
Received September 29, 2016, accepted November 19, 2016, date of publication November 29, 2016,
date of current version March 28, 2017.

Digital Object Identifier 10.1109/ACCESS.2016.2633441

A High-Throughput FPGA Architecture for
Joint Source and Channel Decoding
MATTHEW F. BREJZA, ROBERT G. MAUNDER, BASHIR M. AL-HASHIMI,
AND LAJOS HANZO, (Fellow, IEEE)
Department of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, U.K.

Corresponding author: L. Hanzo (lh@ecs.soton.ac.uk)

This work was supported in part by EPSRC, Swindon, U.K., under Grant EP/J015520/1 and Grant EP/L010550/1, and in part by TSB,
Swindon, U.K., under Grant TS/L009390/1. The research data for this paper is available at http://dx.doi.org/10.5258/SOTON/403491

ABSTRACT In the wireless transmission of multimedia information, the achievable transmission throughput
and latency may be limited by the processing throughput and latency associated with source and channel
coding. Ultra-high throughput and ultra-low latency processing of source and channel coding are required
by the emerging new video transmission applications, such as the first-person remote control of unmanned
vehicles. The recently proposed unary error correction (UEC) code facilitates the joint source and channel
coding (JSCC) of video information at transmission throughputs that approach the capacity of the wireless
channel. In this paper, we propose the first hardware implementation of the UEC code that achieves the high
processing throughputs as well as ultra-low processing latencies required. This is achieved by extending
the application of the recently proposed fully parallel turbo decoder (FPTD) from pure stand-alone channel
coding to JSCC. This paper also proposes several novel improvements to the FPTD, in order to increase its
hardware efficiency and supported frame length. We demonstrate the application of these improvements to
both the long term evolution turbo code and the UEC code. We synthesize the proposed fully parallel design
on a mid-range field programmable gate array, achieving a throughput of 450 Mbps, as well as a factor of
2.4 hardware efficiency improvement over previous implementations of the FPTD.

INDEX TERMS Turbo codes, combined source-channel coding, channel coding, decoding, field pro-
grammable gate arrays, throughput, wireless communication.

I. INTRODUCTION
With the increasing application of high and ultra-high defi-
nition video, the demand for high throughput wireless com-
munication systems is also increasing. Furthermore, low
latency wireless communication is also required by many
of these video applications such as the first-person remote
control of unmanned vehicles, or mobile access to cloud-
computing based video games. A high transmission through-
put, and hence a low transmission latency, can be achieved
by using near capacity transmission techniques to maximize
the bandwidth efficiency. Near-capacity operation may be
achieved using Shannon’s Separate Source and Channel Cod-
ing (SSCC) concept [1]. Here, a near-entropy source code
such as the arithmetic code [2] is used to remove redundancy
from the source, in order to achieve a high degree of com-
pression. Meanwhile, a separate near-capacity channel code,
such as a turbo code [3], is used for introducing specifically
selected redundancy to achieve a high degree of error correc-
tion. However, Shannon’s SSCC concept assumes that infi-
nite computational complexity and latency can be afforded.

Indeed, arithmetic codes are only capable of removing all
redundancy for the sake of achieving near-entropy compres-
sion when they operate on long sequences of source symbols,
imposing a latency bottleneck. Meanwhile, the conventional
approach to turbo decoding employs the serial Logarith-
mic Bahl-Cocke-Jelinek-Raviv (Log-BCJR) algorithm [4],
imposing a throughput limitation due to its limited grade
of parallelism and iterative nature, even when using hard-
ware acceleration. These factors limit the overall throughput
and latency, precluding the high-throughput and low-latency
applications described above.

This motivates Joint Source and Channel Coding
(JSCC) [5], which can offer performance gains compared
to conventional SSCC. In contrast to SSCC, a JSCC
scheme does not attempt to remove all of the redun-
dancy from the encoded source symbols using sophisti-
cated compression techniques. Instead, a JSCC scheme uses
the residual redundancy that remains after compression
for the purpose of error correction. As a result, a JSCC
scheme can encode frames of any length, while maintaining
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FIGURE 1. The key algorithmic and architectural contributions in source and channel coding.

near-capacity operation. Previous JSCC schemes, such as the
Variable Length Error-Correction (VLEC) code [6], have a
high complexity, owing to the large alphabet from which
the source symbols are selected. By contrast, a Unary Error
Correction (UEC) code [7]–[10] concatenated with a Unity
Rate Convolutional (URC) code, yielding the UEC-URC
code, offers near-capacity operation at a low complexity, even
for large source alphabets such as those of video sources.

While the UEC-URC coding and its derivatives have
received a significant amount of attention at the algorith-
mic level, a hardware implementation of UEC-URC cod-
ing has not been previously considered. In particular, an
implementation of UEC-URC coding having a high process-
ing throughput and a low processing latency is required, in
order to avoid imposing a bottleneck upon the achievable
transmission throughput and latency. This is a particular
challenge, since UEC-URC decoding has been previously
based on the Log-BCJR algorithm, which suffers from serial
data dependencies that are not conducive to high throughput
and low latency processing. In order to address the bottle-
neck imposed by the serial data dependencies of conven-
tional Log-BCJR turbo decoders, our previous work [17] has
considered the hardware implementation of turbo decoders
having high throughput and low latency. More specifically,
our Fully Parallel Turbo Decoder (FPTD) [15] achieves a
high processing throughput and a low processing latency by
eliminating the serial data dependencies of the conventional
Log-BCJR approach, allowing the decoding of all bits to be
completed at the same time, in a fully parallel manner, albeit
at the cost of requiring a largeApplication-Specific Integrated
Circuit (ASIC) or Field Programmable Gate Array (FPGA)

area. These key contributions on JSCC algorithms and turbo
decoder architectures are shown on Figure 1.

Our new contribution is that we extend the principle of
the FPTD to the implementation of a UEC-URC scheme,
which achieves for the first time near-capacity JSCC at a high
processing throughout and a low processing latency, hence
meeting the requirements described above. Furthermore, we
propose several novel techniques for improving the chip-area
efficiency of the FPTD approach. This is achieved by improv-
ing the fully parallel algorithm to allow a pair of bits to be
decoded using the same hardware processing element. This
also facilitates improved pipelining for the sake of increasing
the clock frequency, as well as for reducing the number of
decoding iterations required. Since the UEC-URC scheme
comprises both UEC and URC decoding components, our
novel hardware processing elements are designed to be capa-
ble of processing both of these different decoders, hence
facilitating an efficient hardware design.

The remainder of this paper is structured as shown in
Figure 2. In Section II, we describe the LTE turbo code
and the UEC-URC scheme. Both the LTE turbo decoder
and UEC-URC decoder will be considered throughout
the paper. By considering the turbo code alongside the
UEC-URC scheme, we can compare the architecture pro-
posed on this paper with previous implementations of the
turbo code. Section II concludes by describing the fully par-
allel decoding algorithm introduced in [15]. Following this,
Section III proposes a new paired activation order for the
blocks of the fully parallel decoding algorithm, using Bit
Error Rate (BER) and Symbol Error Ratio (SER) simulations
to quantify the number of iterations required to match the
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FIGURE 2. The paper outline.

error correction capability of the existing Log-BCJR and
FPTD algorithms. Following this, Section IV uses this paired
activation order as the basis of an FPGA implementation of
the UEC-URC scheme. Section V details the implementa-
tion results, where we achieve 450 Mbps on a mid-range
FPGA, demonstrating applicability to video applications.
We also compare our proposed LTE implementation to pre-
vious fully parallel LTE turbo decoder implementations,
demonstrating a 2.4-fold hardware efficiency improvement.
Finally, Section VI offers our conclusions.

