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ABSTRACT The ongoing evolution of mobile wireless communications has resulted in the vision of a multi-
radio heterogeneous network (HetNet) that comprises cells of different scales controlled by various radio
access technologies (RATs). These emerging architectures call for more advanced methods of cross-RAT
radio resource allocation, which are the primary focus of this article. In this paper, based on network flow
optimization techniques, we adapt the concept of weighted α-fairness for efficient resource management in
future HetNets. The corresponding scheme relies on a certain degree of centralized control of the HetNet
architecture and allows to achieve the desired balance between the overall system throughput and the fairness
of the resulting resource allocations based on a single parameter. Our analytical findings, validated with
detailed system-level simulations, are expected to further advance the understanding of feasible resource
control strategies in intelligent multi-radio networks, as well as help optimize the performance of next-
generation HetNets.

INDEX TERMS 5G, capacity improvement, fairness, heterogeneous networks, multi-RAT, resource
allocation.

I. INTRODUCTION
A. GENERAL BACKGROUND ON HetNets
Nowadays, industry and academia are working towards
implementing the fifth generation (5G) of cellular networks,
targeted for completion by 2020. According to the definition
of 5G technologies, they are expected to offer significantly
higher capacity (e.g., 1000x increase), universal seamless
coverage, and better user experience [1], [2]. In the long
run, major industrial players, including infrastructure ven-
dors, device manufacturers, and network operators, are likely
to progressively deploy 5G technologies with some of the
trends visible already today [3]. Notably, to reach the 1000x
capacity, the two key mechanisms are spatial network densi-
fication and spectral aggregation [4]. While the former sug-
gests deploying higher density of increasingly smaller cells
in current network architecture, the latter envisions jointly
utilizing larger portions of radio spectrum across diverse
spectral bands in licensed, unlicensed, and higher frequency
spectrum.

The proliferation of inexpensive low-power small cells of
different sizes (micro, pico, femto, etc.) supporting a mixture

of Radio Access Technologies (RATs), overlaid with macro
cells for wide area coverage and mobility, together create the
vision of aHeterogeneousNetwork (HetNet) [5].With further
densification towards ultra-dense HetNets [6], based on the
network infrastructure that supports multiple air interface
technologies (e.g., small cells with multi-radio capabilities),
the role of ‘‘anchor’’ macro cell base stations to provide wide
area coverage becomes even more pronounced. The macro
cell can provide central intelligence to create a balanced
distribution of users across small ‘‘booster’’ base stations, for
efficient offload of user data traffic [7], [8].

As the above ‘‘anchor-booster’’ architecture develops,
macro cell centric intelligence is being increasingly employed
to coordinate between multi-RAT small cells [9], such that
the degree of network cooperation moves from ‘‘loose’’ inter-
working solutions at the core network level to centralized or
distributed schemes offering tighter integration at the Radio
Access Network (RAN) layer. Advanced RAN-based inter-
working mechanisms have recently been addressed in the 3rd
Generation Partnership Project (3GPP) standardization, with
efficient solutions for 3GPP/WLAN integration captured in
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LTERelease 12 [10]. WLAN/LTE aggregation solutions with
tighter integration ofWLAN into the operator’s cellular radio
network are further standardized as part of LTE Release 13.
Generally, the capacity and quality of service (QoS) gains
from aggregation acrossmultiple links depend on how closely
RAT selection and management procedures are coordinated
at both device and network levels, and increasing levels of
coordination result in higher performance gains [11].

Today, with the growing number of alternative RATs
(GSM/EDGE, WCDMA/HSPA, LTE-FDD/TDD, WiFi, BT,
WiGig, etc.), the emerging RAN-layer cooperation is
expected to offer greater flexibility than has been possi-
ble before with ‘‘loose’’ higher-layer coordination solutions,
thus enabling more dynamic radio resource management for
improved system and user performance [12]. In particular,
RAN-layer integration allows for fine-grained and real-time
flow control to split user traffic flexibly between the available
radio interfaces when optimizing the overall HetNet perfor-
mance [13], [14].

B. PROBLEM STATEMENT AND CONTRIBUTIONS
Various aspects of N -tier multi-RAT wireless networks have
been subject to extensive investigation over the last sev-
eral years. Utilizing the tools of stochastic geometry, many
authors have characterized capacity and throughput bounds
in such systems, see e.g., [15]–[18]. However, this approach
has inherent limitations in addressing the practical resource
allocation problems that can accommodate different levels
of RAN-layer assistance. The related investigations indeed
provided useful insights into the ‘‘averaged’’ behavior of
spatially-uniform N -tier networks, but deliver close to no
essential information regarding the instantaneous traffic con-
trol procedures in a particular deployment of interest. Hence,
whereas probabilistic methods remain crucial for understand-
ing the fundamental capacity limits of such networks, alterna-
tive methods are needed at the operational phase of HetNets
as user connectivity at any given instant of time could be very
different from what is expected on average in the long run.

Using stochastic geometry results as upper bounds, a num-
ber of performance optimization frameworks targeting either
max-min or proportional fairness based flow allocations have
been developed, see [19] for an extensive tutorial on the
matter. As the complexity of radio resource allocation in
future HetNets is high, most of the proposed techniques
result in NP-hard problems that cannot be solved in poly-
nomial time and thus require heuristic algorithms to achieve
sub-optimal performance. To alleviate this problem, game-
theoretic approaches have been proposed, see e.g., [20]–[22].
These models enforce a proportional fairness criterion across
the allocated flows and allow for simple algorithms to esti-
mate allocations. However, compared to classic optimization
methods, game-theoretic approaches do not offer the needed
degrees of control between the system throughput and fair-
ness of flow allocations at the air interface. The latter may
be of particular interest to mobile network operators. Finally,
most optimization studies performed so far do not offer

practical procedures for enforcing the computed resource
allocations.

In this work, we study different multi-RAT bandwidth
allocation techniques. By adopting the concept of weighted
α-fairness, which is a generalization of max-min and pro-
portional fairness criteria, we demonstrate that the emerging
N -layer HetNet architecture is characterized by a large degree
of controllability in terms of the trade-off between system
throughput and fairness of allocations. This degree is fully
managed by a single parameter, α.

The contributions of this work are as follows:
• We comprehensively outline the notion of ‘‘weighted
α-fairness’’ in heterogeneous wireless networks, which
is capable of delivering the appropriate balance between
the overall system throughput and the fairness of result-
ing resource allocations. We also demonstrate that it
can be formulated as a special case of max-min prob-
lem, hence leading to the optimization tasks of linear
programming (LP) type.

• We compare the performance of the proposed criterion
against that of the classic max-min and the proportional
fairness formulations, as well as consider several heuris-
tic methods indicating that our solution is beneficial in
terms of the overall balance between the system through-
put and the fairness of resource allocations across the
users.

• We investigate the response of our proposed heuris-
tic and the corresponding algorithms to various input
parameters of a HetNet, which explains how the capacity
at e.g., pico LTE and WiFi HetNet layers can be traded
for better coverage across the entire system and vice
versa. This, in turn, supplies the network operator with a
convenient tool to dynamically control the deployment
in question.

• We propose a practical implementation of the proposed
weighted α-fairness scheme in HetNets based on the
backpressure concept that allows to rely on the directly
measurable metrics, such as the current state of traffic
buffers, to enforce the computed allocations.

