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ABSTRACT OpenFlow enabled networks split and separate the data and control planes of traditional
networks. This design commodifies network switches and enables centralized control of the network. Control
decisions are made by an OpenFlow controller, and locally cached by switches, as directed by controllers.
This can significantly impact the forwarding delay incurred by packets in switches, because controllers
are not necessarily co-located with switches. Only very few studies have been conducted to evaluate the
performance of OpenFlow in terms of end-to-end delay. In this paper, we develop a stochastic model for
the end to end delay in OpenFlow switches based on measurements made in Internet-scale experiments

performed on three different platforms, i.e., Mininet, the GENI testbed, and the OF@TEIN testbed.

INDEX TERMS OpenFlow, stochastic modeling, end-to-end delay, Mininet, GENI, OF @TEIN.

I. INTRODUCTION

The distributed control plane of the Internet Protocol (IP)
in traditional networks is responsible for routing packets
from source to destination. With the exponential spread
of the Internet, traditional networks have become complex
and difficult to (re)configure and manage [1]. Implementing
complex and high level network policies requires network
operators to translate those policies into a set of vendor
specific device configurations for each each individual
switch. Moreover, networks have to be easily reconfig-
urable to quickly changing network conditions. This level of
re-configurability and adaptability to network loads is almost
absent in traditional networks. Enforcing network policies in
such dynamic networks is a very challenging task. Today’s
networks are vertically integrated, which means the control
plane (responsible for routing decisions) and the data plane
(responsible for executing routing decisions) reside within
closed network devices running proprietary code that stymies
innovation in networks. In current networks, designing, eval-
uating and then deploying a new network protocol can take at
least 5 to 10 years.

Software defined networking (SDN) [2] is a new network-
ing paradigm, which provides a solution to this limitation
in current networks by smartly managing and configuring
network devices. SDN makes the network programmable
by separating the control plane of the network from the
data plane. The data plane comprises of only switches with

the capability of forwarding packets according to simple
instructions received from the control plane. SDN simplifies
administrators’ control over entire networks through a cen-
tralized control plane running in software, hence reducing
operational cost. It has also allowed researchers to experiment
on deployed networks without causing any interference to
their traffic.

The centralized control plane consists of a network
controller with a southbound application programming inter-
face (API), to communicate with down-stream network hard-
ware comprising the data plane, and a northbound API,
to communicate with network applications [3]. OpenFlow
is an open protocol for the southbound API, promoted by
the Open Networking Foundation (ONF) [4]. OpenFlow
provides open inter-operability between network equipment
of different vendors, thus commodifying network equip-
ment. OpenFlow evolved from the Ethane Project of the
Clean Slate project at Stanford University. In that project,
network administrators applied one policy to all switches.
The project’s motive was to remove deficiencies in the
design of the Internet. This program led to further projects,
among them OpenFlow. OpenFlow was initially used in
some campus networks in the United States. Figure 1
depicts the structure of an SDN using OpenFlow at the
controller’s southbound API. OpenFlow [5] is often consid-
ered synonymous with SDN, but it just a part of the SDN
architecture.
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FIGURE 1. SDN Architecture.

A. PROBLEM STATEMENT

The OpenFlow protocol helps manage various elements of
a network, e.g., implementing configuration changes in the
data plane of complex networks typical of data centers and
telco core networks. However, these configuration instruc-
tions must reach data plane elements in a timely manner.
In traditional networks the control plane is distributed across
individual switches which rarely affects the performance of
the data plane. The delay incurred in OpenFlow-based data
plane elements (e.g., switches and routers) to process pack-
ets increases due to the involvement of a central controller.
The increased delay is due to: (1) the propagation delay of
the communication channel between data and control plane,
(2) the processing speed of the controller, and (3) the respon-
siveness of OpenFlow switches to find a matching flow table
entry and/or enter and update flow entries [6]. Collectively,
the sum total of these delays incurred by a packet at a switch
is the store-and-forward delay. The goal of this study is
to analyze and model the characteristics of the end-to-end
delay between source and destination in OpenFlow enabled
networks.

B. PRIOR STATE-OF-THE-ART

The present state-of-the-art in measurement and modeling of
packet latency in OpenFlow enabled network can be divided
into two categories, i.e:

1) Queuing theory based models [7]-[9]
2) Measurement based models [7], [10].