II. BACKGROUND
In this section, we commence by describing the operation of
the LTE turbo code of Figure 3 in Section II-A. Following
this, Section II-B highlights the operation of the UEC-URC
scheme of Figure 5. Finally, Section II-C describes the fully
parallel decoding algorithm, which will be applied to both the
LTE turbo code and to the UEC-URC scheme.

A. LTE TURBO CODE SCHEME
In this section we describe the operation of the turbo code
used in LTE. We commence by describing the encoder in
Section II-A1, followed by the decoder in Section II-A2.

1) ENCODER
As shown in Figure 3a, the LTE turbo encoder [24] is com-
prised of two convolutional encoders [25], namely the upper

FIGURE 3. The LTE turbo encoder and decoder. The interleaver π2 is
beneficial in the case where QPSK modulation is used for communication
over a Rayleigh fading channel.

and lower encoders. The input bit-vector bu1 = [bu1,k ]
N
k=1

comprises N bits and typically has equiprobable bit values.
This bit-vector is encoded by the upper decoder to give the
encoded bit-vector bu2 = [bu2,k ]

N
k=1, as well as the systematic

bit-vector bu3 = [bu3,k ]
N
k=1, which is identical to bu1. Mean-

while, an interleaver π1 is used to reorder the input bits of
bu1 to give the bit-vector bl1 = [bl1,k ]

N
k=1, which is encoded

by the lower encoder to give the bit-vector bl2 = [bl2,k ]
N
k=1.

In this way, the LTE turbo code has a coding rate of R = 1/3,
since each input bit is encoded using three output bits, as
shown in figure 3. Note that in the following discussion, the
superscripts u and l will be omitted from the notation when
the discussion applies equally to both the upper and lower
encoders.

Figure 4 shows the trellis of the LTE convolutional
encoders. The trellis characterizes the transition between
the rLTE = 8 possible states of the encoder, based on its
input bit-vector b1. At the beginning of the encoding pro-
cess, each encoder starts from state m0 = 1. The bits of
b1 are considered in the order of increasing bit index k .
Given any particular previous state mk−1, the value of the
input bit b1,k will trigger a state-transition to a state mk
selected from one of two potential options, as shown by
the transition labels in Figure 4. The transitions between
the states mk corresponding to the successive input bits b1,k
form a path m = [mk ]Nk=0 through the trellis. Since each
input bit b1,k has equiprobable values, the transitions are
also equiprobable. For each transition selected, an output
bit b2,k is also identified. These parity bits are concate-
nated together to form the parity bit-vector b2 = [b2,k ]Nk=1,
mentioned above. For example, given the input bit-vector
b1 = [1000111011100100] comprising N = 16 bits, the
convolutional encoding selects the N + 1 = 17 states m =
[1, 5, 3, 6, 7, 4, 6, 3, 6, 3, 2, 1, 1, 1, 5, 3, 6], which yields the
parity bit-vector b2 = [1111100100100111].
Note that the LTE turbo encoder also appends three trellis-

termination bits to the end of each of the
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FIGURE 4. Trellis for the LTE turbo code.

bit-vectors bu1, b
l
1, b

u
2 and b

l
2, in order to guarantee that the end

state of each convolutional encoder is mN+3 = 1 [24], which
avoids an error floor [26]. These 12 termination bits are also
output by the turbo encoder, but are not shown in Figure 3
for the sake of simplicity. Following turbo encoding, the
resultant output bits are multiplexed and then modulated as
well as transmitted over the channel. Since in this workwe are
assuming QPSKmodulation and an uncorrelated narrowband
Rayleigh fading channel [27], no channel-interleaving is
required, but the interleaver π2 is beneficial before mod-
ulation to nonetheless ensure that neighboring bits are not
transmitted as pairs within the QPSK symbols.

2) DECODER
The LTE turbo decoder is shown in Figure 3b, where the
upper and lower decoders correspond to the upper and lower
encoders of the LTE turbo encoder. Likewise, the demodula-
tor of Figure 3b mirrors the modulator of Figure 3a. While
the encoder works on the basis of hard bits, having the values
either 0 or 1, the demodulator and decoder uses soft bits called
Logarithmic Likelihood Ratios (LLRs) [28], which express
the decoder’s uncertainty in the bit value owing to the noise
in the channel. More specifically, the LLR value is given

according to b̃ = ln P(b=1)
P(b=0) , where a high positive valued

LLR represents a high confidence that the corresponding
bit in the encoder was one-valued, while a negative valued

LLR represents greater probability of a zero-valued bit. The
use of LLRs allows the two decoders in the receiver to
iteratively exchange information about their confidence in
the various bit values, yielding improved decoding perfor-
mance. Following their reception, the LLRs gleaned from the
demodulator are de-interleaved by π−12 , then de-multiplexed,
yielding the a priori LLR-vectors b̃u,a2 = [b̃u,a2,k ]

N
k=1, b̃

l,a
2 =

[b̃l,a2,k ]
N
k=1 and b̃u,a3 = [b̃u,a3,k ]

N
k=1. The systematic LLR-vector

b̃u,a3 is also interleaved through π1 to yield b̃l,a3 = [b̃l,a3,k ]
N
k=1.

Furthermore, the lower decoder provides the upper decoder
with the a priori LLR-vector b̃u,a1 = [b̃u,a1,k ]

N
k=1, which is

populated with zero-valued LLRs at the start of the decod-
ing process. Likewise, the upper decoder provides the lower
decoder with b̃u,a1 = [b̃u,a1,k ]

N
k=1, as shown in Figure 3a.

In a conventional turbo decoder, the upper and lower
decoders employ the Log-BCJR algorithm [4] for converting
the input a priori LLR-vectors into the extrinsic output LLR-
vectors b̃u,e1 = [b̃u,e1,k ]

N
k=1 and b̃l,e1 = [b̃l,e1,k ]

N
k=1. Note that

the Log-BCJR algorithm can also beneficially exploit the
12 LLRs provided by the demodulator to correspond to the
12 termination bits. In these conventional turbo decoders,
the upper and lower decoders are operated alternately, in
an iterative manner. More specifically, the upper decoder
outputs b̃u,e1 , which is interleaved through π1 to become the
a priori LLR-vector b̃l,a1 , which is input to the lower decoder.
Likewise, the lower decoder outputs the extrinsic LLR-vector
b̃l,e1 , which is de-interleaved through π−11 and input as the a
priori LLR-vector b̃u,a1 into the upper decoder. At the same
time, the turbo decoder outputs the vector of a posteriori
LLRs b̃u,p1 = [b̃u,p1,k ]

N
k=1, which is obtained by the addition

of b̃u,a1 and b̃u,e1 , and so represents the combined knowledge
of the bit-vector bu1.
If the channel Signal-to-Noise Ratio (SNR) is sufficiently

high, the quality of LLRs may be expected to increase in
each successive iteration, as the decoder recovers the original
encoded message. The iterations exchanging extrinsic infor-
mation between the decoders continue until a fixed number
of iterations is completed, or until a hard decision based
on the a posteriori LLR-vectors satisfies the classic Cyclic
Redundancy Check (CRC).