The rest of this text is organized as follows. Section II intro-
duces the considered HetNet architecture, while Section III
discusses the choice of an appropriate optimization criterion.
Further, Section IV outlines the optimization framework pro-
posed in this work, which is then illustrated by the character-
istic numerical results in Section V. Practical implementation
of the proposed solution in a HetNet environment is discussed
in Section VI. Section VII summarizes the most essential
conclusions and take-aways of our study.

II. ENVISIONED HetNet ARCHITECTURE
In this section, we summarize the HetNet concept and provide
further details on different HetNet components. In addition,
we comment on the current research and development efforts
in this area as well as elaborate on how the goals identified
in the previous section could be met in practice. Historically,
the HetNet paradigm was first introduced in the context of
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FIGURE 1. HetNet architectures by 3GPP: DC (top left), Non-collocated LWA (bottom left), and LWIP (right), adapted from [24].

cellular systems as part of 2G GSM specifications, with the
notion of a small (pico) cell. In subsequent 3G UMTS spec-
ifications, this concept did not evolve significantly, as most
technical efforts revolved around performance optimization
of individual RATs (cellular, WLAN, etc.).

Centralized policy management for multi-radio networks
(e.g., WLAN and 3GPP systems) was introduced as part of
4G specifications via a mechanism known as the Access Net-
work Discovery and Selection Function (ANDSF, [23]). This
standardized scheme allows the cellular systems to incorpo-
rate policies for non-3GPP (e.g., WLAN) network discovery
and access. In particular, ANDSF is capable of supplying
user equipment (UE) with the relevant information on the
neighboring non-3GPP RANs (i.e., the discovery function).
It can also notify the UEs regarding the restrictions and
preferences of these neighboring RANs through the inter-
systemmobility policy function. If theUE is allowed to utilize
two or more radio links concurrently, the traffic offloading
preferences could be specified by the dedicated inter-system
routing policy. In general, ANDSF provides policies that
apply for longer time scales of operation, but does not offer
dynamic control and scheduling of radio resources across a
multi-RAT system.

Further extensions to centralized HetNet management
were made in LTE Release 12 and 13. In a nutshell, three dif-
ferent architectures were introduced: dual connectivity (DC),
LTE-WiFi aggregation (LWA), and LTE/WLAN Radio Level
Integration with IPsec Tunnel (LWIP), which are displayed
in Fig. 1. In DC, the main focus is set on connecting the UE
to two access nodes simultaneously. There are three different

bearers that allow to configure different user plane connectiv-
ity options. In this research, we concentrate on the split bearer,
where Packet Data Convergence Protocol (PDCP) data is
transmitted between a Slave eNodeb (SeNB) and a Master
eNodeB (MeNB) via X2 interface. In this case, resource
scheduling is still performed by each entity separately, but
coordination between the MeNB and the SeNB is conducted
by the means of X2 interface, which enables support of data
splitting controlled by MeNB.

Two other considered possibilities, LWA and LWIP, are in
fact different options to support integration of WiFi access
point on the RAN level. In LWA (being somewhat closer
to DC), the splitting is implemented by using the LTE-WLAN
Aggregation Adaptation Protocol (LWAAP), which acts like
a gateway between LTE andWiFi. With LWIP, the user plane
splitting is performed on the IP layer by creating an IPsec
tunnel between the UE and the eNodeB via WiFi. In our
research, we adopt LWA as our background architecture, due
to the higher flexibility that it delivers to the centralized
splitting logic options.

In this work, we concentrate on the conceptual operation
of a HetNet [25], having much broader capabilities for radio
control than what is possible with e.g., ANDSF, where a
multi-radio UE may simultaneously communicate with an
arbitrary number of RATs. To outline the inherent properties
of such systems, we further discuss the available dimensions
of a HetNet ‘‘heterogeneity’’.
RAT-type heterogeneity: Given that each RAT has its spe-

cific architecture and signal transmission principles, the effi-
cient simultaneous utilization of multiple RATs is one of the
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key challenges in HetNets. There are two natural options to
enable the related coordination. The first alternative is to rely
on a centralized coordination entity, which would be in full
control of all the associated RANs. However, the necessary
signaling proceduresmaking this approach feasible have to be
specified separately as part of the corresponding framework
(e.g., in future releases of 3GPP LTE). The primary difficulty
here is to satisfy the diverse requirements of each involved
RAT and construct balanced signaling procedures not affect-
ing the efficiency of individual HetNet components.

Another coordination approach implies the invocation of
the interoperability functions within the individual RATs.
In this case, potential optimality of the HetNet-wide control
might become unavailable due to the lack of complete system
information on the accessible network resources from the side
of each RAT. Correspondingly, the required cross-RAT coor-
dination information may be exchanged via the appropriate
inter-network backhaul links, which might also increase the
overall signaling overhead. An alternative option could be to
delegate the RAT selection decisions to the UEs themselves,
by supplying them with all the necessary information. How-
ever, this solution may be highly sub-optimal, especially in
dynamic environments, whereas it at the same time offers
attractive flexibility to mobile device manufactures and end
users.
Application heterogeneity: In addition to distinction based

on their architecture, HetNets are also differentiated with
respect to the expected use of their individual RAT com-
ponents. This results in an application-level classification,
such as the voice-oriented 2G/3G installations and the data-
centric WLAN deployments. Along these lines, end user ser-
vice provisioning becomes the cornerstone of the respective
system optimization, with e.g., machine automation scenarios
leading to drastically different design choices than high-rate
multimedia use cases.

Importantly, control/user plane separation becomes a
fundamental building block for enabling the realization of
HetNets, which is adopted as a principal design feature in
the next-generation 5G systems [26]. Control/user plane sep-
aration offers additional flexibility to future 5G networks
as well as enables several architecture design options, such
as software defined networks. In the rest of this work, we
proceed with considering an important characteristic HetNet
scenario, which features two RATs (3GPP LTE and IEEE
802.11 WiFi), two types of coverage (macro, as well as pico
for LTE and WiFi), and a single application – best effort
data transmission. Particularly, we assume that the entire
heterogeneous system in question is controlled by a single
coordinating node. This node collects all of the relevant infor-
mation regarding the current user traffic demand, as well as
monitors the availability of a particular RAT coverage within
the target service area. Once this information is known, the
coordinator makes decisions on the best choice of RAT for all
the associated users, as well as advises on the actual amount
of radio resources that every user may utilize on each acces-
sible RAN. In more detail, we assume that the coordinating

node has the full knowledge on the service availability of
every RAN together with the current channel conditions of
each UE.

Naturally, the discussed coordinator may physically reside
on the macro base station side, whereas the relevant control
information from the pico cells and the WiFi access points
could travel on the fronthaul links. In this case, dedicated
gateways between the WLAN access points and the macro
LTE base stations would be required. In light of the ongoing
RAN-layer 3GPP/WLAN integration, our envisioned archi-
tecture becomes structurally similar to the emerging het-
erogeneous cloud-RAN concept discussed in [27] and [28].
Noteworthy, the proposed control system operates on the
packet level (by contrast to the flow level), that is, individual
packets belonging to the same flow could be transmitted
on the concurrent radio interfaces. The coordinator ensures
that the packet stream processed by a certain interface is
then assembled in the correct order. In practice, this can be
achieved by taking advantage of smart tunneling mechanisms
between the UE and the coordinating node. As a proof-
of-concept, we have already demonstrated the feasibility of
a simple prototype, where the UE is utilizing such smart
tunneling (based on the open flow architecture) to split its
traffic dynamically between the LTE and the WiFi radio
interfaces [29].