Queuing theory based models assume Poisson arrivals of
packets and exponential distribution for traffic. In reality
Ethernet traffic has been found to be self-similar (fractal)
in nature. Leland er al. [11] demonstrated that Ethernet
traffic cannot be accurately modeled by a Poisson process.
Chilwan et al. [8] provided a model built on queuing theory,
but it was evaluated against simulations.

Ciucu and Schmitt [12] took an alternative approach
to classical queuing theory by using network calculus.
Network calculus has two branches: deterministic network
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calculus (DNC) and stochastic network calculus (SNC).
DNC only provides worst-case bounds on performance met-
rics. The models built using network calculus used DNC, and
their results are still far from practical use.

Measurement based models are only evaluated against sim-
ulations and small-scale lab setups. These models do not cap-
ture real network effects on the packets delays in OpenFlow
enabled networks. Models based on measurements must be
based on data from diverse setups, including Internet-scale
experiments.

C. PROPOSED APPROACH

We developed a stochastic model based on measurements
taken from three different OpenFlow switch platforms which
include the Mininet emulator, the OF@TEIN testbed and
the GENI testbed. These models will help us better under-
stand the end-to-end delay characteristics of Internet traf-
fic in networks using OpenFlow controlled switches. First,
we made measurements on Mininet (a virtual network
emulator), which we compared to measurements taken from
physical switches, to assess its accuracy in terms of delay.
Secondly, measurements for the end-to-end delay are taken
on the Internet-scale OF@TEIN testbed that spans across
nine different countries. Thirdly, we made measurements on
the GENI testbed, which is also an Internet-scale testbed
spread across the US. These two testbeds, i.e., OF@TEIN
and GENI, are used to analyze the performance of OpenFlow
enabled switches in terms of end-to-end delay in real traffic
scenarios. Finally, we analyze the measurements from across
these three platforms and developed a stochastic model for
the end-to-end delay.

D. KEY CONTRIBUTIONS

The stochastic model that we have developed will help
network designers and administrators anticipate expected
end-to-end delays in WANS, overlay WANs and Internet links
built using OpenFlow switches. According to the authors’
best knowledge, this the first time that such a comprehensive
measurement study for the end-to-end delay in Internet-scale
OpenFlow networks has been conducted. Previous studies
have been conducted either on SDN emulators like Mininet
and OMNeT++. There was a gap in end-to-end delay mea-
surements in large scale, production level SDN networks.
We have also compared the results of two large scale testbeds
OF@TEIN and GENI with the Mininet emulator.

Il. RELATED WORK

Very few studies have been conducted so far to see the
effects of centralized control plane in SDNs in terms of
end-to-end delay performance metric. Bianco et al. [13] mea-
sured throughput and latency of an OpenFlow softswitch
built on an Ubuntu PC that performed L2 Ethernet switch-
ing using a Linux bridge (bridge—utils), L3 IP routing
using Linux IP forwarding and an OpenFlow controlled
virtual switch for different packet sizes and load condi-
tions. Ciucu and Schmitt [12] performed experiments on
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four hardware SDN switches to measure the latency involved
in generation and execution of control messages. They
focused their attention on the insertion delay and the effect of
a rule’s position number in the flow table. Huang ef al. [14]
measured and compared the latency across three differ-
ent hardware switches and an Open vSwitch (OVS) [15]
softswitch, and built an OVS-based emulator for physical
switches whose latency closely mimics that of a particular
physical switch. Sunnen [16] compared the delay perfor-
mance of legacy switches to an NEC OpenFlow switch.

Levin et al. [17] compared the performance of centralized
control planes to that of distributed control planes. This study
was motivated by the question of whether centralized control
planes can provide the same reliability and scalability as
distributed ones. Heller [18] also considered scalable and
fault-tolerant OpenFlow control planes that used more than
one controller.

There has also been some work on the development
of performance analysis benchmark suites for control and
data planes of SDNs. Among them is OFLOPS [19], an
open framework for performance measurement of OpenFlow-
enabled switches. Cbench [10] is used to benchmark con-
troller performance. These studies evaluated performance of
OpenFlow network architectures using experiments on hard-
ware or simulations on different OpenFlow platforms.

However, to the best of our knowledge, Jarschel er al. [7],
Chilwan et al. [8], Yen and Su [9], Azodolmolky et al. [20],
Bozakov and Rizk [21] and Samavati [22] are the only
studies to-date to have developed delay models for Open-
Flow networks. Jarschel et al. [7], Chilwan et al. [8], and
Yen and Su [9] developed delay models using queuing theory.
However, Azodolmolky et al. [20] and Bozakov and Rizk [21]
used network calculus for their delay models.