B. UEC-URC JSCC SCHEME
In this section, we detail the operation of the UEC-URC
JSCC scheme. First, in Section II-B1, we describe how
the scheme encodes and transmits a stream of symbols.
Following this, Section II-B2 describes the operation of the
UEC-URC decoder, which attempts to recover the original
symbols. In this section, we adopt notation that is consistent
with the turbo scheme of Section II-A.

1) ENCODER
The UEC-URC encoder is shown in Figure 5. This is a JSCC
scheme, which operates on the basis of a stream of symbols
x = [xi], rather than bits. The UEC encoder is well suited
to the encoding of symbols that obey Zipf’s law [29], such
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FIGURE 5. The UEC-URC scheme.

as the motion vectors and transform coefficients of the H.265
standard video codec [30], which may be modeled by the zeta
symbol probability distribution. More specifically, the UEC
encodes a stream of source symbols, which are assumed to
be a realization of a stream of Independent and Identically
Distributed (IID) Random Variables (RVs) X = [Xi], where
each RV is selected from the set N1 = {1, 2, 3, 4, ...,∞},
according to the zeta probability distribution which is given
by [7]

P(Xi = x) = P(x) =
x−s∑

x̂∈N1
x̂−s
=

x−s

ζ (s)
, (1)

where ζ (s) =
∑

x∈N1
x−s is the Riemann zeta function.

In the zeta distribution, symbols having the value 1 are the
most probable, where this probability is given by p1 =
Pr(Xi = 1), and the probability of a symbol value decreases
as the symbol value increases. Here, the variable s > 1 is
related to the parameter p1 according to p1 = Pr(Xi = 1) =
1/ζ (s). The entropy of the source symbols is given by [7]

HX =
∑
x∈N1

P(x) log2
1

P(x)
=

ln(ζ (s))
ln(2)

−
sζ ′(s)

ln(2)ζ (s)
(2)

where ζ ′(s) = −
∑

x∈N1
ln(x)x−s.

TABLE 1. The unary codewords.

The unary encoder of Figure 5 converts each symbol xi
to a codeword denoted by Unary(xi), as shown in Table 1.
The length of each unary codeword is equal to the value of
the corresponding symbol xi, where the first (xi − 1) bits
in the codeword have the value 0, while the last bit has the

value of 1. Since the length of each unary encoded symbol is
equal to its value, we can express the average unary codeword
length lUnary as [7]

lUnary =
∑
x∈N1

P(x)x =
ζ (s− 1)
ζ (s)

. (3)

In contrast to turbo coding, the bit values output by a
unary encoder are not equiprobable. A further difference with
respect to turbo coding is that for a fixed number of input
symbols, unary source coding yields a variable number of
bits. This necessitates a mechanism for partitioning the bits
output from the unary encoder into fixed length bit-vectors.
More specifically, the stream of codewords produced by the
unary encoder are concatenated together, then partitioned
into a succession of bit-vectors bUEC1 = [bUEC1,k ]Nk=1, having
a fixed length of N bits. Owing to the partitioning, some
unary codewordsmay be split between successive bit-vectors,
hence a buffer is used for storing these bits so they can
be removed from the end of one bit-vector and concate-
nated onto the start of the next, as shown in Figure 5. For
example, the unary encoding of the symbol vector x =
[1, 2, 1, 1, 4, 1, 3, 1, 2] associated with N = 8 produces
the successive bit-vectors bUEC1 = [1, 0, 1, 1, 1, 0, 0, 0] and
bUEC1 = [1, 1, 0, 0, 1, 1, 0, 1]. Note that the fifth element of
x is split between the two bit-vectors of bUEC1 .

As shown in Figure 5, the bit-vector bUEC1 is encoded by the
trellis encoder, yielding the bit-vectors bUEC2 = [bUEC2,k ]Nk=1
and bUEC3 = [bUEC3,k ]Nk=1. This encoding is performed accord-
ing to the rUEC = 4-state trellis of Figure 6a, in a manner sim-
ilar to the convolutional encoding described in Section II-A1.
Figure 6a shows how the trellis transitions from state mk−1
to mk , depending on the input bit bUEC1,k . The transitions are
also labeled with the corresponding codeword {bUEC2,k , b

UEC
3,k }

which is output when each transition is selected. The trellis
encoder starts at state m0 = 1 at the beginning of each
bit-vector bUEC1 . The path taken through the trellis encoder
upon encoding bUEC1 may be represented as mk = [m]Nk=0,
comprising N + 1 state values. We can model the path m
as a realization of a random vector of RVs M = [Mk ]Nk=0,
where the conditional probability of each state being selected
Pr(Mk = m|Mk−1 = m′) = P(m|m′) can be found
in [7, eq. (9)]. These conditional transition probabilities
P(m|m′) can be used to aid the receiver, as it will be described
in Section II-B2. In contrast to the turbo code, since the bit
values of bUEC1 are not equiprobable, the transitions P(m|m′)
are not equiprobable either.

Note that the trellis of Figure 6a can be readily extended to
more states, which marginally improves the error correction
performance, at the cost of imposing extra complexity [7].
Here we have chosen an rUEC = 4-state UEC trellis, since
this provides reasonable performance, while allowing an effi-
cient hardware implementation, as we will demonstrate in
Section IV. Note that the structure of the UEC trellis is
based upon the unary codewords. For each zero-valued unary-
encoded bit that is input to the trellis encoder, the transitions
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FIGURE 6. Trellis for UEC and URC codes. a) UEC. b) URC.

are taken towards the edge of the trellis. When the edge of the
trellis is reached, further zeros keep the encoder in the holding
state. When the one-valued bit at the end of each unary
codeword is input, the encoder traverses to one of the central
states. This means that the trellis ensures synchronization
between the trellis and the codewords, without requiring an
excessive number of states in the trellis. Since the UEC trellis
is symmetric and employs complementary codewords in the
top and bottom halves, the UEC-encoded output bits bUEC2,k
and bUEC3,k generated by the trellis encoder are guaranteed to
have equiprobable values.