In what follows, we elaborate on the available solutions
to the aforementioned problem of centralized radio resource
allocation in multi-radio HetNets by employing a collection
of methods coming from the optimization theory. This corre-
sponds to considering a certain time instant t , when the task of
the centralized coordinating node is to decide upon a system-
wide resource allocation, which would be optimal with
respect to a particular metric of interest. Hence, an important
step in optimizing performance of multi-RAT systems is the
choice of the appropriate optimization criterion, which could
satisfy the expectations of both network operators and end
users. We continue with the related discussion below.

III. SELECTION OF OPTIMIZATION CRITERION
From the network perspective, the following optimization
metrics are of particular importance: (i) the fairness of
resource allocations between the users and (ii) the overall
system throughput. As is well known, there typically exists
an inherent trade-off between these two criteria. Depending
on the effective network operator policies, when allocating
resources to the end users, there should remain a possibility
to exchange one parameter for another. Therefore, there are
currently twowell-known fairness criteria resulting in various
degrees of this much needed flexibility, which are known as
max-min fairness and proportional fairness.

A. MAX-MIN FAIRNESS
Max-min fairness is one of the most widely known
performance criteria introduced originally by Bertsekas and
Gallager [30]. Denoting by N the number of user demands
to be served in a network and by Pd the number of paths
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available for these demands d , d = 1, 2, . . . ,N (each
demand corresponds to a particular UE throughput), the
objective is to maximize the minimum of bandwidth alloca-
tions

∑Pd
p=1 xdp, d = 1, 2, . . . ,N , subject to the link capacity

constraints while at the same time satisfying non-negativity
of all allocations. Formally, let Ex = (x1, x2, . . . , xN ) be the
allocation vector (bandwidth in Hz) sorted in non-decreasing
order. We say that Ex provides the max-min allocation if it
is lexicographically maximal among all possible allocation
vectors also sorted in non-decreasing order, see [31, Ch. 8].
A vector Ex is said to be lexicographically greater than Ez if there
is such index k that xi = yi, i = 1, 2, . . . , k , and xk > zk .

Hence, an allocation is called max-min optimal if there
is no other way to increase this allocation for a particular
demand i at the expense of demands j with a greater alloca-
tion. The underlying problem of lexicographic maximization
is of LP (linear programming) type allowing for efficient
implementations with an array of solutions, such as e.g., sim-
plex method [32]. It is also important to note that in its classi-
cal formulation the max-min criterion always exchanges the
overall system throughput in favor of fairness of the resource
allocations. At the same time, the simplicity of the resulting
optimization problem is a very attractive feature that may
potentially allow for real-time radio resource management.

B. PROPORTIONAL FAIRNESS
In the course of the last two decades, a number of authors
questioned the appropriateness of the max-min fairness cri-
terion. Quoting Massoulie and Roberts [33]: ‘‘In fact, there
appears to be no clear economic reasonwhymax-min sharing
should be preferred over some other bandwidth allocation.
More rational objectives would be to maximize overall utility
accounting for costs and perceived value or to minimize the
expected response time of any transfer’’. Moreover, Kelly
in [34] highlights that one of the most successful window-
based rate control procedures — the TCP networking
protocol — results in nearly proportional distribution of
resources alongside the path of a data flow.

To this end, a commonly used objective criterion for pro-
portional fairness,

N∑
d=1

log xd → max, (1)

has a number of useful features that stem from the mathemat-
ical properties of the function f (x) = log(x). First, when the
rate assigned to a certain demand is small, the expression (1)
features a very large negative component. Second, although
f (x) = log(x) is a monotonically increasing function, behav-
ior analysis of its derivative f ′(x) = (log x)′ = 1/x ln(x)
indicates that the growth rate decreases as x increases. Such
behavior naturally precludes from extremely high allocations.
From this discussion, one could also conclude that the base
of the logarithmic function in (1) is irrelevant.

Compared to the max-min fairness, proportional fairness is
known to provide better results in terms of the overall system

throughput by preventing from extremely large or small
allocations. This, however, comes at the cost of some loss
in fairness among the users. Importantly, in its classical for-
mulation and similarly to the max-min criterion, proportional
fairness does not provide flexibility in the choice of the
throughput–fairness balance point. This crucial consideration
can only be introduced by employing alternative objective
functions, with the properties similar to f (x) = log(x). On top
of this, the class of optimization problems where the objec-
tive function is given by (1) is known as convex program-
ming. Such problems are significantly more difficult to solve
compared to simpler LP formulations, thus complicating the
efficient implementation of the proportional fairness metric
in the real-time resource allocation algorithms, especially for
large-scale and ultra-dense HetNet deployments.

C. PROPOSED WEIGHTED α-FAIRNESS CRITERION
As follows from the previous section, the complex HetNet
topology together with the unique properties of its individual
RAT components suggests to rethink the choice of the fairness
criterion. In particular, the said criterion penalizes longer
flows (in terms of the number of hops) more heavily than
shorter flows, provided that they compete for resourceswithin
a certain area of interest. As the users with better channel
quality can utilize wireless resources more efficiently, the
equivalent of the proportional fairness criterion for HetNets
should be based on a certain metric describing the current
channel conditions of the users. Further, observe that themax-
min criterion attempts to deliver as fair allocations as possi-
ble. This feature, while being useful in legacy networks, may
become inappropriate for HetNet systems. Indeed, the current
distance between a user and the HetNet base station (BS) may
significantly affect the choice of the modulation and coding
scheme (MCS) and thus the immediate effective service rate
provided by a RAT. In a max-min setting, the UEs with worse
channel conditions have to be compensated with larger band-
width allocations. The latter, in turn, implies that attempt-
ing to provide an exact fair allocation would dramatically
decrease the throughput of the entire network, which may
be unacceptable for the service operators (see e.g., [33] for
a more detailed discussion).

As an adequate alternative appropriately accounting for the
balance between the network throughput and the resource
allocation fairness, we propose to employ bandwidth-based
max-min fairness. Accordingly, instead of attempting to
deliver a fair allocation with respect to the rates provided to
the UEs, we first propose to divide the available bandwidth
as fairly as possible. Doing so results in a fair allocation
with respect to the set of frequencies granted by the overall
network to a particular BS. Utilizing these frequencies, users
that are closer to their serving BSs are receiving higher data
rates than those located farther away due to the use of differ-
ent MCSs. As one may observe, this advanced criterion still
prevents from the infinitesimally small rates since all of the
users are provided with the same set of frequencies, whereas
the highest rate is upper limited by the fastest MCS that can
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be achieved on a particular RAT. Therefore, the proposed
metric results in amuch desired trade-off between the system-
wide throughput (benefiting from the dynamic nature ofMCS
selection) and the fairness of resulting data rate allocations.

In order to further introduce an explicit capability to
exchange network throughput for fairness and vice versa, we
supplement our baseline objective function with dedicated
weighting coefficients. These coefficients are defined by
carefully selected functions mindful of the instantaneous UE
spectral efficiency and thus allow to flexibly adjust the current
operational regime of a HetNet. In summary, the proposed
criterion could be thought of as a variation of the proportional
fairness metric specifically constructed for HetNets, where
the users located at larger distances from the BS are penalized
more heavily. An important fact is, as we demonstrate in what
follows, that the optimization task still remains in the category
of LP problems. The latter allows for effective solution algo-
rithms, whose computational complexity scales well with the
dimension of the problem, that is, the size of the HetNet and
the number of users.

