
Received October 11, 2016, accepted November 29, 2016, date of publication December 5, 2016, date of current version June 7, 2017.

Digital Object Identifier 10.1109/ACCESS.2016.2635378

High-Level Synthesis for Semi-Global Matching:
Is the Juice Worth the Squeeze?
AFFAQ QAMAR1, (Member, IEEE), FAHAD BIN MUSLIM2, (Student Member, IEEE),
FRANCESCO GREGORETTI2, (Member, IEEE), LUCIANO LAVAGNO2, (Senior Member, IEEE),
AND MIHAI TEODOR LAZARESCU2, (Member, IEEE)
1Department of Electrical Engineering, Abasyn University, Peshawar 25000, Pakistan
2Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy

Corresponding author: A. Qamar (affaq.qamar@abasyn.edu.pk)

ABSTRACT High-level synthesis (HLS)-based designmethodologies are extremely viable for industries that
are sensitive to production costs. In order to have competitive advantage, the ability to have several different
implementations of the same algorithm satisfying a diverse range of resolution, cost, and performance
constraints is highly desirable. In this paper, we present multiple hardware implementations of the semi-
global matching (SGM) algorithm, which is used in stereo vision systems, e.g., for automotive applications.
The hardware platform considered in this paper is a Xilinx Zynq system-on-chip. A performance comparison
of both HLS-based design and a manual register transfer level (RTL) design in terms of quality of results,
flexibility, and design time is also presented. SGM mainly includes a sequence of three processing steps,
i.e., the ‘‘cost cube calculation’’ followed by the ‘‘path cost computation’’ and finally the ‘‘disparity
approximation and minimization’’. The path cost processor further performs a pixel-wise processing of
the cost cube data along eight distinct path orientations. The baseline algorithmic model usually called the
‘‘golden’’ model utilizes considerably large arrays that are required to be mapped to an external DRAM and
brought into the on-chip RAM when required. This necessitates adding both the memory transfer loops
as well as insertion of calls to the AXI transactors for accessing the DRAM through the on-chip DDR
slave. Furthermore, the initial algorithm (typically single-threaded) must be parallelized to fully exploit the
concurrency offered by the target hardware platform. The design space exploration was thus performed
by making several considerably different micro-architectural choices. Eventually, we were able to obtain
an implementation comparable with the manual RTL design. Both the manual RTL and the HLS designs
achieved the target real-time performance of 30 frames/s for the image resolution of 640×480with a disparity
depth of 128 pixels per frame.

INDEX TERMS High-level synthesis, FPGA, register transfer level (RTL), semi-global matching, DRAM,
design space exploration.

I. INTRODUCTION
System-on-chip (SoC) designs are becoming increasingly
heterogeneous as they combine multicore architectures with
a variety of hardware accelerators to carry out dedicated com-
putational tasks. These hardware accelerators offer several
orders of magnitude higher power and timing efficiency than
a corresponding software implementation [1]. However, the
presence of accelerators aggravates the complexity of SoC
design. With the continuous advancements in technology, the
complexity of electronic designs now has a profound effect
on the overall cost, performance, and power consumption of
the modern electronic systems.

As far as behavioral description for the hardware design
is concerned, the abstraction level is rising from register

transfer level (RTL) to algorithmic untimed or transaction-
based, followed by an automated high-level synthesis (HLS)
flow [2]. Model-based Design (MBD) is a methodology that
starts from an abstract, implementation-independent model
that is functionally verified and algorithmically optimized. It
then maps the model to several optimized candidate imple-
mentations, eventually choosing the one that best meets the
market requirements. In the context of hardware design,
MBD uses high-level synthesis for this mapping.

HLS takes as input the model-based description of the
design, specified in some high-level language such as C,
C++, SystemC or Simulink, and synthesizes it to gener-
ate RTL, as depicted in Fig. 1. By elaborating different
sets of constraints, HLS tools allow designers to evaluate

VOLUME 5, 2017
2169-3536 
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

8419



A. Qamar et al.: HLS for SGM: Is the Juice Worth the Squeeze?

FIGURE 1. General high-level synthesis flow.

multiple implementation alternatives, a process known as
Design Space Exploration (DSE) [3], [4]. HLS enables the
description of a digital design at a higher level of abstraction
accompanied by different design constraints by using control
and data flow graphs (CDFG). CDFG scheduling and binding
with respect to these constraints enable us to explore the
design space more rapidly thereby improving the Quality of
Results (QoR) compared to the manually-coded RTL design.

Design space exploration with HLS is much broader and
easier than what is possible with logic synthesis alone, since
the former can be achieved by simply changing HLS tool
directives, while the latter usually requires one to manually
change a detailed hardware description expressed in the form
of Verilog or VHDL code. Such hardware descriptions at a
lower abstraction level are often attempted only for a limited
number of architectural options, because of the correspond-
ing larger design and verification times [5]. Owing to its
improved design re-use, reduced simulation run-time and a
broader design space exploration, HLS considerably reduces
the time to market and improves the coding productivity.
Additionally, high design productivity necessitates that com-
plex SoCs use a higher percentage of reused components [6].
This in turn requires soft IP components, that are designed
only once using some high-level languages and are imple-
mented at various instances in order to meet various design
requirements [7].

A C-based algorithmic model is usually available as a
reference ‘‘golden’’ model to both HLS and RTL designers.
This model however, needs several modifications before it
can be synthesized automatically viaHLS. This is particularly
true when the reference model (typically single-threaded)
lacks sufficient parallelism, thus making it very difficult to
meet the design constraints. This hence, requires putting in
some effort to manually parallelize the code by splitting it
into multiple synchronized threads communicating through

e.g. FIFOs or ping-pong buffers. This manual effort however,
is still considerably smaller than the extensive coding effort
required for direct RTL implementation.

In addition to concurrency, another aspect worth con-
sidering while gauging the manual effort is the memory
access optimization, which usually is the bottleneck, par-
ticularly for image and video processing algorithms. This
becomes even more crucial when the design implementation
requires accesses to external dynamic random access mem-
ory (DRAM). This requires writing custom-built memory
transfers to on-chip SRAM buffers which replace the caches
that are being used in the respective software implementation
of the algorithm.

A. PROBLEM STATEMENT
This article addresses some important issues related to
high-level synthesis and system-level design in general.
Synthesizing a design from an algorithmic (also called
system-level) model using an automated HLS flow provides
efficient implementation in terms of area, performance and
power with respect to its software counterpart. However, the
high-level code requires to be modified considerably with
regards to a pure simulation model in order to ensure an
implementation that is comparable to a highly efficient (and
therefore very rigid) manual RTL design written in hardware
description languages such as Verilog or VHDL. In particular,
it must consist of a very sophisticated mechanism to ensure a
fine-grained management of data and computation.

This apparently deviates somewhat from the stated goal
of MBD that is ‘‘model once, run anywhere’’. However,
it still follows broadly the MBD guidelines, because these
optimizations are beneficial for all hardware implementa-
tions derived from HLS, and simply maximize the size of
the design space that can be explored, while simultaneously
optimizing the QoR. Typically these modifications include:
(1) increasing the level of explicit parallelism in the model,
since its automated extraction from a sequential model is
almost impossible for a tool, and (2) restructuring thememory
accesses to better exploit their locality, since in hardware
there is no cache to provide the illusion of a very fast and
huge memory.