The bits bUEC2,k and bUEC3,k output by the trellis encoder are
concatenated for forming the vectors bUEC2 = [bUEC2,k ]Nk=1
and bUEC3 = [bUEC3,k ]Nk=1. For example, given the vector
comprising N = 15 bits bUEC1 = 011001010010111,
the path through the trellis can be expressed as a vec-
tor m = [1, 3, 2, 1, 3, 3, 2, 4, 1, 3, 3, 2, 4, 1, 2, 1] of
N + 1 = 16-states. This path through the trellis encoder pro-
duces the output vectors bUEC2 = [111101001010001] and
bUEC3 = [010001100011010], each comprising N = 15 bits.
Following trellis encoding, the bit-vectors bUEC2 and bUEC3

are concatenated and interleaved through an interleaver π1,
similar to the one used in the turbo code, producing the bit-
vector bURC1 = [bURC1,k ]2Nk=1. An rURC = 2-state URC encoder
is employed to accumulate the bits of bURC1 , in order to gen-
erate the bit-vector bURC2 = [bURC2,k ]2Nk=1. This accumulation
is equivalent to performing encoding using the trellis shown
in Figure 6b. This URC code will facilitate iterative decoding
exchanging extrinsic information with the UEC trellis code in
receiver, for the sake of allowing near-capacity operation, as
discussed in Section II-B2. It was shown in [31] that a 2-state
URC code has more complementary EXIT characteristics to
the UEC trellis encoder, compared to a 4- or 8-state URC
encoder. The 2-state URC encoder also has a lower complex-
ity, which will be exploited in Section IV. The URC encoder
operates in a similar manner to the convolutional encoder
described in Section II-A1. The input bits bURC1,k are processed
in order of increasing index k , where each bit causes the trellis
of Figure 6b to transition from the previous state mk−1 to the

next state mk , while outputting the associated bit bURC2,k . The
path comprising 2N + 1 states taken by the encoder may be
represented asm = [mk ]2Nk=0. Since the bits input to the URC
encoder have equiprobable values, the bits output from the
URC encoder also have equiprobable values. In contrast to
the LTE turbo code, no termination is used by the URC trellis.
Following URC encoding, the bit-vector bURC2 is interleaved
by π2, before being Quadrature Phase Shift Keying (QPSK)
modulated and transmitted over the Rayleigh fading channel.

2) DECODER
As shown in Figure 5b, the LLR-vector b̃a,URC2 =

[b̃a,URC2,k ]2Nk=1 is obtained after QPSK demodulation and de-
interleaving by π−12 . This is entered into the iterative decoder,
which is comprised of a URC decoder and a UEC trellis
decoder, in correspondence to the URC encoder and UEC
trellis encoder in the transmitter. At the start of the decoding
process, all other LLR-vectors are populatedwith zero values.
More specifically, the URC decoder is provided with the
encoded a priori LLR-vector b̃a,URC2 from the demodula-
tor, as well as the uncoded a priori LLR-vector b̃a,URC1 =

[b̃a,URC1,k ]2Nk=1 provided by the trellis decoder. Likewise, the
UEC trellis decoder is provided with the a prioriLLR-vectors
b̃a,UEC2 = [b̃a,UEC2,k ]Nk=1 and b̃a,UEC3 = [b̃a,UEC3,k ]Nk=1 by the
URC decoder. In a conventional receiver, the URC decoder
may employ the Log-BCJR decoder to transform the a pri-
ori input LLR-vectors into the extrinsic output LLR-vector
b̃e,URC1 = [b̃e,URC1,k ]2bk=1, according to the trellis of Figure 6b.
Likewise, the UEC trellis decodermay employ the Log-BCJR
algorithm to transform the input a priori LLR-vectors into the

extrinsic LLR-vectors b̃e,UEC2 = [b̃e,UEC2,k ]Nk=1 and b̃e,UEC3 =

[b̃e,UEC3,k ]Nk=1, according to the trellis of Figure 6a. Note that
the trellis decoder’s encoded a priori LLR vectors b̃a,UEC2 and
b̃a,UEC3 , as well as the encoded extrinsic LLR vectors b̃e,UEC2
and b̃e,UEC3 jointly comprise two LLRs corresponding to each
LLRs in the a posteriori LLR-vector b̃UEC1 .

In a conventional decoder, the URC decoder and UEC
trellis decoder are activated alternately, in a similar manner
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FIGURE 7. Fully parallel iterative decoders for the LTE turbo code. a) State of the art fully parallel iterative decoder (adapted from [15]).
b) Novel scheduling proposed in this paper.

to the action of the turbo decoder of Section II-A2. After the
activation of one of the two decoders, they exchange their
LLR-vectors through the interleaver π1 and deinterleaver
π−11 . More specifically, the extrinsic LLR-vector b̃e,URC1
gleaned from the URC decoder is passed through π−1,
yielding the a priori encoded UEC LLR-vectors b̃a,UEC2

and b̃a,UEC3 . Furthermore, the extrinsic encoded LLR-vectors

b̃e,UEC2 and b̃e,UEC3 generated by the UEC decoder are
passed through π , yielding the a priori URC input LLR
vector b̃a,URC1 .
The performance of the UEC decoder can be improved

by exploiting the fact that the conditional probabilities
associated with different transitions P(m|m′) are not equal.
The logarithm of these conditional transition probabilities
ln[P(m|m′)] may be added to the a priori transition probabil-
ities γ̃ during the Log-BCJR [7]. The decoder may calculate
P(m|m′) using only knowledge of the occurrence probability
P(x) of the first rUEC/2−1 symbol values x, as well as knowl-
edge of the average unary codeword length l [7]. Note that if
this information is unknown at the receiver, the trellis decoder
can operate without the transition probabilities P(m|m′), at
the cost of a reduced error correction performance [9]. In this
case, the required information can be estimated heuristically
following the decoding of several symbol vectors.

Once a sufficient number of decoding iterations have been
performed, the trellis decoder can output the vector of N
a posteriori uncoded LLRs b̃UEC1 = [b̃UEC1,k ]Nk=1, which is
passed to the unary decoder for recovering the symbol vector
x̂. In analogy with the partitioning of the unary-encoded
bits at the encoder into fixed length vectors bUEC1 , there is
also a buffer at the receiver for temporarily storing these
LLRs, which pertain to symbols that are split between suc-
cessive symbol-vectors, as described in Section II-B1. In
order to assist the unary decoder, the transmitter may send
a small amount of optional side information to the receiver.

This conveys the number a of logical one-valued bits that are
present in the bit-vector bUEC1 . The unary decoder operates
by converting the a highest LLR values in the vector bUEC1
to logical one-valued bits, since high LLR values indicate
that the corresponding bit is likely to have the value 1, while
the rest are converted to zero-valued bits. The unary decoder
then converts the resultant-hard decision bit-vector ỹ into
symbols x̃, according to Table 1. If no side information is
invoked, then a hard decision is made of each bit, depending
on whether the corresponding LLR is positive or negative.

C. FULLY PARALLEL DECODING ALGORITHM
In this section we will describe the operation of the fully
parallel iterative decoder, which was proposed in [15].
In Sections II-A and II-B, we described how the turbo decoder
and UEC-URC decoder may employ the Log-BCJR algo-
rithm for alternately processing each component decoder,
which iteratively exchange extrinsic information. By contrast,
this section will show that the Log-BCJR algorithm can be
replaced by the fully parallel iterative decoder, which carries
out the tasks of both component decoders simultaneously.