In summary, the proposed criterion is a type of α-fairness
that has been introduced as an extension of proportional fair-
ness, thus allowing to control the trade-off between through-
put and fairness in communication networks [35]. Over
the last decade, several authors have shifted their attention
to this concept within the scope of wireless systems, see
e.g., [36], [37]. However, those studies remained primarily
theoretical in nature as there have been no standardized
mechanisms in 3G, 3G+, and 4G systems to implement
the required functionality. In this work, we not only take a
careful look at controlling the throughput–fairness trade-off
in a simple fashion by using the framework of α-fairness, but
also proceed with discussing how it might be implemented
in 4G+ and 5G networks. Along these lines, we focus our
attention on the architectural aspects of such systems as well
as address the problem of realistic scheduling therein by
utilizing backpressure algorithms that implement α-fairness
in practice.

IV. PROPOSED OPTIMIZATION FRAMEWORK
A. TRAFFIC AND TOPOLOGY MODELING
Specifying the type of user traffic demands is of particular
importance in emerging HetNets, as these in turn affect the
choice of the objective function and, consequently, the solu-
tion algorithm. In this study, we assume that the offered load
generated by the users is ‘‘greedy elastic’’ (also known as
‘‘full buffer’’ or ‘‘saturated’’ traffic in 3GPP specifications).
Recall that greedy traffic occupies all of the available radio
resources, whereas elasticity implies adaptiveness to such
allocated resources. In practice, elastic traffic is typical not
only for TCP data transfer sessions, but also for contemporary
video and voice applications built on top of dynamic rate
adaptation algorithms.

Further, we consider a characteristic single-cell scenario
in a 3-tier converged HetNet, see Fig. 2.A. The fol-
lowing entities comprise the system of interest: N users

FIGURE 2. Formalization of HetNet system topology.

across 3 separate RAN tiers (called hereinafter layers);
M1 = 1 BS at layer L1 (e.g., LTEmacro cell);M2 BSs at layer
L2 (e.g., LTE pico cells); andM3 BSs at layer L3 (e.g., WiFi
access points). Overall, there areM = M1+M2+M3 BSs in
the considered deployment, as well as one coordinating node
(e.g., physical aggregator) assembling traffic after the UEs
split it across multiple concurrent RATs.

In summary, we make the following assumptions:
• a user may access one BS at each HetNet layer;
• greedy and elastic traffic demands are considered;
• locations of the users are known to the coordinator;
• achievable data rate depends on the current MCS.
The coordinator, which is a centralized resource allocation

module, is physically incorporated into the L1 BS equipment.
Hence, the decisions on the appropriate resource allocations
are made at the time instants when new users arrive into the
system. An example HetNet topology with exactly four users
is demonstrated in Fig. 2.B. In what follows, we concen-
trate on the so-called bifurcated resource allocation principles
assuming that any user may simultaneously employ two or
more radio interfaces and split its traffic arbitrarily between
them. For this reason, there has to be an aggregator termi-
nating virtual tunnels over concurrent RANs, as shown in the
figure.

Analyzing the HetNet topology demonstrated in Fig. 2.B,
we conclude that it is impossible to explicitly define data
rates on the links between the users and the BSs. This is due
to the fact that those are, in fact, shared links. Furthermore,
we notice that the topology in question is redundant as the
links connecting the BSs to the aggregator in a properly
dimensioned system should have equal or higher capacity
than the ones provided by these BSs at the air interface. For
example, letting e = 1, 2, . . . ,E be the set of links and using
ce to denote their capacities at the radio layer, we learn from
Fig. 2.B that c9 ≥ c1 + c2, c10 ≥ c3 + c4 + c5 + c7,
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and c11 ≥ c6 + c8. Hence, links ce, e = 9, 10, 11 yield no
additional constraints.

Correspondingly, the simplified network topology is con-
densed in Fig. 2.C, where the aforementioned ‘‘redundant’’
links have been removed. Here, two additional key system
entities are shown: the logical aggregator and the physical
aggregator (which corresponds to the aggregator in Fig. 2.A).
Within this simplified topology, we do not immediately
identify possible paths between the source (S) and the des-
tination (D). However, supplementing it with the set of
possible paths for S-D pairs, allows us to indicate such routes
unambiguously. Note though that we still cannot explicitly
determine the data rates on the links e = 1, 2, . . . ,N to the
logical aggregator as they actually constitute flows realizing
the user demands.

In summary, our final HetNet modeling topology is illus-
trated in Fig. 2.D, where all of the demands are concentrated
in between two nodes, the logical aggregator and the physical
aggregator. The number of links in such a system equals the
number of BSs,M = M1+M2+M3, whereas their capacities
are equal to the effective capacities of the corresponding BSs.
Some of these links (but not all) are shared across the demand
pairs. Ultimately, the paths for each demand are known to
us explicitly and they uniquely identify data flows that must
be implemented in the system to satisfy the current user
demands.

B. NETWORK FLOW PROBLEM FORMULATION
Here, we first consider simple rate-based resource allocation.
In this case, the current spectral efficiency (SE) of a user is not
taken into account and all of the user nodes are treated equally
in terms of the bandwidth allocation. Further, we extend this
formulation by explicitly taking into account the SE as part of
the capacity constraints. The latter case is expected to result
in better fairness of resource allocations, while the former
should potentially enable the trade-off between the fairness
of allocation and the overall system throughput. Then, we
extend the latter case to the notion of controlled fairness by
introducing the weighting coefficients as functions of the user
SEs. For all the discussed problems, we are interested in
bifurcated solutions, i.e., the schemes where all of the RATs
that the UE is associated with can be used simultaneously.
Below we begin by specifying the task of bandwidth-based
max-min allocation and then extend it to take into account
the SE of user nodes.

Denote by N the number of demands that are to be realized
in the system. Recall that each user node is associated with
exactly one demand. We label the demands with index d ,
d = 1, 2, . . . ,N . The demand volumes are expressed in bits
per second (bps) and denoted as

hd , d = 1, 2, . . . ,N . (2)

Note that the values of hd are not known in advance due
to the assumption of greedy elastic traffic demands. These
values have to be determined such that a certain fairness
criterion is satisfied. Let us also denote by5d the set of paths

for demand d , i.e.,

5d = {Pd1,Pd2, . . . ,PdPd }, d = 1, 2, . . . ,N , (3)

where Pd is the total number of the available paths for
the demand d . In practice, Pd is the number of BSs at all
layers that a user is associated with. In our target topol-
ogy, these paths are readily available as all the subsets Pdp,
p = 1, 2, . . . ,Pd , d = 1, 2, . . . ,N consist of exactly
one element connecting the aggregators. Here we may avoid
using paths as additional variables, hence formulating the
task solely in terms of links (there is a one-to-one mapping
between those).We prefer using them to avoid confusion with
the notation typical for the network flow problems.

Further, let

xdp, d = 1, 2, . . . ,N , p = 1, 2, . . . ,Pd , (4)

be the flows realizing a part of demand d over the path p.
These terms are known as flow variables. For bandwidth-
based allocation, these flow variables are measured in bps.
In the second case, where SEs of the end nodes are taken into
account, flow variables xdp are measured in Hz.