Both approaches made some unrealistic assumptions
for analysis. Jarschel et al. [7], Chilwan et al. [8] and
Yen and Su [9] assumed Poisson packet arrivals, whereas
several studies have demonstrated that Ethernet traffic is self-
similar (fractal) in nature, and is not accurately modeled as a
Poisson process [11]. On the other hand, network calculus
is a relatively new alternative to classical queuing theory.
It has two branches: Deterministic network calculus (DNC)
and stochastic network calculus (SNC). DNC, used by both
Azodolmolky et al. [20] and Bozakov and Rizk [21], only
provides worst-case bounds on performance metrics and
yields result that are of little practical use [12].

Samavati [22] provided the comparison of performance
in OpenFlow networks of different topologies. They used
graph theory for performance evaluation but did not con-
sider controller-switch interactions in any significant detail.
Bovy et al. [23] have done experiments for the end-to-end
delay over traditional networks and found that classification
of the numerous histograms demonstrates that about 84% are
typical histograms that have a Gamma-like shape with heavy
tails.

Mahmood et al. [24] proposed an analytical model
to predict the average time that a packet spends in an
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SDN network. In this work, data plane is modeled as open
Jackson network and the controller is modeled as an M/M/1
queue. Lin et al. [25] proposed an analytical model based on
stochastic network calculus and verified results on OMNET+
simulations and laboratory testbench. Their model gave the
lower bounds for the switch-controller end-to-end delay in
a SDN network. Yang et al. [26] proposed a cross stratum
optimization (CSO) architecture for data center services that
require low delay, high availability and guaranteed end-to-
end QoS. Their SDN solution used OpenFlow-based elastic
optical nodes that provided global optimization and control
across data center network resources to meet QoS demand.
Yang et al. [27] adapted SDN to provide control over multiple
resources for joint optimization of end-to-end services in 5G.
Based on the proposed architecture, a resource provision
scheme (RIP) using an auxiliary graph is used to schedule
routes globally. They experimentally verified the architec-
ture for multi-dimensional resources integration for cloud
radio-over-fiber network (C-RoFN) on an OpenFlow-based
enhanced SDN testbed.

IIl. EXPERIMENTAL SETUPS

We performed experiments on three different platforms, i.e.,
Mininet [28], the GENI [29] and the OF@TEIN tested [30].
All three platforms use switches based on OVS.

We conducted end-to-end delay measurements using ping
command for three packet sizes, small (40 bytes), medium
(576 bytes) and large (1,500 bytes). Three packet for-
warding scenarios were considered in the experiments, i.e.,
(1) proactive, (2) all-to-controller and (3) reactive. In the
proactive case, controllers populate the flows tables in net-
work switches before the start of communication between
sender and receiver. In the all-to-controller case, every packet
arriving at any switch is forwarded to the controller to take the
decision and after that a flow entry is sent back to the switch.
The same is repeated at every switch in the path from sender
to receiver. In the reactive case, only a fraction of packets
require controller intervention due to periodic timeout and
removal of flow entries from switch flow tables. Packets
were sent at a rate of 10 packets/sec and time out was set
to 2 seconds for all experiments. Reported measurements of
each experiment are the average of 10, 000 values.

A. MININET

Mininet [28] is an emulator for quick prototyping of large
SDN networks on a single computer. It lets users launch a
virtual network with switches, hosts and an SDN controller
that enable the rapid development and testing of SDN applica-
tions. We used Mininet 2.2.1, running Open vSwitch v2.5.0,
on a PC with an Ubuntu Linux operating system (OS), Intel
Core 2 Duo 3.0GHz processor and 2GBs of RAM. A linear
topology with four switches as shown in Figure 2 was used.
Three scenarios were considered for experiments:

« Proactive: When the controller populates the switchs
flow table ahead of time.
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FIGURE 2. Mininet experiment setup.

« Reactive: When a switch does not find a flow table entry
for a fraction of incoming round trip flows and consults
the controller.

o All-to-controller: When all packets are forwarded
through controller.