Figure 7 depicts a fully parallel decoder for the LTE turbo
code of Section II-A2. The fully parallel decoder is comprised
of two component decoders, namely the upper decoder and
the lower decoder, which are connected through an inter-
leaver. In the fully parallel decoder, each component decoder
is comprised ofN decoding blocks, each of which correspond
to a different trellis stage. The upper and lower decoder of
Figure 7 are provided with the a priori LLR-vectors b̃u,a2 ,
b̃l,a2 and b̃u,a3 from the channel. During the iterative decoding
process, the upper and lower decoders exchange the extrinsic
LLR-vectors b̃u,e1 and b̃l,e1 through the interleaver and dein-
terleaver, in the same manner as described in Section II-A2.
Likewise, Figure 8 shows the fully parallel decoder applied to
the UEC-URC decoder of Section II-B2. Here, in contrast to

VOLUME 5, 2017 2927



M. F. Brejza et al.: High-Throughput FPGA Architecture for Joint Source and Channel Decoding

FIGURE 8. Novel scheduling proposed in this paper for the UEC-URC scheme.

the fully parallel turbo decoder of Figure 7, there are twice as
many decoder blocks for the URC decoder as for the UEC
trellis decoder, since there are twice as many URC trellis
stages as there are UEC trellis stages. This is because in the
UEC encoder, each input bit bUEC1,k , generates two output bits
bUEC2,k and bUEC3,k , which are encoded by the URC encoder, as
shown by Figure 5. A further difference with respect to the
turbo decoder is that for the fully parallel UEC-URC decoder,
each UEC trellis decoder block is required to output the pair
of extrinsic LLRs b̃UEC,e2,k and b̃UEC,e3,k , instead of just one.

Since the fully parallel iterative decoder is comprised of
a separate decoding block for each trellis stage, these trellis
stages can be processed in parallel, facilitating high through-
puts and low latency at the receiver. This is in contrast to
the conventional Log-BCJR, where the trellis stages are pro-
cessed in order, according to forward and backward recur-
sions. The operation of the decoding blocks in Figures 7 and 8
is described in (4)-(8), as shown at the bottom of this page,
where the time indicies t and (t − 1) are used to show in
which time period the various values are used. Note that these
equations have been re-arranged from those in [15], so that
they match with the hardware schematic that will be used

in Section IV. In (4)-(8), the max∗ operator is defined for two
operands as max∗(a, b) = max(a, b)+ ln(1+ e−|a−b|), but it
may be readily extended to more operands by exploiting the
associative property.

Like the Log-BCJR algorithm [4], the equations of the
fully parallel decoder comprise four sets of metrics. The
γ̃ tk values of (4) represent the a priori probabilities of the
transitions. These are calculated based on the a priori LLRs
provided for each decoder block, either by the demodu-
lator or by the interleaver in the previous time period,
as well as based on the specific trellis structure bk (mk−1,mk )
employed by the scheme. The α̃tk and β̃

t
k values of (5) and (6)

are forwards and backwards state metrics, respectively. These
are provided based on the α̃t−1k and β̃ t−1k−1 values calculated
by a neighboring decoding block in the previous time period,
as well as the γ̃ t values from the current time period. Each
decoder block outputs its α̃tk values to the next decoder block
and the β̃ tk values to the previous decoder block, which are
used in the subsequent time period. The δ̃tk values of (7)
represent the a posteriori transition probabilities. These are
calculated based on the a priori α̃t−1k and β̃ t−1k−1 values pro-
vided by the neighboring decoding blocks in the previous

γ̃ tk (mk−1,mk ) =
L∑
j=1

[
bj(mk−1,mk ) · b̃

a,t−1
j,k

]
+ log[P(mk |mk−1)] (4)

α̃tk (mk ) = max∗
{sk−1|c(mk−1,mk )=1}

[γ̃ tk (mk−1,mk )+ α̃
t−1
k−1(mk−1)] (5)

β̃ tk−1(mk−1) = max∗
{sk |c(mk−1,mk )=1}

[γ̃ tk (mk−1,mk )+ β̃
t−1
k (mk )] (6)

δ̃tk (mk−1,mk ) = γ̃
t
k (mk−1,mk )+ α̃

t−1
k−1(mk−1)+ β̃

t−1
k (mk ) (7)

b̃e,tj,k =
[

max∗
{(sk−1,mk )|bj(mk−1,mk )=1}

[δ̃tk (mk−1,mk )]
]
−

×

[
max∗

{(sk−1,mk )|bj(mk−1,mk )=0}
[δ̃tk (mk−1,mk )]

]
− b̃a,t−1j,k (8)
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time period, as well as the γ̃ tk values from the current time
period. These δ̃tk values are used to generate the extrinsic out-
puts b̃e,tj,k of (8), which may be passed through the interleaver
in order to assist the other constituent decoder in the iterative
decoding process.

While all of the decoding blocks of both component
decoders in Figures 7 and 8 can be operated at the same
time, there are also other attractive activation orders. The first
example of this is shown in Figure 7a, where two groups
of blocks are shown, one with dark shading and one with
light shading. This is known as odd-even activation, where
each group of shaded blocks are operated in alternate time
periods. More specifically, the dark shaded blocks are acti-
vated in odd indexed time periods, followed by the lightly
shaded blocks in the even indexed time periods. Note that
the t and (t − 1) notation of Equations (4)-(8) naturally
support this activation order, since all inputs provided for
a particular block in the previous time period are gener-
ated by the blocks having the opposite shading. Note that
odd-even activation requires an odd-even interleaver, which
connects dark shaded blocks to light shaded ones and vice
versa. The LTE interleaver meets this requirement, as we
will show in Section III-B. This odd-even scheduling reduces
the complexity of the turbo decoder shown in Figure 7a
by 50%, without compromising either its throughput or its
error correction capability, as described in [15]. Note that the
novel schedules shown in Figures 7b and 8 will be introduced
in Section III.

III. ALGORITHM ADAPTATIONS
This section details the operation of the proposed enhance-
ments to the fully parallel decoding algorithm of Section II-C.
The modifications proposed in this section are motivated by
the constraints imposed by the associated hardware imple-
mentation. More specifically, to increase the clock frequency
of the hardware and hence improve the throughput and
latency, more pipelining [32] is required, although this delays
the exchange of information through the decoder. A naive
approach would be to increase the degree of pipelining with-
out considering the negative impact on the algorithm’s error
correction performance. By contrast, this section describes
a novel scheduling, which considers the effect of pipelin-
ing in hardware implementation upon its error correction
performance, which will be shown in Section IV to sig-
nificantly improve the hardware efficiency attained. In this
way, these improvements have been achieved by jointly con-
sidering the design of the iterative decoding algorithm and
hardware. Indeed, we show that these enhancements improve
its error correction performance, whilst increasing the achiev-
able throughput of the entire system.

We commence in Section III-A by justifying the proposed
modifications of Equations (4)-(8), as shown at the bottom
of this page, in order to improve the scheduling of the
fully parallel algorithm and aid its hardware implementation.
Following this, Section III-B describes how the proper-
ties of the interleaver affect the operation of this modified
fully parallel decoding algorithm. Section III-C character-

if t mod 4 = 0, k ∈ 1, 5, 9, ... (upper), k ∈ 3, 7, 11, ... (lower) or
if t mod 4 = 2, k ∈ 3, 7, 11, ... (upper), k ∈ 1, 5, 9, ... (lower)

γ̃ tk (mk−1,mk ) =
L∑
j=1

[
bj(mk−1,mk ) · b̃

a,t−1
j,k

]
+ log[P(mk |mk−1)] (9)

α̃tk (mk ) = max∗ {sk−1|c(mk−1,mk ) = 1}[γ̃ tk (mk−1,mk )+ α̃
t−1
k−1(mk−1)] (10)

β̃ tk (mk ) = max∗
{sk+1|c(mk ,mk+1)=1}

[γ̃ tk+1(mk ,mk+1)+ β̃
t−1
k+1(mk+1)] (11)