The first set of equations that we need to determine is the
so-called demand constraints. These constraints make sure
that all of the demands hd are fully realized using the flow
variables xdp, p = 1, 2, . . . ,Pd . The demand constraints are
conventionally defined as

Pd∑
p=1

xdp = hd , d = 1, 2, . . . ,N . (5)

Next, we use the link-path-incidence variables δedp, as

δedp =

{
1, e ∩ Pdp = e,
0, otherwise,

(6)

and the capacity constrains read as

N∑
d=1

Pd∑
p=1

δedpxdp = Re, e = 1, 2, . . . ,E, (7)

where Re are the rates of the respective BSs measured in
bps. The capacity constraints guarantee that there are no
overloaded links in our network. Observe that δedp = 1, if the
path p of the demand d uses the link e.
Introducing the allocation vector as

Eh = (h1, h2, . . . , hN ), hd =
Pd∑
p=1

xdp, (8)

we see that the optimization problem is to lexicographically
maximize Eh given the constraints (5) and (7). The respective
solution yields the sought max-min allocations.

Consider now the second case that explicitly takes into
account the impact of SEs of user nodes. This, in turn,
requires a modification of both demand and capacity con-
straints as follows. Let sdp be the current SE of a flow variable
xdp realizing a part of the demand d over the path p, measured
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in bits per second per Hertz (bits/s/Hz). Recall that the SEs
specify how efficient a flow allocation xdp is depending on
the MCS currently in use by a UE. In order to provide the
max-min allocation in the presence of different MCSs at user
nodes, we need to allocate more bandwidth to the UEs having
MCSs with the lower data rates. Observe that now the flow
allocations xdp are measured in Hz.
The demand constraints are now given by

hd =
Pd∑
p=1

sdpxdp, d = 1, 2, . . . ,N , (9)

where the products xdpsdp provide the allocations in bps.
The capacity constrains remain the same as in (7) with the

rates Re replaced by the bandwidth Be measured in Hz. The
task at hand is to lexicographically maximize Eh. The problem
formulated above (with the SEs taken into account) provides
the max-min allocation of rates to the user nodes. In this case,
the amount of bandwidth assigned to the UEs will change
proportionally to the relative weights of their current MCSs.
Since the target task is classified as a fair network capacitated
problem with fluid capacity, we may replace inequalities in
the capacity constraints with equalities. We also note that the
resources are scheduled by the LTE BSs based on the discrete
resource allocation blocks implying that the actual allocation
will slightly deviate from the theoretical prediction.

C. FINE-GRAINED FAIRNESS CONTROL
Consider now the modifications required to the aforemen-
tioned task, that is, to enable the possibility of exchanging the
overall system throughput for fairness. These modifications
are based on several dedicated functions applied to the SE
of the UEs. Recall that by default the scheme under discus-
sion will allocate the resources with the maximum possible
fairness. This will leave the users with high SE and the best
connectivity (e.g., those within coverage of all three layers)
with inadequately small amounts of bandwidth in order to
improve performance of ‘‘unlucky’’ nodes with poor connec-
tivity and lowMCSs. Although this strategy may indeed have
a positive effect on the lower percentiles of the cumulative
distribution function (CDF) for per-user rate allocations, the
total throughput is likely to remain low (see related discussion
in Section V). However, we suggest to modify the input SEs,
sdp, by an appropriate control function f (x) in such a way
that the absolute difference between the UEs with ‘‘high’’ and
‘‘low’’ SEs would be reduced. Hence, the proposed scheme
assigns more resources to the UEs with better SEs to trade the
fairness of allocation for the overall system throughput.

The key research question for the proposed modification is
the choice of the suitable control function f (x). In this work,
we consider the two alternatives, f (x) = xα and f (x) = αx ,
where x is the SE of UEs, see Fig. 3. The first option is
straightforward and easy to understand. Indeed, the original
fair allocation is achieved by setting α = 1, whereas the
‘‘maximum throughput’’ solution is obtained by allowing
α → 0. The latter is the case for the rate-based allocation,

FIGURE 3. Comparison of alternative control functions.

where SEs are not taken into account (sdp = 1, ∀d, p).
However, the second choice of a function, which is widely
used in e.g., range compression of RF power amplifiers, could
potentially provide for a better alternative due to the presence
of a special balancing point at α = 1, see Fig. 3. The values
of α lower than 1 lead to better allocations for the users
with higher SEs, thus improving the system throughput. Next,
choosing α = 1 delivers the rate-based resource allocation
that still exchanges fairness for the system throughput. For
α > 1, the scheme tends to improve the fairness of resource
allocation eventually reaching the case of bandwidth-based
scheduling. Further increase of α, however, does not lead
to the corresponding growth in fairness, as we emphasize in
what follows. Nevertheless, the use of f (x) = αx may bemore
flexible due to its behavior at α → 0, allowing to target the
entire controllable range in HetNets. It is important to note
that the proposed modifications do not alter the class of the
optimization problem in question, as they apply to xdp only
in terms of the weighting coefficients.

D. PROPOSED SOLUTION ALGORITHM
The solution to the max-min optimization problem at hand is
an extension of the algorithm for the single path problem, see
e.g., [38]. In our work, we employ Matlab to implement the
corresponding allocation algorithm. This task is classified as
the LP problem comprising the initial ‘‘water-filling’’ stage
for detecting the maximum allocation that can be assigned
to all of the flows simultaneously, and the subsequent refine-
ment of the allocations for selected flows. The first stage may
have multiple solutions as opposed to the unique solution
for the fixed-path allocation. Due to this ambiguity, we need
to additionally perform the so-called non-blocking tests to
decide upon the resulting max-min allocation. To have a
detailed look at the steps discussed, the reader is encouraged
to review Algorithm 1.

The proposed algorithm is to be invoked at the macro-
LTE BS whenever a new user arrives into the system or an
existing user changes its connectivity state. The reason behind
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Algorithm 1 The Weighted Max-Min Algorithm Solving the
Multi-RAT Resource Allocation Problem in a Capacitated
Fair Network
1: Modify the initial vector of SEs (sdp0) to receive control over

the system fairness/throughput. sdp = f (sdp0), where f (sdp0) is
the selected control function (e.g., f (x) = αx )

2: Estimate 1 as a solution to the LP problem and
• set n = 0, 1(0)

= 1;
• define Z0 = {1, 2, . . . ,N }.

3: Set n = n+ 1 and for each d
4: Check the throughput allocation. The users whose allocations

can be increased are defined as a subset Zn ⊆ Z0
5: if Zn = ∅ then
6: go to 13
7: else
8: Zn−1=Zn−1 \ Zn.
9: end if
10: Solve the following LP problem

max1,

subject to:

Pd∑
p=1

sdpxdp = hd , d = 1, 2, . . . ,N ,

1− hd ≤ 0, d ∈ Zn,

1(k)
− hd ≤ 0, k = 0, 1, . . . , n− 1,

N∑
d=1

Pd∑
p=1

δedpxdp = Be, e = 1, 2, . . . ,E,

11: Set 1(n)
= 1

12: go to 3
13: Apply function f1(x) that will take into account the SE vec-

tor modifications considered in step 1. With the said function
applied, the final user throughput vector hd1 will have the form
of hd1 = hd sdp0/sdp.

is that the max-min fair allocation for all the users depends
on the availability of wireless interfaces for every particular
UE. It is important that no ongoing sessions are interrupted
due to the new user arrivals as only the available allocations
are recomputed and communicated to the UEs. For the same
reason, there is no need to solve the underlying allocation
problem when no changes in the connectivity of the users are
observed. Finally, we emphasize that due to the LP nature of
the problem, the computational complexity at a macro-LTE
BS is manageable even for ultra-dense scenarios.