B. GENI TESTBED
The Global Environment for Networking Innovation (GENI)
[29] is a large scale tested that provides a virtual environ-
ment for running network experiments on Internet-scale and
permits a great degree of flexibility. GENI compute and
network resources can be obtained from a great number of
nodes / sites, principally distributed across the United States.
In GENI we can make custom topologies by connecting
different resources using Layer-2 connectivity. GENI allows
us to install operating systems on VMs using pre-configured
images or even install custom operating systems and software
on allocated resources. It also gives users control over the
operation of network switches to control the flow of traffic.
GENI also gives us the ability to run Layer-3 and above pro-
tocols by installing necessary software in the resources allo-
cated to the experimenter. GENI has its own instrumentation
and measurement tools that can be used to monitor resource
functionality and take measurements more effectively.

We categorized the experiments we conducted on
GENI testbed into two types:

Type 1 All OpenFlow switches were reserved on a single
GENI site and all four controllers were put on
another separate GENI site apart from the switches’
site. This configuration simulates a setting in which
all switches are part of the same autonomous
system.

Type 2In this scenario all four controllers were put
on individual sites while OpenFlow switch sites
remained unchanged. This configuration decorre-
lates controller-switch communication delay and
simulates a setting in which all four switches belong
to different autonomous systems.

1) TYPE 1 ALL CONTROLLERS ON SAME SITE
In this case we created a linear topology of four switches

on GENI. These four switches were reserved on the
KENTUCKY PKS?2 site of GENI which is hosted by the
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FIGURE 3. GENI Case 1 Experiment Setup.

University of Kentucky, Lexington, KY. Figure 3 shows
the experimental setup for the first type of experiment.
We reserved four VMs running POX controllers [31] on the
CENIC InstaGENI site located in Los Angeles, CA.

Every switch was connected to one of the controllers as
depicted in Figure 3. Any packet received by a switch for
which it did not have a matching flow table entry (flow
table entry miss) is forwarded to its assigned controller.
Every switch was running Open vSwitch v2.5.0. We mea-
sured round-trip times (RTT) using ping command at a rate
of 10 packets/sec and took 10, 000 measurements for each
considered packet size. These measurements were taken for
three packet sizes of 40, 576 and 1, 500 bytes.

FIGURE 4. GENI Case 2 experiment setup.

2) TYPE 2 ALL CONTROLLERS ON DIFFERENT SITE

In this case switch locations were kept unchanged, i.e., all
switches were on the KENTUCKY PKS?2 site, as depicted
in Figure 4. In this case four controllers were running on the
UCLA, Illinois, Ohio and CENIC GENI sites. Like before, all
controllers ran the POX controller. The reason behind putting
controllers on different sites was to decorrelate the controller
switch communication delays, as they might be for four
switches belonging to four separate autonomous systems. As
before, we used Open vSwitch v2.5.0 and measured RTTs by
taking 10, 000 measurements for each packet size of 40, 576
and 1, 500 bytes.

C. OFQTEIN TESTBED

The OpenFlow @ Trans-Eurasian Information Net-
work (OF@TEIN) [30] is a testbed that provides a
virtual playground for doing SDN related experiments.
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FIGURE 5. OF@TEIN testbed physical infrastructure.

This testbed has been developed by the Networked Com-
puting Systems (NetCS) Laboratory at the Gwangju Institute
of Science and Technology (GIST), South Korea, and is still
evolving. It comprises of ten international sites spread over
nine different countries, including Pakistan, South Korea,
Malaysia, Vietnam, India, Philippine, Indonesia, Thailand
and Taiwan. Figure 5 depicts the physical infrastructure
underlying the OF@TEIN testbed. All sites in OF@TEIN
are accessed and managed through OpenStack [32] Horizon.
The experimenter can reserve resources at any of the ten sites.
The testbed uses an OpenDaylight [33] controller running at
GIST to install flows in flow tables of network switches.

FIGURE 6. OF@TEIN experiment setup.

Figure 6 is the experimental setup used to take measure-
ments for end-to-end delay on the OF@TEIN testbed. One
VM was reserved at each of the two sites, the Philippines
and Malaysia. The VM at the PH site in the Philippines was
configured as a sender and the VM at the Malaysia site, hosted
by MYREN, as a receiver. A POX controller was running at
GIST, Gwangju, South Korea. The network topology con-
sisted of four switches. Two switches were at the MYREN
site and other two switches at the PH site and both sites were
connected through GRE tunnel. We measured the RTT to
avoid clock synchronization issues present in measuring the
one-way delay.
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IV. RESULTS

A. GOODNESS-OF-FIT CRITERIA

Two widely used criteria for information based model
selection in computational learning theory are the Akaike
information criterion (AIC) and the Bayesian information
criterion (BIC). The goal of these models is to make predic-
tions about models based on given data that best generalize
the underlying distribution of data.