δ̃tk (mk−1,mk ) = γ̃
t
k (mk−1,mk )+ α̃

t−1
k−1(mk−1)+ β̃

t−4
k (mk ) (12)

b̃e,tj,k =
[

max∗
{(sk−1,mk )|bj(mk−1,mk )=1}

[δ̃tk (mk−1,mk )]
]
−

[
max∗

{(sk−1,mk )|bj(mk−1,mk )=0}
[δ̃tk (mk−1,mk )]

]
− b̃a,t−1j,k (13)

if t mod 4 = 1, k ∈ 2, 6, 10, ... (upper), k ∈ 4, 8, 12, ... (lower) or
if t mod 4 = 3, k ∈ 4, 8, 12, ... (upper), k ∈ 2, 6, 10, ... (lower)

γ̃ tk (mk−1,mk ) =
L∑
j=1

[
bj(mk−1,mk ) · b̃

a,t−1
j,k

]
+ log[P(mk |mk−1)] (14)

α̃tk (mk ) = max∗
{sk−1|c(mk−1,mk )=1}

[γ̃ tk (mk−1,mk )+ α̃
t−1
k−1(mk−1)] (15)

β̃ tk−2(mk−2) = max∗
{sk−1|c(mk−2,mk−1)=1}

[γ̃ tk−1(mk−2,mk−1)+ β̃
t−1
k−1(mk−1)] (16)

δ̃tk (mk−1,mk ) = γ̃
t
k (mk−1,mk )+ α̃

t−1
k−1(mk−1)+ β̃

t−2
k (mk ) (17)

b̃e,tj,k =
[

max∗
{(sk−1,mk )|bj(mk−1,mk )=1}

[δ̃tk (mk−1,mk )]
]
−

[
max∗

{(sk−1,mk )|bj(mk−1,mk )=0}
[δ̃tk (mk−1,mk )]

]
− b̃a,t−1j,k (18)
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FIGURE 9. Proposed enhanced fully parallel decoding algorithm. The shaded portion shows the components that are implemented by each
hardware decoder of Figure 16. Subfigures a, b, c and d show the four successive steps of each decoding iteration.

izes the error correction performance of the proposed fully
parallel algorithm, by comparing the number of decoding
iterations required to those of the conventional Log-BCJR
algorithm and the fully parallel decoding algorithm of [7].
Section III-D discusses the impact of adopting the reduced
complexity approach of the Max-Log-BCJR algorithm [21]
upon the error correction performance, showing that this
can be mitigated by using extrinsic scaling [33]. Finally,
Section III-E discusses the bit-widths required for the fixed
point two’s-complement numbers used inside the decoder.

A. SCHEDULING
In this section we will detail our novel approach to schedul-
ing the operations of the fully parallel decoding algorithm,

where the Equations (4)-(8) are reordered and transformed
into (9)-(18), in order to facilitate its improved hardware
implementation and to improve its error correction perfor-
mance. Figure 9 graphically represents Equations (9)-(18),
detailing which of the different operations of each algorith-
mic block are performed in which of the four successive
time periods that constitute each complete decoding iteration.
More specifically, Figure 9 shows the four time periods of the
proposed scheduling, when applied to the LTE turbo code,
while Figure 10 illustrates one of the four time periods in
the schedule for the UEC-URC scheme. Note that since the
UEC-URC scheme comprises twice as many URC trellis
stages as that of the UEC trellis stages, the former are
arranged into two rows of equal length in Figure 10.
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FIGURE 10. Proposed enhanced fully parallel decoding algorithm for the UEC-URC scheme. Here, only the first of four
steps is shown, in analogy to that shown in Figure 9a.

Equations (4)-(8) of the fully parallel decoding algorithm
of [15] have been transformed into (9)-(18) of the proposed
modification by altering the order of operation. When apply-
ing an odd-even interleaver, each decoding iteration of the
fully parallel decoding algorithm of [15] requires two time
periods t , in which each algorithmic block is operated once,
as described in Section II-C. By contrast, Equations (9)-(18)
result in each decoding iteration of the proposed modification
requiring four time periods t , during which each algorithmic
block is also operated once. Note that the changes relative
to Equations (4)-(8) have been highlighted in (9)-(18). Some
of the equations appear unchanged, but are shown in (9)-(18)
because the time slot in which they are activated has changed.

In Figures 9 and 10, the dashed lines group the process-
ing, which is required for each pair of algorithmic blocks.
Specifically, the pairs of algorithmic blocks, which are being
processed in the current time period t are surrounded by black
dashed lines, while the pairs of algorithmic blocks that are
not being processed are surrounded by grayed dashed lines.
Within the pairs of algorithmic blocks, individual operations
are also shown, which are active when shaded, while the
inactive ones are printed in gray.More specifically, the orange
blocks marked α and β implement Equations (10), (15) and
(11), (16), respectively. The blue blocks marked be represent
(12), (17) and (13), (18), while the red blocks marked γ
correspond to Equations (9) and (14). The green1 block rep-
resents a memory element, which is used to store values that
are not used immediately. These colors are consistently used

throughout the remainder of this paper to show the mapping
between the algorithm and hardware implementation.

The proposed scheduling of this section preserves the odd-
even activation order that was initially proposed in [15].
However, in the proposed algorithm, the odd-even scheduling
applies to pairs of algorithmic blocks rather than to individ-
ual blocks. As will be described in Section III-B, the LTE
interleaver supports this scheduling, while the UEC-URC
interleaver can be readily designed to support this scheduling.

The shaded region of Figures 9 and 10 shows the specific
portion of the algorithm that is decoded by one hardware
processing element, as will be discussed in Section IV. More
specifically, Figure 9 illustrates the processing performed by
three hardware processing elements for 12 algorithmic blocks
of Figure 7, in four time steps.

Note that steps (a) and (b) of Figure 9 correspond to the
light shaded pairs of blocks shown in Figures 7b and 8.
These are processed in the first two of the four time periods.
Meanwhile, steps (c) and (d) show how the dark shaded pairs
of blocks of Figures 7b and 8 are processed in the remaining
two time periods. The novel scheduling of this work allows
information to pass through the two decoders at a higher rate
than in the conventional fully parallel decoding algorithm.
More specifically, after one iteration of the proposed algo-
rithm,ααα andβββ state metrics have propagated from α̃̃α̃αk to α̃̃α̃αk+4
and β̃̃β̃βk+4 to β̃̃β̃βk , respectively. By contrast, for the odd-even
fully parallel decoding algorithm of [15] requires only two
iterations for state metrics to propagate this distance.
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The b̃e,tk calculation in steps (a) and (c) uses the α̃ααt−1k−1
values, which have been calculated in the previous time
period, but require the β̃ββ

t−4
k values that were calculated in the

previous iteration. This is because the b̃e,tk and β̃̃β̃β tk calculations
are performed in the same time period, and so the result of
the β̃̃β̃β tk calculation is not ready in time for use in the b̃e,tk
calculation. Owing to this, thememory elements1 are loaded
with the output of the β̃̃β̃β calculation at the start of step (b).
These β̃̃β̃β values are then stored until the start of step (a) in
the next iteration, where they are used as inputs to the b̃e,tk
calculation. Note that the b̃e,tk calculation of steps (b) and (d)
do not suffer from this issue, since the b̃e,tk calculation requires
β̃̃β̃β t−2k , which is also used in the previous time period.