Video processing algorithms are widely used in the field
of machine vision applied e.g. to the automotive and surveil-
lance domains. An efficient vision system in an automobile
is a promising technological solution to replace human inter-
action during driving. In order to cater to a wide range of
vehicles in a cost-effective manner, the ability to achieve
several varieties of a single design offering a diverse range
of cost and performance, would lead to a great competitive
advantage.

B. CONTRIBUTION
The scope of the paper covers the manual transformations
needed in order to get an efficient hardware implementation
from a high-level code. This article targets the design space
exploration of a Stereo Vision System (SVS), which is a

8420 VOLUME 5, 2017



A. Qamar et al.: HLS for SGM: Is the Juice Worth the Squeeze?

reasonably complex design (i.e. it can fit over a high-end
FPGA). We intend to explore the application of HLS to a
complex design involving memory-intensive operations. The
test case under consideration is the FPGA implementation
of a Semi-global Matching (SGM) algorithm which is being
employed in a Stereo Vision System. SGM finds broad range
of applications in the automotive domain, e.g. in assisted
driving applications, and it needs to be executed in real-
time while adhering to strict cost and power constraints. SVS
uses a set of 2D images taken by two cameras separated by
some distance to construct a 3D image frame, as illustrated
in Fig. 2.

FIGURE 2. Semi-global Matching based stereo vision system.

The process is based on a disparity estimation technique
using SGM. To cater to a broader range of vehicles in a
cost-effective manner, the ability to have multiple imple-
mentations of a design satisfying various cost/performance
constraints helps achieving a tremendous competitive advan-
tage. The manual RTL for this design was already imple-
mented for an automotive company in the context of a
European Research Council (ERC) Sensor for 3D Vision
(3DV#297463) Proof of Concept grant [8]. In the present
work, we explore an alternate approach to achieve compa-
rable results with much lower design effort and a higher
degree of re-usability. The latter is particularly important for
the automobile industry which is highly sensitive to cost.
This industry requires various rapid and diverse implementa-
tions of the same algorithm satisfying various resolution, cost
and performancemetrics targeting different market segments.
A comparsion of the two flows in terms of both flexibility and
QoR will be presented in this article.

C. PAPER ORGANIZATION
The rest of the article is organized as follows. Section II
presents a brief overview of the SGM working principle
and its algorithmic background. Some relevant state-of-the-
art work is presented in Section III. Section IV discusses
the algorithmic refinements needed at the pre-synthesis stage
followed by the hardware-software partitioning. Three dif-
ferent hardware architectures and their implementations are
presented in Section V. It starts with the memory access
optimizations and then presents a single threaded sequential
architecture. Section V also highlights the introduction of
parallelism using manual effort as well as tool-based micro-
architectural decisions. Section VI discusses the design space
exploration setup and design analysis using HLS and com-
pares its results with current state-of-the-art. The work is
concluded in Section VII.

II. STEREO VISION SYSTEMS
Stereo vision systems have multiple cameras fixed over a
common platform, all capturing the same scene. Slight dif-
ferences in the points of view of the cameras produce small
displacements of the various objects in the camera images,
in exactly the same manner as in case of human eyes. These
displacements can be used to obtain a three-dimensional
model of the framed scene. This can be done by adding
the displacement of each object to its two-dimensional posi-
tion, estimated from each image. The distance computation
becomes extremely simple if the displacements are known,
as it will only depend on the baseline between the cameras.
The displacement calculation however, is not straight for-
ward since it includes an extremely complicated comparison
between the various camera images [9].

In this work, we consider an automotive application that
detects obstacles and their distance from a vehicle using SVS.
The system consists of two cameras that are assumed to be
mounted in front of a car, taking numerous shots that need to
be analyzed in real-time. The sensors in the cameras are posi-
tioned such that their longer side is aligned with the baseline
between the two cameras. This ensures that the displacements
occur in a single dimension only hence, making the vision
algorithm considerably simpler. Considering the baseline to
be horizontal, then the two images are termed as left and right
images respectively. The system gives output in the form of an
image, which contains, for each pixel, its estimated distance
from the cameras. This is followed by another algorithm for
detecting the presence of an obstacle. Furthermore, in the
case of an obstacle being detected, automatic intervention
is ensured as well [9]. Among numerous potential stereo
vision approaches, SGM algorithm is selected here due to its
greater robustness and regularity [10]. These properties are
important as they can be exploited for an efficient hardware
implementation and design space exploration as well.

A. SEMI-GLOBAL MATCHING (SGM)
One way to determine a three dimensional model of a scene
is by considering a pair of images taken at the same time and
calculating the displacement of all pixels in those images.
This problem is typically called ‘‘image registration’’, and
has applications in several domains e.g. remote sensing,
medical imaging and computer vision, to name a few. Several
approaches for image registration are surveyed in [11]. Semi-
global matching however, provides the best known approach
for image registration [10], [12].

The main blocks of an SVS system are shown in Fig. 2.
The two images, each with WxH pixels, need to be pre-
processed for noise reduction. Rectification, thereafter, is
used to compensate the effects of camera distortion and
sensor misalignment. A Look-up table (LUT) is used to
perform rectification, which gives, for every pixel in the
rectified image, the coordinates of the corresponding pixel
in the original input image. An external DRAM is used to
store the rectified pixels for census computation. For a square

VOLUME 5, 2017 8421



A. Qamar et al.: HLS for SGM: Is the Juice Worth the Squeeze?

(n × n) window around a pixel, census represents a string
of n2 bits. Each of these bits equals 1 if intensity of the
corresponding pixel in the window is higher than that of
the center pixel while it equals 0 otherwise [9]. SGM uses
the census transforms CL and CR corresponding to the left
and right images respectively for computing the cost cube
over disparity of depth d . The disparity is the difference
in locations of the projection points in both the images as
depicted in Fig. 3, where the rectification is only illustrated
for the left projection plane. These steps are described next.

FIGURE 3. Illustration of disparity in a stereo vision system.

1) COST CUBE GENERATOR
It computes the cost cube using the Hamming distance
between pixels over the 128 disparity levels by scanning
the left and right images. The corresponding mathematical
equation is given by (1):

C(p, d) = H (CL(x + d, y),CR(x, y)) (1)

Where p = [x, y]T represents the location of a pixel in the
base image.

2) PATH COSTS PROCESSOR
This represents the major computation task corresponding to
SGM. It aggregates the path costs Lr (p, d) along multiple
independent paths in a recursive manner. Paths may be arbi-
trary, but are usually one-dimensional while following the
main Cartesian axes and those at 45◦, as shown in Fig. 4,
which depicts eight separate paths (P1,P2, ...,P8) for a

FIGURE 4. Eight path orientation for path cost calculation.

specific pixel p. The cost Lr , for a path r for a specific pixel p
is represented by (2).

Lr (p, d) = C(p, d)+min[Lr (p− r, d),

Lr (p− r, d − 1)+ P1,

Lr (p− r, d + 1)+ P1,

min
i
Lr (p− r, i)+ P2]

− min
l
Lr (p− r, l) (2)

3) AGGREGATION AND DISPARITY ESTIMATION
The aggregated cost for each pixel is calculated by adding the
path costs as presented in (3). The disparity is finally calcu-
lated by minimizing the aggregated costs as shown in (4).

