weight vector w ∈ Rn involves
computation of the power diagram for w and a rather simple
integration procedure over each power cell. The gradient of
8 is accessible, and its i-th component is in fact just the
difference between the ν-mass at the i-th support point and
the µ-mass transported to this point under the current power
diagram. A Hessian of 8 is not accessible. As in [19] the
L-BFGS-B algorithm with Moré–Thuente type line search
is used. Since this is a continuous optimization method, it
typically cannot reach a weight vector w∗ where the gradient
of 8 is exactly zero (and hence the image measure of µ is
exactly ν), but has to stop when its length is still slightly
positive. The method thus commits a small controllable error,
referred to as precision error.

In order to make the algorithm applicable to the fully
discrete situation studied in the other algorithms, the first
image is turned into an absolutely continuous measure µ
by interpreting pixel values as masses uniformly distributed
over the squared areas represented by the pixels, rather than
centered at grid points. Compared to the other methods this
leads to slightly different results, a discrepancy referred to as
blurring error. Note that the term ‘‘error’’ is subjective. We
might as well declare that we want to solve the semidiscrete
problem, in which case all the other methods commit a ‘‘con-
centration error’’.
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E. SOLVERS
As representatives of LP solvers, we used CPLEX (www.
ibm.com/software/commerce/optimization/cplex-optimizer/)
and Gurobi (www.gurobi.com/products/gurobi-optimizer).
For both we modeled the optimal transport problem as an LP
and used the default parameters. This is referred to below as
CPLEX-Def and Gurobi-Def, respectively. Additionally, we
tested the network simplex solver CPLEX provides (CPLEX-
NWS). Gurobi does apparently not come with a network
solver, but as the Gurobi documentation page for methods
(www.gurobi.com/documentation/6.5/refman/method.html)
recommends the dual simplex for memory intensive models,
we included it in our tests (Gurobi-DS).

V. IMPLEMENTATION AND COMPUTATIONAL RESULTS
Most of the methods described above have been implemented
in Java. As recommended in [5], the network simplex solver
of CPLEX is used for the internal sparse instances of the
shielding neighbourhood method with a warm start of the
previously optimal basis. One call of the CPLEX solver for
a single sparse instance is referred to as one iteration of the
shielding method in the remainder of this paper. All models
solved by CPLEX or Gurobi in the test were set up using the
Java APIs of the solvers.

Schmitzer published his own code of the method on
his website (wwwmath.uni-muenster.de/num/wirth/people/
Schmitzer/). But since we already had our own well-working
implementation of this method in place, we decided to use
the latter in our test. As all the other methods it was imple-
mented to the best of our knowledge. Since themajority of the
runtime is occupied by the internal CPLEX solver, we expect
our code to have a similar runtime as the code provided by
Schmitzer.

Additionally, we tested the shielding method with an
adapted implementation of the transportation simplex from
Subsection IV-A as internal solver, using the same pivot
strategy and simplex step routines as before. As in [5], a tiny
mass is added to every pixel, which in some instances can
slightly change the optimal transport cost.

For the AHA method, unlike for the other methods, we
use an implementation in C with some minimal R over-
head. This implementation is available in the R package
transport [25]. There the construction of power dia-
grams is reimplemented in C based on ideas from the CGAL
Regular_triangulation_2 package and other sources. For the
L-BFGS-B algorithm the implementation in the R function
optim is used.
Based on runtime comparisons between C and Java we per-

formed for other optimal transport algorithms, we would not
expect enormous differences between the two programming
languages. Also all reasonable effort was made to optimize
the two programs and run them under equal conditions and
with the same resources. Nevertheless there is no good reason
to assume that the runtimes obtained for the AHA method
are precisely comparable to those obtained for the methods
implemented in Java.

All of our tests were performed using a single core on a
Linux server (AMD Opteron Processor 6140 from 2011 with
2.6 GHz). Note that much better absolute runtimes can be
achieved when using modern CPU hardware. For many of the
algorithms considerable further improvements are possible
by multithreaded implementations that use multiple CPU
cores simultaneously.

In our experiments we placed the main emphasis on ensur-
ing that the commercial solvers and all of our own implemen-
tations were run under the same conditions. In particular, they
were all restricted to use only one of 32 available cores, which
was realized by the Linux kernel feature cgroups.