It is worth noting that the paired operation proposed here
is different to the radix-4 technique [18], [34], which is
often used with conventional Log-BCJR decoders. Radix-4
decoders traverse two trellis stages in the same time period,
by combining two trellis stages together and processing the
combined trellis as one operation. By contrast, the paired
operation proposed here requires two time periods for pro-
cessing two trellis stages, but with the overlapping of their
processing.

B. INTERLEAVER
As previously discussed in Section II-C, the fully parallel
turbo decoder of Figure 7a benefits from odd-even operation,
which enables a 50% reduction in computational complexity.
More specifically, the blocks of different shading are operated
alternately in successive time periods, so that outputs gener-
ated in one time period by blocks of one shading are con-
sumed in the next time period by blocks of the other shading.
In order to facilitate this, the interleaver of Figure 7a should
be designed such that the lightly shaded blocks are only
connected to the darkly shaded blocks. More specifically, the
interleaver π1 only connects blocks in the upper row having
even indices to blocks in the lower row having even indices
π (i). Likewise, blocks having odd indices are only connected
to blocks in the other row having odd indices.Wemay express
this property as mod (π(i), 2) = mod (i, 2), where
mod (·) is the modulo operator. This property is held by all of
the 188 LTE interleavers, which have different frame lengths
N ∈ {40, 48, ..., 6144}.

In the proposed algorithm of Section III-A, the inter-
leaver is still required to connect all lightly shared blocks
to darkly shaded blocks, in order to maintain correct odd-
even operation. Since the blocks of Figures 7b and 8 are
arranged as pairs of the same color, a different interleaver
property is required relative to the algorithm of Figure 7a.
More specifically, the first block in each pair of a specific
shading must be interleaved to the first block of another pair
of the other shading. Likewise, the second block in each
pair of one shading must be interleaved to the second block
of another pair of the other shading. This can be seen in
Figure 7b, where the extrinsic LLR b̃e1,1, which is output
from the first block of a lightly shaded pair, is interleaved to

FIGURE 11. The mod4 property of the LTE interleaver, which is of either
type A or type B for all 188 designs for the different frame lengths
N ∈ {40,48, ...,6144}.

b̃a1,5 and input to the first block of a darkly shaded pair. This
maximizes the number of time periods available for extrinsic
LLRs to be generated, interleaved and be used as a priori
LLRs in the connected algorithmic block. We may express
the interleaver property required by the proposed scheduling
as mod (π (i), 4) = mod (i, 4), which we refer to as the
mod4 type A property. This expression is also demonstrated
by Figure 11, where the solid lines show the mod4 type A
property, which will be exploited by the implementation of
Section IV. Approximately half of the 188 LTE interleavers
for different frame lengths N ∈ {40, 48, ..., 6144} meet the
mod4 type A property. The other half have a similar property,
which we refer to as the mod4 type B property and which
is shown by the dashed lines of Figure 11. When a mod4
type B interleaver is used, the odd-even scheduling property
shown in Figure 7b is not entirely satisfied, since half of
the extrinsic LLR connections through the interleaver will
connect to blocks of the same shading. While a scheme using
this interleaver can still be decoded using the scheduling
of Figure 9 and the architecture of Section IV, there is a
slight performance disadvantage, which will be explored in
Section III-C. This performance degradation is imposed by
the extrinsic LLRs that suffer from an additional delay before
they are used as a priori LLRs.

For the UEC-URC scheme of Figure 5, a mod4 interleaver
is also required. Since we are free to design an interleaver
for this proprietary scheme, a mod4 type A interleaver may
be designed for all supported frame lengths. To maintain
the mod4 properties of the interleaver, each extrinsic output
b̃UEC,e2,k and b̃UEC,e3,k from each UEC algorithmic block of a
particular shading must be interleaved to a URC algorithmic
block of the other shading. Likewise, the deinterleaver must
route the extrinsic LLR b̃URC,e1,k produced by a URC algorith-
mic block of a particular shading to become either the a priori
LLR b̃UEC,a2,k or b̃UEC,a3,k of a UEC algorithmic block having the
opposite shading, using the inverse interleaving pattern.

C. ERROR CORRECTION PERFORMANCE
Figure 12 shows the BER performance of the LTE turbo
code of Figure 3 using the proposed decoding schedule of
Figure 9, when using QPSK modulation for communica-
tion over an uncorrelated narrowband Rayleigh fading chan-
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FIGURE 12. BER performance of the LTE turbo scheme of Figure 3, when
employing various decoding algorithms and QPSK modulation for
communication over an uncorrelated narrowband Rayleigh
fading channel.

nel. Here, we compare the proposed scheduling with the
Log-BCJR algorithm and the odd-even scheduling of [15],
for both types of interleavers characterized in Figure 11.
More specifically, the N = 4864-bit LTE interleaver is
of mod4 type A, while the N = 4800-bit LTE interleaver
is of mod4 type B. Figure 12 plots the BER performance
for the Log-BCJR algorithm when employing 6 decoding
iterations. Figure 12 shows that the same BER performance
may be achieved using the proposed turbo decoding schedule
of Figure 9 and a mod 4 type A interleaver, when performing
28 decoding iterations. However, when employing 28 itera-
tions for a mod4 type B interleaver, the proposed schedule of
Figure 9 can be seen to impose a modest 0.07 dB performance
degradation at a BER of 10−5. Likewise, when performing 28
decoding iterations, the odd-even scheduling of [15] suffers
a more significant 0.3 dB performance degradation at a BER
of 10−5, compared to the proposed scheduling. Indeed, this
schedule requires 42 decoding iterations to achieve the BER
performance offered by the proposed schedule. Note that
since each decoding iteration constitutes one activation of
each algorithmic block, the comparison of the fully parallel
schemes is fair in terms of decoding complexity.

Figure 13 plots the SER performance of the UEC-URC
scheme of Figure 5 using the proposed decoding schedule
of Figure 10, when employing QPSK modulation for com-
munication over an uncorrelated narrowband Rayleigh fading
channel. Here, the generated symbols x obey a zeta distri-
bution, having p1 = 0.8, while the unary-encoded bits are
partitioned into frames bUEC1 comprising N = 4800 bits,
which corresponds to an average of 3134 symbols per frame.
These schemes use random interleavers that obey the mod
4 type A constraint of Section III-B. Figure 13 also com-
pares the SER performance achieved, when employing the
Log-BCJR algorithm and the fully parallel algorithm using
the odd-even scheduling of [15]. The number of decoding

FIGURE 13. SER performance of the UEC-URC scheme of Figure 5, when
employing various decoding algorithms and QPSK modulation for
communication over an uncorrelated narrowband Rayleigh
fading channel.

iterations was chosen to match the performance achieved
by the Log-BCJR after 6 and 12 iterations, which requires
16 and 30 iterations of the proposed schedule, respectively.
Note that for the UEC-URC scheme, the proposed schedule
requires only 16 decoding iterations to match the perfor-
mance of the Log-BCJR after 6 iterations, which is sig-
nificantly lower than the 28 required for the LTE turbo
decoder. Similarly to the LTE scheme, our proposed schedul-
ing improves the UEC-URC scheme by about 0.3 dB com-
pared to the odd-even schedule after 16 iterations, as well
as offering a marginal improvement after 30 iterations, since
further iterations give marginal performance gains.