1) AKAIKE INFORMATION CRITERION

In 1979, Akaike introduced the AIC that is considered among
the first model selection criteria. It is one of the most widely
used model selection criteria among practitioners. In tra-
ditional statistical modeling, the maximum likelihood esti-
mate (MLE) is used to predict the unknown parameters of
a model having a specific dimension and structure. Akaike
built AIC on the MLE to provide a mechanism to predict
the parameters of the model having unknown dimension
and where the dimension is found from the data. Using the
Akaike framework, model estimation and selection can be
accomplished simultaneously.

The main idea behind AIC is that if we have a true dis-
tribution P of data and we want to compare it with two
other models M| and M>, then the better one will be the one
that has lower Kullback-Leibler divergence (KLD) with true
distribution P. But in most real scenarios we do not have the
true distribution from which the data points were drawn, in
which case we estimate the P— M and P —M> from the given
data. Then the model with the lowest AIC value is preferred.
Equation 1 is the mathematical expression to calculate AIC.

AIC = 2K —2log(L), 1)
where,
K is the number of predictors
L is the maximum likelihood value

In Equation 1 the term 2K is the penalty for adding extra
predictors. The other term, —21og(L), tells how closely the
model fits the data.

2) BAYESIAN INFORMATION CRITERION

The BIC is another well known criterion used in statistical
modeling to check which model best fits available data.
BIC is considered a standard approach for model selection
for large data sets. BIC penalizes models that have a large
number of free parameters. The best model is the one that has
the lowest BIC value.

Consider a random sample Y7, ..., Y,, and two competing
models fi(y, ®1, ..., Oy1) and fr(y, ¢1, ..., Pm2) that we
want to fit to the data. If L1 (01, . . ., 6;y1) and Ly (1, . . ., Pm2)
are likelihood functions, then the BIC will be defined as
follows:

L1, ..., 0m1)

Ly(é1, ..., dm2)

BIC =21In — (m — my). ()
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FIGURE 7. PDFs for end-to-end delay in Mininet. (a) Mininet - PDF for 40 bytes. (b) Mininet - PDF for 576 bytes. (c) Mininet - PDF for 1; 500 bytes.

TABLE 1. PDF estimation for Mininet.

Comparison based on AIC
Mininet 40 Byte 576 Byte 1500 Byte
Weibull Gamma Lognormal Normal Weibull Gamma Lognormal Normal Weibull Gamma Lognormal | Normal
Proactive 20721.28 | 1966.508 1603.499 2838.487 | 21726.28 | 1980.123 1713.678 2878.543 | 20721.28 | 1966.508 | 1603.499 2838.487
All to Controller 16338.03 | 16425.39 16521.57 16421.56 | 1631545 | 16476.32 16621.53 16525.33 | 16425.65 | 16420.89 | 16516.72 16413.81
Reactive[Switch] 370206.2 | 2802.091 1543.293 5525.703 | 415560.4 | 1705.901 1341.1055 | 4630.861 | 20721.28 | 1966.508 | 1603.499 2838.487
Reactive[Controller] | 3416.519 | 3451.025 3471.003 3461.125 | 3402.248 | 3444.611 3467.717 3428.952 | 3424.185 | 3464.891 | 3464.891 3459.23
Comparison based on BIC
Proactive 20735.71 | 1980.929 1617.920 2852.908 | 20875.71 | 1995.999 1705.135 2879.873 | 20735.71 | 1980.929 | 1617.920 2852.908
All to Controller 16349.23 | 16436.59 16532.77 1643276 | 16367.32 | 16464.43 16665.34 16425.65 | 16343.16 | 16432.09 | 16527.92 16425.01
Reactive[Switch] 370220.6 | 2816.426 1557.628 5540.038 | 415574.8 | 1720.236 1355.440 4645.196 | 20735.71 | 1980.929 | 1617.920 2852.908
Reactive[Controller] | 3424.594 | 3434.594 3479.079 3450.295 | 3410314 | 3420.314 3475.783 3437.018 | 3432275 | 3472981 | 3491.17 3467.32

3) PDF ESTIMATION USING AIC AND BIC

To determine which distribution best fits the data we used
the fitdistrplus package [34] for R. We use this package to
estimate parameters for different distributions from our data.
After we estimate parameters for all considered distributions,
we can compare the AIC or BIC to determine which distri-
bution fits the data better. The distribution with the smallest
value of AIC and BIC is the one that best generalizes the

— All hits: This is the mode of the PDF due to delays
of packets that find hits in flow tables of all switches
and do not require controller intervention.