Pairing any two of the 10 images in each of the 10 classes
gives 45 transport problems (‘‘instances’’) per class, yielding
450 instances in total. These were all solved at resolutions
32× 32 and 64× 64 by each of the described methods using
the squared Euclidean metric as cost funtion. All optimal
solutions returned were checked for correctness by evaluating
and comparing their optimal objective values, except for
the transportation simplex variant of the shielding method,
which runs on slightly altered instances. The AHA method is
the only other procedure, where we cannot expect precisely
correct results due to the errors described in Subsection IV-D.
These errors are reported in Subsection V-B. All other errors
were zero.

A. RUNTIMES
The runtimes of the tests are listed in Table 2 for 32 × 32
and Table 3 for 64 × 64, respectively, averaged over all
45 instances in one class. The average over all classes can
be found in the bottom row under ’Overall’. The fastest
algorithm for each class is highlighted in bold. Additionally,
boxplots for four selected methods are given in Figure 4.

As the numbers show, the shielding neighborhood method
is clearly the fastest algorithm for 32 × 32 instances among
the methods tested. It takes hardly more than half the time on
average compared to the transportation simplex, the shortlist
method and the AHA method. The default solvers of CPLEX
and Gurobi have particularly long runtimes. It is remarkable,
however, that the network simplex solver of CPLEX outper-
forms the default solvers and the Gurobi dual simplex by a
huge margin. The performance is still somewhat worse than
our implementations of the transportation simplex and the
shortlist method.

At resolution 64 × 64 we see a similar picture with some
exceptions. The shielding method (with CPLEX as internal
solver) is even further ahead of most other algorithms, but at
the same time the AHA method, which seems to be scaling
much better than the linear programming approaches, has
gained even more and in fact shows the best times now for
many of the classes. However, keep in mind that the results
of this method are not exactly correct and the timing varies
according to the stopping criterion one applies (see the next
subsection).

The CPLEX network solver is with the exception of
the classes WhiteNoise and GRFrough quite a bit faster at
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TABLE 2. Average runtimes on 32× 32 instances in seconds. The columns represent the methods tested: transportation simplex (TPS), shortlist
method (SHL), shielding neighborhood method with CPLEX (CPX) and TPS as internal solvers, AHA method, CPLEX with default (Def) parameters
and the network simplex solver (NWS), as well as Gurobi with default parameters and the dual simplex solver (DS).

TABLE 3. Average runtimes on 64× 64 instances in seconds. See the caption of Table 2 for details.

resolution 64 × 64 than our implementations of the trans-
portation simplex and the shortlist methods. In the two classes
Shapes and Microscopy, which have many zeros in the
images, it is even competitive with the shielding and AHA
methods. Overall, it shows the most consistent performance
both across the various benchmark classes (if effective size of
the problem is taken into account) and within each class; see
the last row in Figure 4.

In contrast, the other methods show a much stronger sen-
sitivity with respect to the class considered. Especially for
classes 4–7 and to some extent also for class 3, we see higher
average computation times and in particular a much wider
spread of times including a number of outliers in Figure 4.

B. ERRORS OF THE AHA METHOD
As described in Subsection IV-D, the AHA method does not
solve the problems we consider here with full accuracy, but
makes a blurring error by interpreting pixel values of the
source measureµ as uniformly distributed over small squares
and a precision error by tackling a continuous minimiza-
tion problem which for numerical reasons cannot be solved
exactly.

In Table 4 we report the precision error (PE) in terms of the
mass in the probability measure µ that is wrongly allocated,
as well as the relativeWasserstein error (RWE) made with the

TABLE 4. Average precision error (PE) and relative Wasserstein
error (RWE) over the ten classes. See text for details.

AHA method, i.e.

WAHA
2 (µ, ν̃)−WTSP

2 (µ, ν)

WTSP
2 (µ, ν)

,

where AHA and TSP denote the methods used and ν̃

denotes the second marginal of the transference plan returned
by AHA.