S(p, d) =
∑
r

Lr (p, d) (3)

D(p) = min
d
S(p, d) (4)

In this work, we assume a VGA frame where; W = 640,
H = 480, n = 5 and d = 128.

III. RELATED WORK
A. HLS-BASED WORK
Most of the previous work on the SGM algorithm pertains
with the RTL implementation of the SGM algorithm. One of
the few exceptions is [9], where a sequential SystemC model
of the SGM algorithm is implemented on a Xilinx Zynq 7020.
The design space exploration results suggest that the code
required huge arrays which were mapped to the external
DRAM. Furthermore, the performance in terms of cycles
per pixel (CPP) is affected not only by the frequent DRAM
accesses but also by the sequential nature of the code. Thus,
with this sort of implementation, the target of 30 fps with
the image resolution of 480×640 for 128 disparity levels can
not be achieved. Some architectural as well as algorithmic
modifications are proposed in [13]. This work presents an
integrated approach that combines memory partitioning and
merging with data reuse and loop unrolling for optimizing
memory organization for FPGA behavioral synthesis. The
performance (cycles per pixel) is better than the one pro-
posed in [9]. However, the size of the arrays implied by this
FIFO-based strategy requires huge on-chip BRAM resources
which are available only in the Xilinx Virtex-7 v2000T. This
makes it a resource-dependent implementation which is not
desirable.
Kandemir et al. [14] have tried to manage array reuse

mainly through loop tiling, while in [15] they have suggested
a powerful dependence distance approach that organizes the
reused data in sets. In [16], buffer allocation reuse was
optimized by a heuristic algorithm. The same authors also
generated an on-chip reuse buffer in [17] by combining loop
transformation and memory hierarchy allocation. All of the
cases mentioned here involve sequential execution models,
thereby enabling the sharing of the reuse buffer among all
the arrays without any conflicts in access. The same tech-
niques would not however, be suitable for loop unrolling,

8422 VOLUME 5, 2017



A. Qamar et al.: HLS for SGM: Is the Juice Worth the Squeeze?

wherein access conflicts may arise due to limited number of
ports of the physical RAMs as a result of concurrent data
requests. Hence, direct combination of data reuse along with
loop unrolling may not yield the expected improvement in
throughput.

Memory allocation and binding guided by scheduling
has been used in a lot of cases to avoid access conflicts.
Moreover, traditional scheduling and binding algorithms that
are used by many state-of-the-art HLS tools e.g. Vivado
HLS from Xilinx [18], C-to-Silicon from Cadence [19],
Catapult from Mentor Graphics [20] and Synphony from
Synopsys [21] also do not cater to the needs of embedded
designs involving complex image processing algorithms and
stricter performance and area constraints [22]. This is because
these tools are mainly designed to optimize scalar opera-
tions. Kim and Kim [23] have used instruction-level macro-
rescheduling and memory access-level micro-rescheduling
to choose the best allocation and binding strategy. Although
such methods can reduce the access conflicts and latency, yet
the improvement in performancewill be limitedwithout some
type of data layout optimization e.g. data reuse. A simple
solution to reduce access conflicts can be to increase the
number of memory ports. However, this leads to quadratic
growth in complexity and area, which is inefficient and
unrealistic [24].

An alternate solution to manage port constraints is to
partition the memory into several banks with an acceptable
overhead. Ho and Wilton [25] have designed a logical-to-
physical mapping algorithm to break and pack memories
into dual port RAM. The on-chip SRAM has been parti-
tioned using an application-driven approach in [26], where
frequently accessed data is mapped to smaller power-efficient
memory units using application profiling. For reconfigurable
architectures, Baradaran and Diniz [27] utilize memory dis-
tribution, replication and scalar replacement to map arrays
of data to heterogeneous storage resources. The approach is
used to combine a high-level specification with scheduling.
A profiling-based approach that considers the partitioning
of elements into data structures for behavior-level synthesis
has been presented in [28], aiming to increase memory par-
allelism by data partitioning. Memory partitioning has been
automated in [29] to achieve maximum throughput while
using loop pipelining. All these methods need affine indices,
while data reuse buffers are always updated in a circular
manner to save buffer sizes, hence bringing modulo opera-
tions into the indices. None of the above mentioned strategies
would work in such circumstances.

Liu et al. [30], [31] implemented an integer non-linear pro-
gramming model for data reuse and loop-level parallelization
which solves the issue of access conflict by usingmemory and
data duplication. This solution yields better performance, but
causes an increase in the on-chip RAM and a redundancy in
the data movement due to the process of memory duplication.

Loop unrolling for general purpose and embedded pro-
cessors has been extensively studied in compilers [32], [33].
Several compiler optimizations and transformations e.g.

sub-expression elimination, speculation, loop retiming and
pipelining, and bit-level optimizations, have been explored
and adapted to HLS flows in [34]. The area and performance
impact of such transformations when mapping applications
onto re-configurable processors has been studied recently
in [29]. Loop unrolling has been addressed in articles such
as [35] but the unroll factor had to be specified manually.
Additionally, several commercial HLS tools e.g. SystemC
Compiler, Xilinx Vivado HLS and CatapultC, also require
the designer to either explicitly instruct the tool to completely
unroll a particular loop, or explicitly specify an unroll factor
for partial unrolling.

B. RTL-BASED WORK
An RTL implementation of SGM having a VGA image
resolution i.e. 640×480 pixels running at 30 fps has been
presented in [8]. The implementation platform considered
in this work is the Xilinx R© ZynqTM 7020 board, which
yields a significant reduction in development effort as this
board incorporates an FPGA, a dual-core ARMprocessor and
multiple I/Os.

Some algorithmic extensions for power efficiency have
been made to the SGM implementation in [36]. The reso-
lution of the proposed implementation is 340×200 pixels,
which is one fourth of our target, and it can achieve a frame
rate of 27 fps.

A novel two-way parallelization-based architecture has
been presented in [37] to obtain highly efficient computa-
tion. The systolic-array based architecture also ensures easy
scalability in terms of frame rates and image resolutions. The
hardware platform selected in this work is a Xilinx R© Virtex-5
platform with a VGA image resolution and a frame rate
of 30 fps.

An alternative SGM implementation on an
Nvidia R© Tesla C2050 Graphics Processing Unit (GPU) has
been presented in [12]. Disparity estimation in the proposed
implementation is performed at 27 fps for an image resolution
of 1024×768 pixels with 128 disparity levels. The GPU
performance in this case is quite exceptional but the imple-
mentation does not meet our application requirements in
terms of size and power consumption and hence this approach
is not considered.

In the present work, we have performed manual memory
optimizations such as minimization of read/write operations,
resolution of access conflict by design-centric address anal-
ysis and shrinking down of huge arrays into memory banks
in order to avoid data dependencies. We also exploited the
HLS tool capabilities to definemicro-architecture by partially
unrolling loops. This was combined with array splitting for
the memory banks that were used in unrolled loops.

IV. ALGORITHMIC REFINEMENTS OF SGM
The system-level code of the SGM algorithm must undergo
some refinements in order to achieve better QoR. Some of
these transformations deal with datatype conversion, since
for hardware the bit count is crucial both for the I/O ports

VOLUME 5, 2017 8423



A. Qamar et al.: HLS for SGM: Is the Juice Worth the Squeeze?

as well as for the communication interfaces. The rest of the
refinements target algorithmic and architectural modifica-
tions in order to achieve the area and performance constraints.