— One-or-more Misses: This mode of the PDF is due
to delays of packets that encounter a flow table miss
in at least one switch.

B. MININET

underlying data distribution. We estimated PDF for three
packet sizes, 40, 576 and 1, 500 bytes, for all three platform,
i.e., Mininet, GENI and OF@TEIN.

We have estimated PDFs using AIC and BIC for four cases
as follows:

o Proactive Delay PDF: This is the PDF for the case when
all packets find hits in flow tables of all switches they
pass through.

o All-to-controller Delay PDF: This is the case when all
packets generate misses in flow tables of all switches
they pass through.

« Reactive Delay PDF: The PDF for this case is a Gaus-
sian mixture model with the following two modes:
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We set a hard time-out of 2 secs for flow table entries in
Mininet OVS switches. Figure 7 plots the PDFs for all three
packet sizes.

Table 1 shows the AIC and BIC values for all three
considered packet sizes. For the proactive case, AIC
and BIC are lowest for log-normal' distributions for
all three packets sizes, i.e., the end-to-end delay in
an OpenFlow network follows a log-normal distribu-
tion. For the all-to-controller case, AIC and BIC are
lowest for the Weibull distribution, which suggests that for
all three packets sizes the end-to-end delay follows a Weibull

IWhen the logarithm of a random variable is distributed according to a
Gaussian it follows the log-normal distribution
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FIGURE 9. PDFs for end-to-end delay in OF@TEIN. (a) OFTEIN - PDF for 40 bytes. (b) OFTEIN - PDF for 576 bytes. (c) OFTEIN - PDF for 1; 500 bytes.

distribution. For the all hits mode of the reactive case,
AIC and BIC are lowest for the log-normal distribution for
all three packets sizes, which suggests that the end-to-end
delay in this case follows a log-normal distribution. For the
all-or-more mode of the reactive case, AIC and BIC are
lowest for the Weibull distribution, which suggests that for all
three packets sizes the end-to-end delay in this case follows
a Weibull distribution. Figure 10 shows the empirical and
estimated PDF plots for all cases in Mininet.
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C. GENI TESTBED

Like before, the hard time-out for flow table entries was set
to 2 secs. After that, PDFs were plotted for every considered
packet size, as shown in the Figure 8. Table 2 shows the
AIC and BIC values for all three considered packet sizes.
For the proactive case, AIC and BIC are lowest for Normal
distributions for all three packets sizes, meaning that the end-
to-end delay in an OpenFlow network follows a log-normal
distribution. For the all-to-controller case, AIC and BIC are
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(

lowest for the log-normal distribution, which suggests that
for all three packets sizes the end-to-end delay follows a
Weibull distribution. For the all hits mode of the reactive case,
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AIC and BIC are lowest for the log-normal distribution
for all three packets sizes, which suggests that the end-to-
end delay in this case follows a log-normal distribution.
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TABLE 2. PDF estimation for GENI.

Comparison based on AIC
GENI 40 Byte 576 Byte 1500 Byte
Weibull Gamma Lognormal Normal Weibull Gamma Lognormal Normal Weibull Gamma Lognormal | Normal

Proactive 2452548 | 15341.07 13436.53 20784.43 | 23829.50 | 14881.91 13213.93 19775.45 | 26297.86 | 17535.03 | 15367.85 23385.74

All to Controller 19119.62 | 19027.04 19046.91 19003.08 | 19389.42 19272.5 19287.9 19258.38 | 19130.63 | 18998.83 | 19015.05 18981.94

Reactive[Switch] 19028.43 | 12357.49 10874.11 16597.41 | 20213.50 | 12893.10 11249.25 17564.29 | 1841534 | 11944.55 | 10650.63 15639.81

Reactive[Controller] | 26994.64 | 26712.90 26684.41 27070.26 | 25429.37 | 25450.92 25395.83 25553.48 | 27866.57 | 27482.20 | 27347.89 28068.74
Comparison based on BIC