We can see that the precision error is reasonably small.
What is more, if we assume that we would have to reroute
the wrongly allocated mass roughly by a distance that cor-
responds to the true Wasserstein distance between µ and ν
(this is reasonable in the sense that it is roughly the
same order of magnitude as relevant distances measured in

278 VOLUME 5, 2017



J. Schrieber et al.: DOTmark—A Benchmark for Discrete Optimal Transport

FIGURE 4. Boxplots of the runtimes of selected methods in seconds. Every box represents 45 computed instances.
Left: 32× 32. Right : 64× 64.

the image), we can compare the precision errors to the rel-
ative Wasserstein errors and see that the former play only
a minor role. Consequently, the RWE is mainly due to the

blurring effect. This is corroborated further by the fact that
the RWE for the 64 × 64 resolution is considerably smaller
than for 32× 32.
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FIGURE 5. Scatterplots for Shielding-CPX showing the runtimes against the number of iterations for the classes
Shapes (blue), Microscopy (red) and the other classes combined (green). Every data point represents one of the
450 computed instances. Left: 32× 32. Right: 64× 64.

C. ITERATIONS OF THE SHIELDING METHOD
The shielding method solves the optimal transport problem
via a sequence of restricted instances. Here we have a look
on how many iterations of these instances are necessary.

On the scale 32×32 the average number of iterations varies
between 3.9 forWhiteNoise and 16.6 for CauchyDensity. The
numbers for scale 64× 64 are higher (4.6 through 28.5), but
show similar behavior otherwise. Figure 5 presents scatter-
plots of the runtime against the number of iterations.

For most classes (green points) we observe a linear scaling
of the runtime with the number of iterations. This means that
the runtime in each iteration is roughly the same over these
classes and we may conclude, since CPLEX has runtimes
that scale consistently with model size, that the neighborhood
sizes remain more or less constant as well. The only excep-
tions are the classes Shapes (blue) and Microscopy (red),
where the runtimes are lower than expected from the num-
ber of iterations. This can be attributed to the internal
solver, which benefits from the lower effective dimension
that comes from the zero mass pixels occuring in these two
classes. The difference is not as significant as for the global
CPLEX network simplex runtimes, since the dimension has
already been reduced by the construction of the shielding
neighborhoods.

VI. DISCUSSION
Looking at the different classes, we note that the solvers
perform much better on the classes where the number of
pixels with mass zero is large (Microscopy and Shapes).
This is because they seem to benefit particularly from the
reduction of the effective dimension of the problem. The
runtimes are very consistent across the other classes, which
allows the conclusion that the solvers can only exploit the

mathematical structure of the model, but are unable to use
geometric features of the input data to their advantage.

Other linear programming methods benefit from the lower
effective dimension as well, although the difference is not
as significant. However, these methods seem to be compara-
tively faster on classes where most of the transports are rather
short (rough structure, such as GRFrough or WhiteNoise),
and slower on classes with longer transports (smooth struc-
ture, such as GRFsmooth or LogGRF). This can be explained
by the initial solution routine, which is shared across many
of the tested methods. The greedily selected initial trans-
port plan, which favors short transports, is more likely to
be close to optimal in short range classes than in long
range classes. The shortlist method, which performs another
greedy step in addition when searching for new basis vari-
ables within the shortlists, benefits particularly from short
transports in the solutions, but not as much as in the sparse
examples considered in [14] with the Euclideanmetric as cost
function.

The runtimes of the AHAmethod are relatively consistent.
They are only considerably shorter for the class Shapes. This
may be due to the fact that in these instances there are only
a few different mass values in the images and the mass is
uniformly distributed over large areas.

Interestingly, a comparison of the transportation simplex
and the CPLEX network simplex reveals that the performance
of the transportation simplex is better on 32 × 32 instances,
while at resolution 64× 64 the opposite is the case. This can
be explained by looking at the twomethods at hand. Although
details of the CPLEX network simplex solver are not known,
it is safe to assume that the simplex steps are implemented
very efficiently. On the other hand, the transportation simplex
has the advantage of an easily obtainable good initial solution,
whereas in the network simplex a preceding simplex phase

280 VOLUME 5, 2017



J. Schrieber et al.: DOTmark—A Benchmark for Discrete Optimal Transport

is necessary. This makes the TPS perform better on smaller
instances. On the higher resolution our results suggest that the
advantage of a strong initial solution is not as influential as
the efficient simplex steps.