A. PRE-TRANSFORMATIONS OF REFERENCE CODE
The algorithmic C/C++ based model, that is usually
available as a reference for hardware implementation, needs
considerable amount of modifications before it can undergo
automated RTL synthesis. These modifications involve:
• converting global variable declarations to local
declarations.

• converting floating point arithmetic to fixed-point.
• converting dynamic arrays to static arrays.

These transformations are necessary in order to achieve an
efficiently synthesizable model. Afterwards, the information
regarding the I/O ports and the synchronization mechanism
required by the code to communicate with the camera sen-
sors and the output memory are required. This is accom-
plished by using the SystemC as an HLS input language.
SystemC is a C++ class library designed to effectively
create a Transaction-level model (TLM) or cycle-accurate
model of functionality, hardware architecture, and interfaces
required for system-level designs [38]. It offers the nec-
essary constructs required to build a system architecture
model, including information regarding ports, timing infor-
mation and concurrency etc that are absent in standard C++.
A simplified graphic illustration of high-level code assembly
into a SystemCwrapper is depicted in Fig. 5. Themain advan-
tage of this assembly stems from the distinction between the
behavioral model of the system and the data communication,
that this embedding achieves. The source code is connected
with the rest of the system through the port interfaces and the
communication channels.

FIGURE 5. SystemC wrapper around the high-level code for HLS.

Path aggregation results in the production of a huge amount
of data for each frame (data width × VGA frame size ×
number of disparity levels). Since the target hardware plat-
form is an FPGA with limited on-board RAM, such a huge
array needs to be mapped to an external DRAM. AXI bus
communication can be used to access the external DRAM
in Xilinx 7 series FPGAs. As illustrated in Fig. 6, the AXI
protocol uses a master transactor in order to transform the
memory access requests made by the SGM module into AXI
signals. The AXI slave transactor; which is available on the 7
series FPGA fabric in the form of memory interface solution,
is used to interpret the data read/write requests to DRAM,

FIGURE 6. Illustration of SGM Module with AXI interface for external
DRAM access.

to synchronize and reorder them so as to maximize the
throughput and translate them in to actual signals to be sent
to the DRAM [13].

B. SOFTWARE VS. HARDWARE
For HLS to work efficiently for real-time applications, some
refinements must be made to the algorithm in order to obtain
a desirable HW implementation. These modifications mostly
stem from the fact that whilememory is cheap and parallelism
is limited in software, in HW fast memory is expensive but
a high level of parallelism can be available. As a matter
of fact, most of the architectural exploration in an image
processing application such as SGM tries to match the rates
of memory read/write and those of data computation. When
that is achieved, the Pareto-optimal cost/performance design
space exploration points are obtained.

Fig. 7 displays the modifications that were made to the
non-hardware specific code in order to achieve a desirable
hardware implementation. The original software code calcu-
lates the cost cube for each pixel once thereby storing it in a
very large memory as shown in (Fig. 7(a)). On the contrary,
the cost cube computation of each pixel in the modified code
takes place on the fly, while calculating the path costs of the
specific pixel, and is stored into a FIFO register of width 128
as shown in (Fig. 7(b)). The result of the computation from
the FIFO is updated by the cost cube of the next pixel, since
the scan handles one pixel at a time.

C. HARDWARE-SOFTWARE PARTITIONING
The present work focuses on the DSE of the SGM algo-
rithm. For this, the cost cube and path cost calculation
along with path aggregation and disparity estimation blocks
are targeted for hardware implementation. We used the
Xilinx ZynqTM 7020 SoC which is equipped with both an
FPGA Programmable Logic (PL) and a Programmable Sys-
tem (PS) with a dual-core ARM CortexTM-A9 CPU in the
same physical packaging. On the other hand, the other key
constituent blocks for stereo reconstruction, namely the rec-
tification and census, as discussed in Section II, are kept as
software implementation because they are not as performance
critical. The intermediate results from the census transform of
each VGA frame are stored in the external DRAM memory.
The values of each pixel are then pre-fetched into local buffers

8424 VOLUME 5, 2017



A. Qamar et al.: HLS for SGM: Is the Juice Worth the Squeeze?

FIGURE 7. Algorithmic refinement made at system-level for hardware implementation.

and fed to the cost cube computation block. The implemen-
tation takes into account the throughput of the SGM block,
assuming that the required parts of the census images are
already available in the local buffers.

V. HARDWARE ARCHITECTURES OF THE SGM
ALGORITHM AND HIGH-LEVEL SYNTHESIS
In Section IV we discussed refinements at the algorithmic-
level. We performed design space exploration of three dif-
ferent hardware architectures of the SGM algorithm based
on manually defined parallelism, along with the tool-assisted
coarse-grained micro-architectural decisions, in order to get
various HW implementations covering a wide range of the
area performance curve. This section discusses the manual
transformations of the high-level code, leading to three dif-
ferent hardware architectures with different degrees of paral-
lelism and memory utilization. Moreover, we also discuss the
tool-assisted micro-architectural choices.

A. MICRO-ARCHITECTURAL DECISIONS
The system-level test bench written in SystemC is used
both for the functional verification of the high-level code as
well as for the performance analysis of the resulting RTL,
post-scheduling. For design space exploration, different
micro-architectural decisions give several different RTL
implementations each offering different area vs. performance
trade-offs. The general flow to carry out HLS is illustrated
in Fig. 1. The micro-architectural decisions involve loop,
function and array implementation. Loop unrolling creates
N copies of the loop body. The function calls inside the
high-level code can be inlined or assigned to some specific

IP block, while the arrays can be mapped to register
files, block RAM (BRAM) or any vendor-supplied mem-
ory in case of ASIC implementation. Once such choices
are made, the scheduling and binding step maps the func-
tional blocks to the available resources fulfilling the latency
constraints.

B. ARRAY OPTIMIZATIONS
Memory accesses usually form bottlenecks in achieving
higher performance optimization particularly for digital sig-
nal, image and video processing algorithms. Thus, they need
to be optimized very carefully [13]. This is especially true,
when the primary and intermediate input/output design data
is too large to fit in the on-chip SRAMand an external DRAM
is required. Customized memory transfers are required to
be written in this case. Before the micro-architecture is
defined, it is a good idea to move as many memory read/write
operations as possible, outside the body of the loop [39].
Occasionally the HLS tool can do this, but in many cases,
the tool needs to be guided explicitly to perform this
optimization.

To emphasize on this point, consider the loop (for path cost
accumulation) as given in Fig. 8, which is called numerous
times and it accounts for around 25% of the overall compu-
tation. The loop contains two read operations for the array
named pathcost[i]. If we unroll this loop 256 times while this
array is assigned to an external memory e.g. DDR3, then the
samememory location would need to be read from, two times
per iteration of the loop i.e. 512 reads for the complete loop.
Alternately this read operation can be executed as presented
in Fig. 9, where the array is read once into a variable. This will

VOLUME 5, 2017 8425



A. Qamar et al.: HLS for SGM: Is the Juice Worth the Squeeze?

FIGURE 8. Illustration of un-optimized read operation.

FIGURE 9. Illustration of optimized read operations.

lead to savings in read operations thereby improving both the
resource utilization and the overall design throughput.