E. HEURISTIC APPROACHES
In this subsection, we introduce two simple heuristic resource
allocation strategies that may serve as benchmarks for the
approach proposed above. The first scheme is a UE-centric
mechanism, where the UE independently decides on how
much resources will be utilized at each network layer. It is
important to note that with this procedure the user is not aware
of which resources are generally available at each layer and
the UEs locally compete with one another at every accessible
radio interface. Furthermore, the assumed greedy elastic type

of traffic does not leave room for smarter resource alloca-
tion decisions. These two limitations motivate us to imple-
ment a simple ‘‘greedy’’ scheme: the UEs consume as much
resources as the BS scheduler allows. In the remainder of this
text, we refer to this heuristic method as the ‘‘max-usage’’.

The second approach is an example of the network-assisted
resource allocation: the wireless system is helping the UE
to make more intelligent decisions by providing relevant
information on the neighboring service entities. Over the
recent years, such algorithms are under active investigation
by the 3GPP community for LTE Release 12 and beyond (see
e.g., [39]). In our research, we implement a simple example
scheme, where the only information provided to the users
is the preferred association threshold for each HetNet layer.
By appropriately adjusting this threshold, the network may
increase/decrease the effective coverage range of pico-LTE
stations and WiFi access points in order to better offload the
UE traffic from/to the macro LTE cell.

Furthermore, it is also assumed here that the UE can only
use a single layer (radio interface) at a time (e.g., WiFi or
pico-LTE), which is a common consideration for the ongoing
3GPP standardization efforts. With this constraint in mind,
the user first attempts to connect to the WiFi access point,
as it typically offers higher data rate. If the network-provided
association threshold does not allow for a WiFi connection,
a pico-LTE base station is attempted instead. Finally, if none
of the previous attempts succeeds the UE remains connected
to the macro-LTE base station. Generally, dedicated thresh-
olds might be applied for each individual BS. In this work,
we first select the thresholds based on the averaged values
of the SE, sdp, of the UEs on a particular layer. Further, we
consider different thresholds in order to control the trade-off
between the fairness and the overall system throughput. In
what follows, we name the discussed heuristic algorithm as
‘‘WiFi-preferred’’.

V. SELECTED NUMERICAL RESULTS
A. PARAMETERS OF THE ENVIRONMENT
The reference HetNet scenario that we consider in this work
includes the following system entities: a single macro cell
BS (named eNodeB), several pico eNodeBs and WiFi access
points (APs), as well as a number of multi-RAT (WiFi and
LTE) user nodes. Following 3GPP discussions on the char-
acteristic HetNet use cases [40], [41], pico eNodeBs, WiFi
APs, and UEs are deployed uniformly within the coverage
area of the macro eNodeB. Each user is assumed to have
several active radio connections depending on the availability
of RATs and the perceived signal strength (has to exceed the
AP/eNodeB association level). The latter is estimated subject
to different pathloss models.

According to 3GPP [40], [41], for the macro-cell users
the distance-dependent pathloss is given by the ITU Urban
Macro (UMa) channel model. For the WiFi APs and pico
LTE users, the pathloss is approximated using the ITU
Urban Micro (UMi) channel model specified in [42] with the
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following environmental parameters: the average height of
the buildings is h = 20m and the average street width is
W = 20m. In addition to pathloss, accurate modeling of the
propagation environment requires appropriate slow and fast
fading models. Slow fading is explicitly taken into account
as we consider our network at discrete time instants n1t ,
n = 0, 1, . . . . The effects of fast fading smoothen out over
longer periods of time as the performance metrics that we are
interested in are the averaged values. Hence, the parameters
related to fast and slow fading could be incorporated by
employing the constant margins (with the values equal to the
standard deviations from [42]), which are added on top of the
RAT association threshold. In this work, we also approximate
the current levels of interference by following a similar tech-
nique. We discuss these important approximations in more
detail below. All the basic parameters are summarized in
Table 1, where the term LPN (low-power node) refers to both
WiFi AP and pico-LTE BS.

TABLE 1. Primary deployment parameters.

B. CALIBRATING ANALYTICAL ENVIRONMENT
The proposed analytical model incorporates a number of
simplifying assumptions. In order to verify whether these
assumptions hold with respect to the metrics of interest
(including throughput and fairness), the model in question
has to be tested against a more realistic HetNet environment.
In this research, we employ our own advanced ‘‘large-scale’’
system-level simulator (SLS), which takes into account all the
relevant details of HetNet operation and has been thoroughly
calibrated in our past publications [43], [44].

Our SLS tool is capable of modeling large-scale
multi-RAT environments, including the underlying wireless
technologies, such as LTE, WiFi, and mmWave-based RATs.
It is based on flexible event-driven architecture, which allows
to significantly decrease the computation time for low-loaded
scenarios. For all the considered technologies, PHY and

MAC layers are implemented in detail, based on the appro-
priate IEEE and 3GPP specifications, while the higher layers
are generally simplified to abstract away the traffic models
supported with analytical approximations. Regarding the
environment generation, the SLS tool supports 3D geograph-
ical models, which take into account time–location based
interference characterization, antenna configurations, various
UE mobility models, and wrap around. The current open-
source version of our SLS may be acquired at [45]. Below we
compare the performance of simpler heuristic strategies intro-
duced above with both the analytical performance optimiza-
tion and the large-scale SLS results. Matching the observed
performance for the heuristic schemes targets to confirm that
the behavior of the proposed analytical framework essentially
repeats that of the SLS tool.

At the calibration phase, the operation of the max-usage
scheme implemented in both analytical and SLS environ-
ments has been contrasted in a reproducible test scenario
with the fixed coverage and capacity settings. The monitored
calibration parameters have been the number of users (60UEs
uniformly deployed within the macro cell area), the number
of pico-LTE BSs and WiFi APs (5 nodes of either type
with uniformly distributed locations across the macro cell
area), and transmission power/channel options. One of the
key performance indicators discussed below is the fairness
of resource allocations. To assess the resulting fairness of
a particular set of such allocations, we utilize Jain’s index
defined as

J =

(
N∑
i=1

xi

)2
1

N
N∑
i=1

x2i

, (10)

where xi is the UE throughput and N is the number of users.
The calibration results averaged over 100 realizations

(a real-time run of 4 seconds for each replication in the large-
scale SLS) are demonstrated in Fig. 4, where the left subplot
outlines the user association statistics (the number of users
connected to each RAT), whereas the right subplot details the
average per-UE throughput. First, we confirm that the differ-
ence in the values of metrics under comparison as obtained
with the two approaches is well within 5%, which is suffi-
ciently accurate considering the amount of details accounted
for by the SLS tool. The observed smaller deviations are
primarily due to the absence of inter-cell interference in the
analytical model.

While the deployment of the pico-LTE infrastruc-
ture has been implemented according to the 3GPP
specifications [40], [41], which should enforce a certain min-
imum distance between the pico-LTE BSs, the interference
between the neighboring nodes is still non-negligible [46].
Observing the throughput CDF, we notice a small step at
around 25% for the analytical curve. Such behavior is due
to the difference in throughput levels for the users having
macro-LTE only connectivity and those with additional RAT
associations. Note that in the SLS this effect is smoothened
out due to the random interference picture. Similar
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FIGURE 4. Calibration of analytical framework based on connectivity (left) and throughput CDF (right).