Considering the small disparity between the transportation
simplex and the CPLEX network simplex runtimes, the dif-
ference in performance between the two internal solvers for
the shielding neighborhoodmethod is surprisingly large. This
is due to the fact that initial solutions to the interior models
are available in the shielding method and thus the first phase
of the network simplex is not necessary. This is why the
initial advantage of the transportation simplex disappears and
hence using CPLEX as the internal solver yields much lower
runtimes.

Another observation worth mentioning is that the runtimes,
and therefore numbers of iterations, of the shielding method
for the randomly created classes 1–6 agree very well with the
ranges of dependence within the data of the classes. The class
with the lowest runtimes, WhiteNoise, has no dependence
at all, whereas the classes with long range dependences,
GRFsmooth and LogGRF, belong to themore difficult classes
for the shielding method to solve. That seems to indicate that
constructing small shielding neighborhoods prevents larger
updates to the current solution per iteration, which might be
required in these instances. This may also contribute to the
comparatively long and inconsistent runtimes on the class
CauchyDensity.

Based on this first comparison of singlescale methods,
we give the following recommendations for large discrete
transport problems (on grids):

1) If high precision is essential and the IBM CPLEX
software is available, use the shielding method in com-
bination with CPLEX.

2) If reasonable precision up to a small controllable error
is sufficient, use the AHA method. This is especially
advisable if a very high resolution for the mass distri-
bution at the source is required, as this comes for the
AHA method at virtually no extra cost.

3) Both methods are not widely available nor typically
very efficient for costs other than the squared Euclidean
metric. So for other costs direct use of a conven-
tional simplex algorithm or the shortlist method may
be preferable.

4) Whenever a solver is used directly, the choice of the
software and the choice of the most appropriate func-
tion may be crucial. In particular, when using CPLEX,
make sure to use the network simplex solver, setting up
the input as a network structure. If possible, solve the
model with a warm start.

We emphasize that the absolute runtimes given in
Tables 2 and 3 should not be taken at face value and that
actual computations on modern CPUs are typically much
faster. While the relative comparison presented here is jus-
tified to the best of our knowledge, it allows only limited
conclusions about the performance of multiscale variants
and multithreaded implementations of the different methods.

Also, some caution regarding the results of the AHA method
is advisable due to its implementation in C, rather than Java.

VII. OUTLOOK
By providing this benchmark we hope to improve the com-
parability of different methods for solving discrete optimal
transport problems. Contributions or suggestions for extend-
ing the benchmark are welcome. In particular we plan to
include data sets concentrated onmore general grid structures
and especially with irregular support points if there is enough
public interest.

The R package transport [25] offers user-friendly
implementations that are mostly written in C of three of the
methods presented here (transportation simplex, shortlist and
the AHA method). It will be updated in the near future to
include additional state-of-the-art methods.

Solving transport problems exactly for larger images
(e.g. with 128, 256 or 512 pixels in each dimension) is still
computationally very demanding, even for state-of-the-art
methods. Efficient solutions of such large problems could
pave the way for a new class of algorithms in image pro-
cessing. In the area of computer vision and image pro-
cessing, important applications include image enhancement,
denoising, inpainting, feature extraction and compression.
In one subdomain of image processing, these challenges
are approached by decomposing images into two or three
parts [26], e.g. a cartoon component, which contains piece-
wise constant or piecewise smooth parts, a texture compo-
nent, which captures oscillating patterns, and a noise com-
ponent, which contains small scale objects (corresponding
to high frequency parts in the Fourier domain). After the
decomposition step, the texture component can be utilized
for applications such as fingerprint segmentation [27]. Image
decompositions are obtained by formulating and solvingmin-
imization problems that impose suitable norms on the respec-
tive components. The total variation (TV) norm is commonly
used for the cartoon component and the G-norm [28] for the
texture component. Recent works by Brauer and Lorenz [29]
and by Lellmann et al. [30] connect the G-norm to solutions
of transport problems. Typically, the minimization problems
described above are solved iteratively and are computation-
ally expensive. It is conceivable to formulate transport norms
for image decomposition, which would require to solve a
large transport problem in each iteration. Thus, efficient
algorithms for optimal transport are a prerequisite for future
research in this direction.
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