Table 1 indicates the optimizations made to the mem-
ory accesses, corresponding to the three main computational
blocks of SGM. The former function is inlined to be used
by all the processes, thus reading three successive on-chip
BRAM locations and then writing back to it. Such reads
can be joined together as bursts to achieve better perfor-
mance while utilizing buffers, hence resulting in memory
bandwidth saving. Both the latter functions (accessing much
slower external DRAM) can be optimized in the same way to
improve the overall QoR.

C. SINGLE THREADED SEQUENTIAL CODE
After describing the manually guided memory access opti-
mizations, we are ready to discuss the impact of parallelism
to reduce design latency, thereby improving the overall per-
formance of the design. The performance measure is the CPP
count, which is the total number of clock cycles taken by
the SGM hardware to compute the disparity value of the full
image, divided by the number of pixels. The single threaded
code performs sequential computations similar to the original
reference code. The only difference is that it underwent the
synthesizability changes discussed in Section IV-A and the
memory access optimizations described in Section V-B. The

computation begins with the top left pixel, after omitting the
first two pixels, and computes the cost cube (C) of all the
pixels. This is because the census transform cannot be applied
to the boundary pixels since it requires a 5×5 pixel window.
The cost cube computation is performed only once and is used
by all the path cost (L) calculation steps in their respective
path orientation. For the first pixel, the path cost is simply the
minimum between the cost cube and the maximum disparity
value, which in our case is 128. The path costs of all the path
orientations are aggregated alongside. Once the path costs are
computed in all eight orientations, the disparity estimation is
performed, as illustrated in Fig. 10. It is worth mentioning
here that all the intermediate and final results in the form
of disparity are stored into arrays. These arrays need to be
mapped onto a larger, but comparably slower, Double Data
Rate (DDR)memory (faster on-chip BRAMsmay be used for
smaller arrays). As a result, a single threaded, sequential code
would not be able to meet the performance constraints. This
sequential architecture also has a very small BRAM usage,
thus making it very inefficient also from the view point of
resource utilization.

FIGURE 10. Illustration of Single-threaded sequential architecture.

It should be noted that only the innermost loops (with the
highest number of computations) are considered for analysis
of various loop implementation options. The most obvious
options for trade-off analysis, obtained as a result of profiling
the initial high-level code, were the loops performing the path
accumulation, and the loop performing Cost Cube generation.

TABLE 1. Optimizations applied to memory accesses.

8426 VOLUME 5, 2017



A. Qamar et al.: HLS for SGM: Is the Juice Worth the Squeeze?

When performing tool-assisted micro-architectural
decisions for the sequential single-threaded architecture, we
inline all the functions. Two types of loop implementations
are tried for the cost cube and path cost loops. As an initial
case, all the loops are resolved by adding sufficient wait()
statements in the loop bodies to make them sequential and
also accommodating all the BRAM access requirements of
the algorithm. This is termed as ‘‘loop breaking’’. Xilinx sup-
plies memory models for both BRAM (on-chip memory) and
DDR (external IP). As a second variant, complete unrolling
is performed on the most time-consuming loops so as to
increase the concurrency (at a small expense of the area cost).
All the other loops are resolved by breaking them as explained
above. The arrays used inside the loops are flattened into
registers, to obtain a smaller and faster implementation. The
rest of the larger arrays are still mapped to on-chip BRAMs.

D. FIFO-BASED CONCURRENT ARCHITECTURE
To improve the overall design throughput, the original single-
threaded model needs to be split into multiple synchronized
threads. The verification of such a transformation is still much
simpler and faster than the hugemanual effort required for the
direct RTL implementation of the design [6].

The path cost calculation process is completely indepen-
dent from one direction to the other and hence it is pertinent
to divide the path cost calculation operation into eight differ-
ent parallel processes. Nevertheless, as these threads access
shared memory, either they need to be properly scheduled
in order to prevent race conditions or local copies must be
created in order to optimize the performance at the cost of
additional BRAM resources. In our case, we followed the
former strategy and introduced another concurrent process
which performs arbitration and path cost accumulation. The
computations carried out in each parallel process for path cost
computation are depicted as a flow chart in Fig. 11.

The cost cube corresponding to each pixel along the
128 disparity levels is computed on the fly and is saved in a
temporary memory buffer while moving along the direction
of a single path. This implies that for each pixel, the cost cube
is computed eight times, but this calculation replication can
dramatically reduce the memory access cost. Without this,
the cost cube values corresponding to the whole frame would
need to be saved in an external DRAM, thereby causing a
significant increase in expensive DRAM accesses. The path
cost is then calculated and the result is stored into a dedicated
FIFO, as illustrated in Fig. 12. The results from the FIFO
channel are thereafter written into the external DRAM via
AXI communication.

The communication architecture between the various pro-
cesses of the SGM module and the AXI master transactor
is depicted in Fig. 13. The controller enables all the SGM
processes to begin the path computation. The controller also
does the path costs aggregation by calling a method to read
the older value from the DRAM, once the data is available
at the FIFO, thereby accumulating it (with saturation) and
writing it back. Once all the calculations for an entire frame

FIGURE 11. Algorithmic description of one of the parallel SGM threads.

FIGURE 12. Illustration of the SGM FIFO-based multi-threaded (nine)
concurrent architecture.

FIGURE 13. Parallel SGM processes communication architecture via
AXI interface.

are completed, the path processes are deactivated by the con-
troller. Data is then read back from the DRAM for disparity
computation of each pixel.

VOLUME 5, 2017 8427



A. Qamar et al.: HLS for SGM: Is the Juice Worth the Squeeze?

The FIFO-based architecture enhances the performance
by a factor of ten with respect to the single-threaded imple-
mentation discussed before. However, its shortcoming is the
large size of the eight FIFOs which are to be mapped to the
on-chip BRAMs. Each of the path accumulation processes
stores the path cost results into its specific FIFO, whereas
the arbitration operation of the controller reads the path costs
back from the FIFO channels corresponding to all the eight
paths, which are then accumulated and the results sent to
the DRAM. A large enough FIFO makes sure that the two
processes i.e. the path accumulation and arbitration, perform
their specific tasks in parallel with minimum synchronization
overhead. Several experiments were performed with different
sizes of the FIFO channels, after which, it was concluded that
a FIFO with sufficient size to accommodate the results of
35 rows of a VGA frame over 128 disparity values provides
enough amount of parallelism in order to meet the desired
performance, while still conforming onto the on-chip BRAM.

The micro-architectural decisions again focus on the cost
cube and path cost computation functions, because these
two loops are the computation bottlenecks of the design.
We again applied partial unrolling by a factor of two and
four respectively. This was combined with array splitting
using HLS tool directives. The splitting factor was kept the
same as the loop unrolling factor to avoid any race condition
among the memory banks. Fig. 14 shows that, if an array is
allocated to a BRAM (with separate read and write ports)
without partitioning, then scheduling cannot be done. This is
because, both the parallel threads would attempt to access the
same memory bank simultaneously, thereby causing memory
access conflicts. This problem is resolved by splitting the
array andmapping it to different memory banks.We could not
go beyond a factor of four for unrolling due to the resource
constraints of the selected FPGA platform.

FIGURE 14. Loop unroll (body) example combined with array splitting.