FIGURE 5. Throughput CDF (analytical tool).

smoothening effects may be observed in cases when the
UE with better connectivity (e.g., associated with all three
layers at the same time) does not have an advantage in the
throughput as compared to a macro-cell only UE due to the
high levels of interference on the WiFi and/or pico layers. In
summary, the demonstrated results allow us to conclude that
the developed analyticalmodeling tool is sufficiently accurate
to evaluate the effects of the proposed resource allocation
strategies.

C. PERFORMANCE ANALYSIS
Let us now compare the performance of the proposed analyti-
cal optimization scheme offering the bandwidth-based alloca-
tion (f (x) = sαdp with α = 1) with that of the simpler heuristic
procedures. The results of such comparison are illustrated in
Fig. 5 and Fig. 6. In particular, Fig. 5 details the throughput
CDF and the 5%-percentile for all the considered strate-
gies. Even though at the first glance the average through-
put is nearly equal for all the three alternatives, one may

FIGURE 6. Throughput spread diagram (analytical tool).

observe that the difference in fairness and the 5%-percentiles
is dramatic. For the WiFi-preferred scheme, the throughput
figures are exceptional for the UEs havingWiFi connectivity,
whereas pico- and macro-LTE users are suffering (the step
at around 60%). In addition, with this allocation mechanism
extra small steps in the CDF curve may be noticed for the
WiFi-only users. This effect is caused by the lack of flow
splitting (bifurcation) as every UE utilizes a single RAT
at a time. Further, the proposed scheme delivers the best
5% throughput percentile performance, which is however
achieved at the cost of some degradation in the averaged
per-UE throughput.

In more detail, Fig. 6 elaborates on the per-UE
throughput values for each user in the form of a spread
diagram. This illustration highlights the fact that the red dots
(WiFi-preferred scheme) are mostly concentrated in top and
bottom parts of the plot resulting in ‘‘dotted’’ lines due to
the non-bifurcated nature of resource allocation, as discussed
above. By contrast, the green pluses (max-usage scheme) are
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FIGURE 7. Weighted fair and average throughput (left), as well as Jain’s index (right) for different deployments.

located essentially everywhere evenly. Notably, the blue stars
(max-min scheme, which corresponds to Algorithm 1) tend to
group in the center of the plot, thus yielding the best fairness
and 5%-percentile performance of the max-min bandwidth-
based allocation.

To better understand the impact of capacity and connec-
tivity on the performance of the proposed algorithms, we
also assess the behavior of the considered resource allocation
schemes for the various densities of infrastructure nodes at
different layers. The resulting fairness and the average per-
UE throughput statistics for all the three schemes under com-
parison are highlighted in Fig. 7, where the numbers of LPNs
at the pico-LTE and theWiFi layers are varied. Analyzing the
obtained results, one may observe that when the connectivity
of the users and hence the capacity of the entire network
is poor (i.e., almost all of the UEs utilize only the macro
LTE cell), the degree of unfairness is large. It is also evident
that none of the considered strategies, including the most fair
max-min bandwidth-based scheme, can improve over such
behavior.

As user connectivity improves, the average per-UE
throughput of the WiFi-preferred scheme becomes signifi-
cantly higher compared to the other strategies. However, this
effect is due to a unique position of particular users with
WiFi connectivity, who will now enjoy the highest through-
put in the system. However, the weighted fair through-
put (the throughput multiplied by the Jain’s index) of the
WiFi-preferred scheme is still lower as the result of much
poorer fairness in such a system. If user connectivity
improves further, the max-min bandwidth-greedymechanism
begins to perform better in terms of both the average through-
put and fairness of resource allocations, eventually reaching
and even outperforming the max-usage as well as the WiFi-
preferred solutions. Another interesting observation can be
made when analyzing the behavior of the Jain’s index (the
right subplot in Fig. 7). As one may notice, once a certain
degree of connectivity is reached no further improvement in

fairness can be obtained. We therefore name this effect the
‘‘fairness saturation’’ and note that the fairness plateaus for
all the considered schemes. This phenomenon is the conse-
quence of near-ideal connectivity (when almost every UE has
access to the BSs on all three layers) and uniform distributions
of the UEs and the BSs within the coverage area of a macro
cell. The absolute fairness saturation value is also affected by
the implementation details of a resource allocation strategy.

D. BALANCING THROUGHPUT AND FAIRNESS
In this subsection, we concentrate on the relative performance
of the max-min and max-usage schemes allowing for better
control of the trade-off between the system throughput and
the fairness of resource allocations. Recall that in case of
max-min fairness we may apply two alternative weighting
functions to the current SE values of the users, whereas for the
max-usage mechanism we can instead control the association
threshold for the LPNs. Along these lines, Fig. 8 emphasizes
the balance between fairness and per-UE throughput for the
max-min allocation strategy, as evaluated for the two different
control functions αx and xα . As expected, over a certain
range of α the performance of the max-min scheme with
both control functions remains almost identical. This region
is observed for f (x) = sαdp with α ∈ (0, 1).

However, we also remind that the control function
f (x) = αx has a much wider range of the applicable values
of α, thus potentially allowing to achieve higher values of
throughput. In addition, Fig. 8 highlights the actual control
limits due to the effects of both capacity and coverage. For
instance, it could be infeasible to achieve any average per-UE
throughput bymaking α smaller than 0.1 for f (x) = αx , as the
scheme in question would attempt to allocate more resources
to the UEs with high SE, which may not be possible due
to insufficient remaining resources. Therefore, any further
decrease in α would only degrade the overall system per-
formance. Similar behavior is observed when the considered
functions are applied to improve fairness e.g., making α in
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FIGURE 8. Average per-UE throughput vs. fairness.

f (x) = αx higher than 1.5. In that case, the coverage limits are
met and further increase in α would lead to excessive resource
allocations for the UEs with low connectivity. This, in turn,
is wasteful and unfair towards the UEs positioned in ‘‘good’’
locations.

FIGURE 9. Control regions for different schemes.

Finally, we compare the control performance of our
weighted max-min bandwidth-greedy scheme with that of the
max-usage heuristic approach in two different coverage and
capacity environments. In fact, in these experiments we target
to identify the available operational regimes (control regions)
in a multi-RAT HetNet. The corresponding results are shown
in Fig. 9, where the control function for the weighted max-
min allocation is chosen to be f (x) = αx . In the first scenario,
5WiFi APs (40%of themacro-LTE cell coverage) and 5 pico-
LTE BSs (60% of the macro-LTE cell coverage) are deployed
within the macro cell area. The second scenario recreates an
ultra-dense deployment with 15 LPNs of each type placed
within the same area, thus delivering almost 100% coverage
at both pico-LTE and WiFi layers.

In the considered scenarios, in addition to the network-
centric max-min solution, it also becomes possible to adjust

fairness of the network-assisted WiFi-preferred scheme by
altering the association threshold towards very low (higher
fairness) vs. very high (more throughput) settings. How-
ever, as we learn from Fig. 9, such adjustment possibilities
for this heuristic mechanism are significantly more mod-
est than those available for our network-centric weighted
max-min algorithm, as the fairness of the former approach
is consistently lower. In the ultra-dense case, the max-min
control range reduces significantly, as close-to-maximum
fairness/throughput ratio has already been reached with the
default parameters (bandwidth-based allocation) and no addi-
tional adjustment is necessary. Another interesting effect is
observed when assessing the behavior of the UE-centric max-
usage scheme. In the ultra-dense deployment, this approach
performs better than the network-assisted WiFi-preferred
strategy. The reason is that in such a scenario even a
simple bifurcated scheme outperforms most non-bifurcated
solutions.