Proactive 24539.90 | 15355.49 13450.95 20798.85 | 23843.92 | 14896.33 13228.35 19652.71 | 26312.28 | 17549.45 | 15382.27 23400.16

All to Controller 19130.82 | 19038.24 19058.11 19014.28 | 19400.62 19283.7 19299.1 19269.59 | 19141.83 | 19010.03 | 19026.25 18993.15

Reactive[Switch] 19042.28 | 12371.34 10887.96 16611.26 | 20227.42 | 12907.02 11263.18 17578.21 | 18429.17 | 11958.38 | 10664.46 15653.64

Reactive[Controller] | 27006.27 | 26724.53 26696.04 27081.89 | 25440.77 | 25462.32 25407.23 25564.87 | 27878.25 | 27493.88 | 27359.57 28080.42

TABLE 3. PDF estimation for OFTEIN.
Comparison based on AIC
OFTEIN 40 Byte 576 Byte 1500 Byte
Weibull Gamma Lognormal Normal Weibull Gamma Lognormal Normal Weibull Gamma Lognormal | Normal

Proactive 52598.93 | 40778.92 40216.81 41924.08 | 36246.37 | 31064.05 30718.17 31768.93 | 46363.99 | 38522.75 | 38021.60 39440.25

All to Controller 18914.32 | 18828.94 18842.16 18801.01 | 19662.66 | 18925.57 18945.92 18886.99 | 15464.08 | 14790.32 | 14782.24 14507.56

Reactive[Switch] 41617.03 | 32741.79 32293.84 33650.09 | 38130.23 | 33544.40 33163.25 34320.94 | 43439.00 | 35106.31 | 34791.09 35744.27

Reactive[Controller] | 26470.65 | 26124.00 26041.68 26456.13 | 22922.38 | 22663.10 22615.78 22938.80 | 50292.76 | 49683.99 | 49514.51 50630.28
Comparison based on BIC

Proactive 52612.70 | 40792.70 40230.59 41937.86 | 36259.26 | 31076.95 30731.06 31781.82 | 46377.49 | 38536.24 | 38035.09 39453.74

All to Controller 18925.46 | 18840.09 18853.30 18810.15 | 19673.83 | 18936.74 18957.09 18898.16 | 15474.86 | 14801.10 | 14793.01 14518.33

Reactive[Switch] 41630.32 | 32755.09 32307.14 33663.39 | 38143.14 | 3355731 33176.16 34333.85 | 43452.48 | 35119.79 | 34804.57 35757.75

Reactive[Controller] | 26481.92 | 26135.26 26052.94 26467.39 | 22933.35 | 22674.06 22626.74 22949.76 | 50305.18 | 49696.41 | 49526.94 50642.70

For the all-or-more mode of the reactive case, AIC and BIC
are lowest for the log-normal distribution, which suggests that
for all three packets sizes the end-to-end delay in this case
follows a Weibull distribution. Figure 11 shows the empirical
and estimated PDF plots for all cases in GENI.

D. OF@TEIN TESTBED

The hard time-out for flow table entries was set to 2 secs.
After that, PDFs were plotted for every considered packet
size, as shown in the Figure 8. Table 3 shows the AIC and BIC
values for all three considered packet sizes. For the proactive
case, AIC and BIC are lowest for Normal distributions for
all three packets sizes, meaning that the end-to-end delay in
an OpenFlow network follows a log-normal distribution. For
the all-to-controller case, AIC and BIC are lowest for the log-
normal distribution, which suggests that for all three packets
sizes the end-to-end delay follows a Normal distribution.
For the all hits mode of the reactive case, AIC and BIC are
lowest for the log-normal distribution for all three packets
sizes, which suggests that the end-to-end delay in this case
follows a log-normal distribution. For the all-or-more mode
of the reactive case, AIC and BIC are lowest for the log-
normal distribution, which suggests that for all three packets
sizes the end-to-end delay in this case follows a log-normal
distribution. Figure 12 shows the empirical and estimated
PDF plots for all cases in OF@TEIN.