E. FORWARD/BACKWARD SCAN-BASED ARCHITECTURE
The most refined architecture is quite similar to the architec-
ture proposed by the 3DV project presented in [8]. It heavily
relies on the on-chip BRAMs and uses pre-fetching to meet
the performance constraints. The path cost calculation (L)

FIGURE 15. Illustration of forward/backward scan-based multi-threaded
(five) architecture.

step is divided into two scans, i.e. the forward scan and the
backward scan. The forward scan consists of the 0◦, 45◦,
90◦ and 135◦ paths, whereas the backward scan consists of
the 180◦, 225◦, 270◦ and 315◦ paths, as depicted in Fig. 15.
The forward scan starts from the top left pixel, and computes
the four path costs for each pixel. The path costs from the
forward scan are aggregated and written into the external
DDR memory. This is followed by the backward scan start-
ing from the bottom-right pixel. Furthermore, the four paths
corresponding to the forward scan are added together before
being moved to the DDR in order to decrease the bandwidth
requirements. The aggregated cost is read back from the DDR
and the final aggregated cost is then used to perform the
disparity estimation by minimizing all the path costs. We will
see shortly that this refinement proved to be good enough to
meet the performance of the manual RTL implementation,
while keeping the on-chip memory sizes within the bounds
of the target platform.

The architectural overview of the parallel path cost cal-
culation of the SGM along with the disparity aggregation
and estimation is presented in Fig. 16. For both forward and
backward scans, the cost cube results are computed only once
and then replicated three more times, so that each path cost
process has its own copy. All these intermediate results are
stored into arrays which are mapped to on-chip BRAMs.
The aggregated result of each pixel is then stored into the
external DDR. The backward scan works the same except for
an additional read from the DDR. Once all the results of all
the paths are aggregated, disparity computation is performed.

It is evident from the architectural block diagram that
while path cost aggregation is performed by the path cost
and aggregation blocks, the cost cube block remains idle.
Thus, we introduce a top-level pipeline between the cost cube
and the aggregation processes. Because of this, the cost cube
starts computation when the aggregation process is fetching
the data from the path cost process, as presented in Fig. 17.
The red numbers inside the brackets show the order of the
computation steps.

8428 VOLUME 5, 2017



A. Qamar et al.: HLS for SGM: Is the Juice Worth the Squeeze?

FIGURE 16. Architectural overview of the parallel path cost calculation of the semi-global matching.

FIGURE 17. Top level pipelined among cost cube, path cost and
aggregation processes.

VI. HIGH-LEVEL SYNTHESIS FOR SEMI-GLOBAL
MATCHING ALGORITHM
In the previous sections we discussed the hardware architec-
tures and various micro-architectural choices for each imple-
mentation. Now we discuss the experimental setup and the
results of various implementations as a result of design space
exploration based on HLS. We also compare the results with
other relevant state-of-the-art implementations.

A. DESIGN ANALYSIS
The total design effort to undertake the algorithmic as well
as architectural refinements with respect to the reference
system-level code (executable specification) is compared
against the manual RTL implementation. The total line count
for the reference codewas 917, while the SystemC implemen-
tation comprised of approximately 1238 lines (800 for HW,
438 for SW). The number of reused code lines in SystemC
was 700 (HW 35%, SW 65%). Thus the estimated additional

coding effort for SystemC-based HLS implementation was
43% (measured by counting the total number of code lines in
SystemC implementation), with a reuse factor of 76% (of the
number of lines in the reference code). It is worth mentioning
that the RTL implementations obtained from the automated
HLS flow contained roughly 10000 code lines (without the
testbench), which also shows the significance of adopting
HLS for designs with moderate complexity.

The SGM unit needs to attain a frame rate of 30 fps for
VGA images with 128 px disparity range. As mentioned
above, the less critical steps of preprocessing and rectification
are executed in SW, while the cost cube (C) generation, the
path cost accumulation (L) and the disparity estimation are
executed in HW.

C-to-Silicon (CTOS) version 13.20 from Cadence Design
Systems has been used as an HLS tool in this activity. The
SystemC test bench has been used both for the functional
verification of the high-level implementation of the algorithm
as well as for performance analysis of the corresponding RTL
implementation.

B. DESIGN SPACE EXPLORATION
The main goal of this work was to obtain an HLS-based hard-
ware implementation of SGM, that is comparable to a highly
efficient (and hence very rigid) manual RTL implementation
that was previously developed by our group [8].Moreover, we
also wanted to perform design space exploration by making
several considerably different micro-architectural decisions
yielding different implementations of a single design, fitting
into a wide range of cost (FPGA resources) and perfor-
mance curve. Before comparing the implementations as a
result of DSE, we present a performance comparison between
the manual RTL system (3DV) and other publicly available
SGM implementations in Table 2. The solution presented
in [12] exhibits a better processing time, however it runs on

VOLUME 5, 2017 8429



A. Qamar et al.: HLS for SGM: Is the Juice Worth the Squeeze?

TABLE 2. Comparison of various stereo reconstruction HW implementations.

TABLE 3. Design space exploration of SGM algorithm vs. manual RTL implementation.

a hardware device with considerably higher cost and power
consumption [8]. The implementation proposed in [37] is a
scalable architecture with better processing time. However,
it takes into account only the path costs in four orientations,
which requires intensive post processing steps to improve the
image quality, because the disparity values with four path
accumulation produce poor resolution. Our selected refer-
ence [8] has far better results in terms of execution time than
the implementations presented in [40] and [41].

Table 3 presents the area and performance results in terms
of cycles per pixels for the three different architectures along
with the results of manual RTL implementation. For HLS,
all arrays having more than one read or write request at
the same time are automatically mapped to distributed RAM
which is formed using logic slices. It is worth mentioning that
the LUT logic count of all the implementations were within
the allowed limits for the Zynq 7020. Also the performance
figures were even better than themanual RTL implementation
for the architecture based on FIFOs. However, due to the large
FIFOs, the BRAM count exceeded the available resources,
which motivated us to switch to the scan-based architecture

in order to meet the resource constraint of the ZED board.
From Table 3, it can be seen that the area is split into four

incomparable aspects (LUTs, BRAMs, Distributed RAMs,
DSPs). It is impossible thus to plot the area vs. CPP plot in 2
dimensions. Therefore, for better visual comparison, we have
made a few simplifications. We have merged the area counts
of different resources into a single logic slice figure, based on
the information mentioned in the Xilinx 7 series DSP48E1
slice user guide [42]. This implies that the vertical height
of a single DSP slice contains 20 LUTs, 36Kb RAM, and
2×18Kb RAM, vertically. It must be noted that the datasheet
only provided the vertical height ratios of these resources. So
we assumed that the horizontal widths of these resources were
the same in order to simplify things. With this simplification,
we obtained the area in terms of a single resource i.e. slices,
as shown in Table 4.

The plot of design performance in terms of CPP versus area
resource in terms of slices is depicted in Fig. 18. The points
marked by green triangles are the Pareto-optimal points both
in terms of resource utilization as well as performance,
obtained from design space exploration. The explored macro-

TABLE 4. SGM implementation results W.R.T. area in terms of logic slices vs. CPP.