VI. PRACTICAL IMPLEMENTATION CONSIDERATIONS
In principle, our proposed solution offers network operators
a convenient tool to control the throughput–fairness trade-
off in a simple and reliable manner. However, in order to
actually provide a versatile instrument for the resource allo-
cation and management, the proposed model needs to be
formulated in terms of directly controllable network param-
eters, such as the buffer content at different entities and
the actual data rates. In this section, we illustrate how our
solution could be mapped onto practical HetNet implementa-
tion. The protocol model of the prospective HetNets and the
traffic flows between the involved entities are demonstrated
in Fig. 10 (left). Generally, the setup follows the DC and LWA
logic outlined in [24] and [47] (as described above). Particu-
larly, the aggregation/splitting of the data traffic is enabled at
the PDCP layer, even if the serving eNodeB and the WiFi AP
are not collocated with the master eNodeB. Note that accord-
ing to [47], the control messages are still transmitted trough
the MeNB hence requiring the UE to be connected to it.

A practical implementation of the weighted α-fairness is
known to be provided by the backpressure algorithms [48].
The use of backpressure for generic wireless systems has
been addressed in [49] and [50]. Specifically, it has been
demonstrated in [35] that by utilizing the Lyapunov function
drift the weighted α-fairness can be enabled in the network
by computing the difference in the buffer content at the con-
catenated queues. The latter is of particular importance since
it provides a simple way to enforce α-fairness in prospective
HetNets by using directly observable variables.

To this end, Fig. 10 (right) demonstrates the abstracted
HetNet system model. There are N users assigned to MeNB,
SeNB, andWiFi. The task is to decide howmuch data rate the
UE will receive on each interface considering the backlogs in
MeNB, SeNB, and WiFi queues. We introduce the following
notation:
• xi1, xi2 and xi3 are the rates of user i, i = 0, 1...N ,
measured in bit/s, onMeNB, SeNB, andWiFi interfaces,
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FIGURE 10. Merged LWA and DC architecture (left) and its abstraction (right).

respectively. These values are controlled by the aggrega-
tion/splitting logic;

• xj, j = 0, 1, 2...N , are the initial rates defined by the
traffic model of user j that will share the MeNB, SeNB,
and WiFi interfaces, measured in bit/s;

• qi1, qi2, qi3, i = 0, 1, 2, 3...N , are the backlogs in the
queue of user i on MeNB, SeNB, and WiFi interfaces,
measured in bits. Although in practice there is a common
queue for all the UEs, we may sort them based on the
packet destination and abstract as a separate transmis-
sion queue for each UE;

• qj, j = 0, 1, 2...N , is the backlog in the queue of user
j that shares the MeNB, SeNB, and WiFi interfaces,
measured in bits;

• Ck , k = 1, 2, 3, are the bandwidths of MeNB, SeNB,
and WiFi interfaces, respectively, measured in Hz;

• ai1, ai2, ai3, i = 0, 1...N , are the shares of the channel on
MeNB, SeNB, andWiFi interfaces that user i is provided
with, measured in Hz. The latter can be approximated by
using the LTE scheduler type and theMAC layer reports;

• Si1, Si2, Si3 are the SEs of MeNB, SeNB, and WiFi
interfaces, measured in bit/s/Hz.

The α-fairness resource allocations can be formulated in
terms of the Lyapunov function drift as

min
N∑
i=1

U (ai1, ai2, ai3)− β
∂

∂t

[1
2

×

N∑
j=1

[
qj1(t)2 + qj2(t)2 + qj3(t)2

] ]
, (11)

whereU (ai1, ai2, ai3) is our considered utility function induc-
ing α-fairness, β is a constant that selects the trade-off
between the congestion and utility, and the rest of the equation
is the drift of the Lyapunov function [35].

Approximating the derivation in (11), we arrive at

min
N∑
i=1

U (ai1, ai2, ai3)

−β
[ N∑
j=1

qj1(xj1 − Sj1aj1)+ qj2(xj2 − Sj2aj2)

+ qj3(xj3 − Sj3aj3)+ qj(xj − xj1 − xj2 − xj3)
]
,

(12)

subject to

N∑
i=1

aij = Cj, j = 1..3,

3∑
j=1

xij ≤ xi, i = 1..N ,

xij ≤ Sijaij, i = 1..N , j = 1..3, (13)

thus enforcing the allocations based on the user backlogs. The
α-fairness enforcement algorithm in (12) does not modify
U (ai1, ai2, ai3). Instead, only the radio link control (RLC)
offloading rates xjk , i = 1, 2, ,̇N , k = 1..3 are man-
aged, while all of the other variables are obtained from
different subsystems, including the MAC layer schedulers

232 VOLUME 5, 2017



M. Gerasimenko et al.: Adaptive Resource Management Strategy in Practical Multi-Radio HetNets

(Sjk , ajk ,Ck ), the PDCP layer (xj, qj), and the RLC layer (qjk ).
Every LTE frame (10ms), the decision module located in the
MeNB updates these values and solves (12), thus providing
xjk . Once the task at hand is solved, the algorithm redis-
tributes the PDCP packets into the RLC queues, according to
new xjk values. Finally, the packets are forwarded to lower
layers and distributed according to a particular scheduling
discipline at each RAT node (e.g., round robin (RR) for
the LTE scheduling system and random access (RA) with
the theoretical model in [51] for WiFi). Currently, schedul-
ing is modeled with the RR-like bandwidth division, (Sik ∗
aik ), which corresponds to the RR, but not to WiFi RA.
In this context, the utility function U (ai1, ai2, ai3) plays a
role of the input values modifier, similar to the previously
considered α-fairness. Different options for representing the
utility function may improve network fairness or capac-
ity without increasing the complexity of the optimization
task.

VII. CONCLUSION
In this work, we addressed the concept of a multi-radio het-
erogeneous network, which is expected to be the mainstream
architecture for emerging 5G wireless systems. To this end,
we have applied network optimization theory to assess a
range of effective control techniques for intelligent resource
allocation in such networks. A key focus of our present
study was to address the appropriate balance between the
overall system throughput and the fairness of user resource
allocations. Our proposed framework is intended to be illus-
trative of the general set of problems that could be tackled
by the offered optimization techniques. We emphasize that
due to the linear programming approach of the underly-
ing mathematical formulation, our solution scales well with
increasing number of users and infrastructure nodes, even
for the most challenging ultra-dense deployments. In addi-
tion, the proposed methodology has the potential to con-
sider an arbitrary number of tiers in the system, as well
as could be extended in the following important directions:
finite traffic demands, alternative objective functions, uplink
vs. downlink optimization, and non-bifurcated flows, among
others.

The most important features of our proposed solution are
the following:
• it may react quickly to the network loading fluctuations,
as well as to the changes in the channel properties and/or
user densities by adjusting the optimal traffic splitting
over the available radio interfaces;

• it can enable efficient resource management for users
based on their different traffic patterns;

• it may provide the desired trade-off in terms of the
fairness-to-rate ratio, thus potentially offering vari-
ous value-added features for the network operators
(e.g., competitive pricing schemes).

In addition to the above, we demonstrated practical exten-
sions of our model by applying a backpressure algorithm.
It should be noted that one of our following steps is the

implementation of the proposed backpressure-based model
into the 5G-ready SLS tool.
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