V. STOCHASTIC MODELING
We model the end-to-end delay in an OpenFlow SDN, as
the sum of two components: Deterministic delay (Dp) and
stochastic delay (Dy), i.e.,

Dg>r = Dp + Ds. (3)
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These two terms are further decomposed in terms of the
following equation:

1 ns ne
Dpyg = Z (Dtrans,i + mep,i) + st,i + le X Sc,j
=1

i=1 i=1

“

In Equation 4, Dyp ; is the propagation delays of the
i link on the path between sender and receiver, each of which
is calculated as Dpyqp, ;i = %

Dyrans,i 1s the transmission delay over the i link between
sender and receiver, Dyygns.i = % This way,
the deterministic delay D in Equation 3 is the sum of trans-
mission delays D;,qps,; and propagation delays Dp,p,; of links
on the path.

The terms S, ; and S¢; in Equation 4 are the stochastic
delays associated with the i/ switch and j controller, respec-
tively. Here, ng denotes the total number of switches on the
path under consideration and n¢ is the number of controllers
that may be queried by switches to forward a packet to its
destination. [; are Bernoulli random variables that take on
value 1 with probability «; and value O with probability
(1 — aj), also called an indicator function. The values of o;
depend on a variety of factors including the timeout value
of flow table entries in switches and input traffic rate. The
stochastic delay S in Equation 3 is the sum of all switch delays
Ss.i and all controller delays S, ;,

Due to the stochastic nature of the end-to-end delay (Dg2E)
we measured and modeled its PDF. We found the PDF of
transit latency in OpenFlow switch SDNs to be multi-modal,
which is a departure from the unimodal distributions of transit
latencies found in traditional networks with distributed con-
trol planes.
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PDFs of the measurements taken from the Mininet emu- testbeds, which are overlayed on production / research net-
lator show a log-normal + Weibull mixture distribution for works, show that the PDFs of end-to-end delay in SDNs
the end-to-end delay in SDNs. The GENI and OF@TEIN is a log-normal mixture. Based on the fact that these
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()Reactive (one or more misses)-1, 500 bytes, R2 = 0.98.

two testbeds also contain the actual traffic (Mininet con-
tains measurements of only emulated traffic), we con-
cluded that log-normal mixture model will be more accurate
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representation for end-to-end delay in SDNs. When PDFs
are plotted on log-log scales we can see that the PDFs
exhibit multiple modes. We model these modes as log-normal
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distributions. We model the PDF as a log-normal mixture
model (LNMM) of random variable X in Equation 5:

K
fx@) =) niN(logx; pi, o7) )

i=1

K
where, 0 < A; < 1and Zki =1,
i=1

and N (x; ol.z) for 1 <i < K are K log-normal PDFs of

the form,
1 e(%(‘“g%)z). ©

N(ogx; i, 0%) =
xXo+/2m
In our case we set K = 2 to produce a bi-modal PDF of
the LNMM. One mode represents the transit delay when the
controller is consulted by the switch in making a forwarding
decision and the other one for the case when the switch finds a
matching flow table entry. The parameters A1 and A, = 1—X
are weights that determine the probability with which a packet
is forwarded proactively (A1, without controller involvement)
or reactively (A, with controller involvement).

[N

Mean = pe™ @)

Variance = (ea2 — 1)(22M+02 )

The MLEs of the mean and variance parameters of a log-

normal distribution using n samples x;, where 1 < i < n, are
calculated as:

1 n
¥ =exp| - logx) |, ©
i=1
1 " Xi 2
o= |- > (log ;> ) (10)

i=1

To validate the proposed stochastic model, we compared
its cumulative distribution functions (CDFs) against that of
the empirical data for all platforms under considerations.
We quantify the degree of similarity between model and data
CDF using the coefficient of determination, denoted R?, and
defined in Equation 11,

S G — fr(x)?
X i =)

where X is the sample mean of the n samples.

R*=1- , (11)

VI. CONCLUSION

In this paper, we presented a stochastic model for end-to-end
delay for networks with OVS-based SDN switches derived
from empirical measurements. We performed experiments
on four OpenFlow SDN switches on three different plat-
forms (i.e., Mininet emulator, and the GENI and OF@TEIN
testbeds) together with POX controllers to study the end-
to-end delay characteristics in OpenFlow-enabled networks.
We proposed a log-normal mixture model for end-to-end
delay in SDN and validated it with our experimental data
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and found out it be a good fit to the empirical measurements.
Previous studies proposed models for end-to-end delay across
SDN switches that were rooted in queuing theory and were
M/M/1 models. Our results show that an M/G/1 model with
a log-normal mixture model will model end-to-end delay in
OpenFlow-enabled networks more accurately.
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