8430 VOLUME 5, 2017



A. Qamar et al.: HLS for SGM: Is the Juice Worth the Squeeze?

FIGURE 18. Performance vs Area Curve for various micro-architectural
choices.

architectural space from a single model spans a 10X range in
terms of performance and a 3X range in terms of area. The
micro-architectural space for the most efficient model spans
a 3X performance range and 2X area range.

VII. CONCLUSION
This article addresses some of the challenges posed by high-
level synthesis tools while trying to improve the QoR for
hardware implementations from a system-level behavioral
model described at a high abstraction level. This research
activity shows how HLS can be used to get several consider-
ably different RTL implementations of a design by specifying
different micro-architectural choices. This shall firstly reduce
the design time and effort for achieving various performance
and cost targets, and secondly, it shall improve the quality of
results for a given target by allowing a much wider design
space exploration as compared to what can be explored with
the manual RTL design. These savings were exhibited by
considering a Stereo Vision System example taken from the
automotive domain. Several modifications were made to the
reference software code before it went through high-level
synthesis. These transformations included algorithmic modi-
fications along with wrapping of the C code using SystemC,
mostly aiming to increase the explicit parallelism, so that the
HLS tool could more easily exploit it. This was followed by
some architectural refinements which mainly dealt with man-
ual address analysis and loop unfolding to assist and improve
the results of automatedmicro-architectural choices.Wewere
eventually able to obtain HLS-based implementations that
were comparable to the performance of the equivalent manual
RTL design. This hence answered affirmatively the question
that was posed in the title of this article i.e. the juice indeed is
worth the squeeze. As a future extension of this work, it would
be interesting to use the findings of this research activity
to try and develop a methodology which can automatically
perform or at least advise the transformations that were made
manually here to obtain high performance RTL via high-level
synthesis.

REFERENCES

[1] M. Horowitz, ‘‘1.1 computing’s energy problem (and what we
can do about it),’’ in IEEE Int. Solid-State Circuits Conf. Dig.
Tech. Papers (ISSCC), Feb. 2014, pp. 10–14. [Online]. Available:
http://dx.doi.org/10.1109/ISSCC.2014.6757323

[2] H.-Y. Liu and L. P. Carloni, ‘‘On learning-based methods for design-space
exploration with high-level synthesis,’’ in Proc. 50th Annu. Design Autom.
Conf., 2013, p. 50.

[3] S. Ravi andM. Joseph, ‘‘High-level test synthesis: A survey from synthesis
process flow perspective,’’ ACM Trans. Design Autom. Electron. Syst.,
vol. 19, no. 4, p. 38, 2014.

[4] J. Cong, ‘‘From design to design automation,’’ in Proc. Int. Symp. Phys.
Design, 2014, pp. 121–126.

[5] L. Daoud, D. Zydek, and H. Selvaraj, ‘‘A survey of high level synthe-
sis languages, tools, and compilers for reconfigurable high performance
computing,’’ in Advances in Systems Science. Cham, Switzerland:
Springer, 2014, pp. 483–492.

[6] H.-Y. Liu, M. Petracca, and L. P. Carloni, ‘‘Compositional system-level
design exploration with planning of high-level synthesis,’’ in Proc. Conf.
Design, Autom. Test Eur., 2012, pp. 641–646.

[7] W. Cesário et al., ‘‘Component-based design approach for multicore
SoCs,’’ in Proc. 39th Annu. Design Autom. Conf., 2002, pp. 789–794.

[8] G. Camellini et al., ‘‘3DV—An embedded, dense stereovision-based
depth mapping system,’’ in Proc. IEEE Intell. Vehicles Symp., Jun. 2014,
pp. 1435–1440.

[9] A. Qamar, C. Passerone, L. Lavagno, and F. Gregoretti, ‘‘Design space
exploration of a stereo vision system using high-level synthesis,’’ in
Proc. 17th IEEE Medit. Electrotech. Conf. (MELECON), Apr. 2014,
pp. 500–504.

[10] H. Hirschmuller, ‘‘Stereo processing by semiglobal matching and mutual
information,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2,
pp. 328–341, Feb. 2008.

[11] B. Zitová and J. Flusser, ‘‘Image registration methods: A survey,’’ Image
Vis. Comput., vol. 21, pp. 977–1000, Oct. 2003.

[12] C. Banz, H. Blume, and P. Pirsch, ‘‘Real-time semi-global matching dis-
parity estimation on the GPU,’’ in Proc. IEEE Int. Conf. Comput. Vis.
Workshops (ICCV Workshops), Nov. 2011, pp. 514–521.

[13] A. Qamar, F. B. Muslim, and L. Lavagno, ‘‘Analysis and implementa-
tion of the semi-global matching 3D vision algorithm using code trans-
formations and high-level synthesis,’’ in Proc. IEEE 81st Veh. Technol.
Conf. (VTC Spring), May 2015, pp. 1–5.

[14] M.Kandemir, J. Ramanujam,M. J. Irwin, N. Vijaykrishnan, I. Kadayif, and
A. Parikh, ‘‘A compiler-based approach for dynamicallymanaging scratch-
pad memories in embedded systems,’’ IEEE Trans. Comput.-Aided Design
Integr., vol. 23, no. 2, pp. 243–260, Feb. 2004.

[15] I. Issenin, E. Brockmeyer, M. Miranda, and N. Dutt, ‘‘DRDU: A data reuse
analysis technique for efficient scratch-pad memory management,’’ ACM
Trans. Design Autom. Electron. Syst., vol. 12, no. 2, p. 15, 2007.

[16] J. Cong, H. Huang, C. Liu, and Y. Zou, ‘‘A reuse-aware prefetching
scheme for scratchpad memory,’’ in Proc. 48th Design Autom. Conf., 2011,
pp. 960–965.

[17] J. Cong, P. Zhang, and Y. Zou, ‘‘Combined loop transformation and hier-
archy allocation for data reuse optimization,’’ in Proc. Int. Conf. Comput.-
Aided Design, 2011, pp. 185–192.

[18] Vivado Design Suite User Guide High-Level Synthesis, Xilinx, San Jose,
CA, USA, 2015.

[19] Cadence C-to-Silicon Compiler User Guide, Cadence, San Jose, CA, USA,
2015.

[20] Catapult Synthesis Process, Concept Reference Manual, Calypto, Santa
Clara, CA, USA, 2011.

[21] (2016). Synphony C Compiler, accessed on Aug. 16, 2016.
[Online]. Available: https://www.synopsys.com/Tools/Implementation/
RTLSynthesis/Pages/SynphonyC-Compiler.aspx

[22] Y. Wang, P. Zhang, X. Cheng, and J. Cong, ‘‘An integrated and
automated memory optimization flow for FPGA behavioral synthe-
sis,’’ in Proc. 17th Asia South Pacific Design Autom. Conf., 2012,
pp. 257–262.

[23] T. Kim and J. Kim, ‘‘Integration of code scheduling, memory alloca-
tion, and array binding for memory-access optimization,’’ IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 1, pp. 142–151,
Jan. 2007.

[24] Y. Tatsumi and H. J. Mattausch, ‘‘Fast quadratic increase of multiport-
storage-cell area with port number,’’ Electron. Lett., vol. 35, no. 25,
pp. 2185–2187, Dec. 1999.

VOLUME 5, 2017 8431



A. Qamar et al.: HLS for SGM: Is the Juice Worth the Squeeze?

[25] W. K. C. Ho and S. J. E. Wilton, ‘‘Logical-to-physical memory mapping
for FPGAs with dual-port embedded arrays,’’ in Proc. Int. Workshop Field
Program. Logic Appl., 1999, pp. 111–123.

[26] L. Benini, L. Macchiarulo, A. Macii, and M. Poncino, ‘‘Layout-driven
memory synthesis for embedded systems-on-chip,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 10, no. 2, pp. 96–105, Apr. 2002.

[27] N. Baradaran and P. C. Diniz, ‘‘A compiler approach to managing storage
andmemory bandwidth in configurable architectures,’’ACMTrans. Design
Autom. Electron. Syst., vol. 13, no. 4, p. 61, 2008.

[28] Y. Ben-Asher and N. Rotem, ‘‘Automatic memory partitioning: increas-
ing memory parallelism via data structure partitioning,’’ in Proc. 8th
IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codesign Syst. Synth., 2010,
pp. 155–162.

[29] J. Cong,W. Jiang, B. Liu, andY. Zou, ‘‘Automaticmemory partitioning and
scheduling for throughput and power optimization,’’ ACM Trans. Design
Autom. Electron. Syst., vol. 16, no. 2, p. 15, 2011.

[30] Q. Liu, G. A. Constantinides, K. Masselos, and P. Y. K. Cheung, ‘‘Com-
bining data reuse with data-level parallelization for FPGA-targeted hard-
ware compilation: A geometric programming framework,’’ IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 28, no. 3, pp. 305–315,
Mar. 2009.

[31] Q. Liu, T. Todman, and W. Luk, ‘‘Combining optimizations in auto-
mated low power design,’’ in Proc. Conf. Design, Autom. Test Eur., 2010,
pp. 1791–1796.

[32] F. Balasa, H. Zhu, and I. I. Luican, ‘‘Computation of storage requirements
for multi-dimensional signal processing applications,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 15, no. 4, pp. 447–460, Apr. 2007.

[33] J. Cong, P. Zhang, and Y. Zou, ‘‘Optimizing memory hierarchy allocation
with loop transformations for high-level synthesis,’’ in Proc. 49th Annu.
Design Autom. Conf., 2012, pp. 1233–1238.

[34] P. Li, Y. Wang, P. Zhang, G. Luo, T. Wang, and J. Cong, ‘‘Memory
partitioning and scheduling co-optimization in behavioral synthesis,’’ in
Proc. Int. Conf. Comput.-Aided Design, 2012, pp. 488–495.

[35] Y. Ben-Asher and N. Rotem, ‘‘Automatic memory partitioning: Increas-
ing memory parallelism via data structure partitioning,’’ in Proc. 8th
IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codesign Syst. Synth., 2010,
pp. 155–162.

[36] S. K. Gehrig, F. Eberli, and T.Meyer, ‘‘A real-time low-power stereo vision
engine using semi-global matching,’’ in Proc. Int. Conf. Comput. Vis. Syst.,
2009, pp. 134–143.

[37] C. Banz, S. Hesselbarth, H. Flatt, H. Blume, and P. Pirsch, ‘‘Real-time
stereo vision system using semi-global matching disparity estimation:
Architecture and FPGA-implementation,’’ in Proc. Int. Conf. Embedded
Comput. Syst. (SAMOS), 2010, pp. 93–101.

[38] SystemC 2.0.1 Language Reference Manual, Open SystemC Initiative, San
Jose, CA, USA, 2003.

[39] L. Gallo, A. Cilardo, D. Thomas, S. Bayliss, and G. A. Constantinides,
‘‘Area implications of memory partitioning for high-level synthesis on
FPGAs,’’ in Proc. 24th Int. Conf. Field Program. Logic Appl. (FPL), 2014,
pp. 1–4.

[40] S. K. Gehrig and C. Rabe, ‘‘Real-time semi-global matching on the
CPU,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.-
Workshops, 2010, pp. 85–92.

[41] I. Ernst and H. Hirschmüller, ‘‘Mutual information based semi-global
stereo matching on the GPU,’’ in Proc. Int. Symp. Vis. Comput., 2008,
pp. 228–239.

[42] 7 Series DSP48E1 Slice User Guide, Xilinx, San Jose, CA, USA, 2016.

AFFAQ QAMAR received the M.S. degree in inte-
grated electronic system design from the Chalmers
University of Technology in 2010 and the Ph.D.
degree in electronics and communication from the
Politecnico di Torino, Italy, in 2015, where he has
been a part of the project for the human resource
development by the Higher Education Commis-
sion, Pakistan, since 2012. The aim is to create
a critical mass of highly qualified Engineer, tech-
nologists, and scientists manpower in high-tech

fields. He has been an Assistant Professor with the Department of Electrical
Engineering, Abasyn University, Pakistan, since 2016. His research interests
are design methodologies for electronic system design, high-level synthesis,
low power design architectures for SoCs, and embedded system design for
real-time applications.

FAHAD BIN MUSLIM received the M.S. degree
in communication engineering from the Chalmers
University of Technology in 2010. He is currently
pursuing the Ph.D. degree with the Department of
Electronics and Telecommunications, Politecnico
di Torino, Italy, working under the supervision of
Prof. L. Lavagno. His research interests include
electronic design automation with emphasis on
low power designs.

FRANCESCO GREGORETTI received the degree
from the Politecnico di Torino, Italy, in 1975.
From 1976 to 1977, he was an Assistant Professor
with the Swiss Federal Institute of Technology,
Lausanne, Switzerland, and from 1983 to 1985,
he was a Visiting Scientist with the Department
of Computer Science, CarnegieMellon University,
Pittsburgh, USA. He is currently a Professor in
microelectronics with the Politecnico di Torino.
His main research interests have been in digital

electronics, VLSI circuits, massively parallel multi-microprocessor systems
for VLSI CAD tools, and in image processing architectures. More recently
his research has been focused to co-design methodologies for complex
electronic systems, to methodologies for reduction of electromagnetic emis-
sions, and power consumption of processing architectures by the use of
asynchronous methodologies.

LUCIANO LAVAGNO received the Ph.D. degree
in EECS from the University of California at
Berkeley, Berkeley, CA, USA, in 1992. He was
an Architect of the POLIS HW/SW Co-Design
Tool. From 2003 to 2014, he was an Architect
of the Cadence CtoSilicon High-Level Synthe-
sis Tool. Since 1993, he has been a Professor
with the Politecnico di Torino, Italy. He has co-
authored four books and over 200 scientific papers.
His research interests include synthesis of asyn-

chronous circuits, HW/SW co-design, high-level synthesis, and design tools
for wireless sensor networks.

MIHAI TEODOR LAZARESCU received the
Ph.D. degree in electronics and communication
from the Politecnico di Torino, Italy. He was a
Senior Engineer with Cadence Design Systems,
where he was involved in software performance
estimation for the VCC hardware/software co-
design environment. He currently serves as a
Research Assistant with the Department of Elec-
tronics and Telecommunications, Politecnico di
Torino. He has authored over 40 scientific and

technical publications to international conferences and journals, including
five book chapters, and holds three U.S. and Italian patents and applications.
His research interests include high-level hardware/software co-design, high-
level synthesis ofWSN applications, techniques for legacy software program
parallelization, and reusable WSN platforms.

8432 VOLUME 5, 2017