D. EXTRINSIC SCALING
As described in Section II-C, the algorithmic blocks
of Figures 7 and 8 employ the max∗ operator, where
max∗(a, b) = max(a, b)+ ln(1+ e−|a−b|). However, in order
to reduce the associated computational complexity, both the
natural logarithm and the exponential operations are often
omitted by using the approximation max∗(a, b) ≈ max(a, b).
This approximation typically imposes an error correction
performance penalty of about 1 dB depending on the scheme,
although some of this loss can be mitigated by using extrin-
sic scaling [33], [35]. This method multiplies the iteratively
exchanged extrinsic LLRs by a constant value, which rep-
resents the decoder’s reduced confidence in the values of
the bits, due to the employment of sub-optimal decoding.
The optimal value for this scaling value is typically in the
range 0.6 to 0.8, depending on the channel SNR [36]. Despite
this, typically a fixed scaling value is used for the sake of
simplifying the implementation. More specifically, typically
a value of 0.75 is chosen, since it can be implemented in
a simple manner, when using the two’s-complement fixed
point number representation. In this case, a multiplica-
tion by 0.75 can be approximated by adding the extrinsic
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LLR right-shifted once, to itself but right-shifted twice. This
yields the floor(·) of the multiplication by 0.75, owing to the
limited precision of the fixed point numbers [17].

FIGURE 14. BER results for the LTE turbo scheme of Figure 3, using
different extrinsic scaling and numerical representation techniques. Here,
an uncorrelated narrowband Rayleigh fading channel and QPSK
modulation is used. All schemes use a frame length of N = 440 bits, as
well as 28 decoding iterations.

FIGURE 15. SER results for UEC-URC scheme of Figure 5, using different
extrinsic scaling and numerical representation techniques. An
uncorrelated narrowband Rayleigh fading channel and QPSK modulation
is used. All schemes use partitioning to guarantee N = 440 bits in each
frame, as well as 20 decoding iterations.

Figures 14 and 15 show the resultant BER and
SER performance of the LTE turbo code scheme and
UEC-URC schemes, respectively. Here, we use frame lengths
of N = 440 bits, which is representative of the frame lengths
presented in Section V. Figures 14 and 15 compare the error
correction performance obtained using the ideal max∗ opera-
tor, the max operator with an extrinsic LLR scaling factor of
0.75 (max-SE) and the max operator without scaling. For the
LTE scheme, the extrinsic scaling reduces the performance
gap between the ideal max∗ and the max operations to 0.2 dB,
while the non-scaled max operator suffers from a 0.5 dB loss.
The UEC-URC scheme has similar performance gaps, where

the extrinsic scaling reduces the loss to 0.4 dB, while a loss
of 0.8 dB is imposed without extrinsic scaling.

E. NUMBER REPRESENTATION
In this section we discuss the specific number representations
used in the proposed decoders. While floating point numbers
have been assumed throughout the simulations discussed in
the previous sections, fixed point twos-complement number
representations are preferred in hardware implementations,
since this dramatically reduces the complexity. In particular,
this section discusses a method conceived for reducing the
dynamic range of the α̃̃α̃α and β̃̃β̃β state metrics. We also quan-
tify the fixed-point bit widths that are required, in order to
approach the upper-bound performance of a floating point
decoder.

When using two’s-complement fixed-point numbers, the
LLRs provided by the demodulator may be represented by
fixed-point numbers having a bit width of wd , the extrinsic
LLRsmay use a bit width ofwe, while the statemetric α̃̃α̃α and β̃̃β̃β
values may be conveyed between adjacent algorithmic blocks
using wm bits. However, as shown in Equations (5) and (6),
the values of the state metrics α̃̃α̃α and β̃̃β̃β tend to grow without
bound in successive iterations of the proposed decoding algo-
rithm, owing to the accumulation of values that are typically
positive, due to the action of the max operator. If however the
values of the state metrics α̃̃α̃α and β̃̃β̃β become excessively large,
they may cause twos-complement overflow, where a small
positive integer added to large positive integer erroneously
results in a large negative integer. These errors can severely
degrade the operation of the decoder, resulting in a very poor
error correction performance. Since the state metrics tend
to grow without bound, this overflow problem is inevitable
unless an excessively high bit widthwm is employed or unless
a technique is used for reducing the dynamic range of the
α̃̃α̃α and β̃̃β̃β values. In the proposed algorithm, we reduce the
dynamic range of the state metrics and maintain a modest
bit width wm by using the clipping technique [17]. This
technique relies on the observation that the absolute value of
α̃̃α̃α or β̃̃β̃β is not important, but rather it is the difference between
the α̃̃α̃α or β̃̃β̃β values produced for each trellis stage that conveys
the relative probability of each state. Note that the number r
of α̃̃α̃α and β̃̃β̃β values produced for each trellis stage is given by
rLTE = 8 for the LTE code, rUEC = 4 for the UEC trellis code
and rURC = 2 for the URC code of the UEC-URC scheme.
An implication of this observation is that adding or subtract-
ing the same value to all state metrics in a set of r number
of α̃̃α̃α or β̃̃β̃β values makes no difference as to the decoding
algorithm’s operation.
In the clipping technique, each processing element avoids

overflow by using more than wm bits for its internal calcula-
tions, but the statemetrics α̃̃α̃α and β̃̃β̃β are clipped to the bit widths
of wm. More specifically, the clipping method subtracts the α̃
and β̃ value for the first trellis state from the rest of the values
for each trellis stage, according to α̃k (mk ) = α̃′k (mk )− α̃

′
k (1)

and β̃k (mk ) = β̃ ′k (mk ) − β̃
′
k (1). This guarantees an output

2934 VOLUME 5, 2017



M. F. Brejza et al.: High-Throughput FPGA Architecture for Joint Source and Channel Decoding

where αk (1) = 0 and βk (1) = 0, and where the remaining
state metrics have lower values than they would otherwise.
As a further step to ensure that the α and β values do not over-
flow, each α and β value is clipped so that it does not exceed
the bit width wm of the fixed-point number representation.
Note that since clipping guarantees that we have α̃k (1) = 0
and β̃k (1) = 0, it has the additional advantage that these
values can be readily removed from subsequent calculations.

Figures 14 and 15 characterize the impact of using the
fixed-point number representation on the BER and SER per-
formance of the LTE scheme and UEC-URC scheme, respec-
tively. Each figure compares the idealized floating point per-
formance against the performance obtained when fixed-point
numbers having particular bit-widths are employed.

More specifically, in the case of the LTE turbo decoder
employing clipping, we recommend the use of a bit width
of wm = 6 for the state metrics, we = 6 bits for the
extrinsic LLRs, and wd = 6 bits for the LLRs provided by
the demodulator. Meanwhile, in the case of the UEC-URC
decoder employing clipping, we recommend the use of wm =
7 bits for the statemetrics,we = 6 bits for the extrinsic output,
and wd = 6 bits for the demodulator input. Note that wider
bit widths are required for the state metrics of the UEC-URC
scheme owing to the extended dynamic range that is caused
by the non-equiprobable transitions and states in the UEC
trellis, as described in Section II-B1. As shown in Figures 14
and 15, the bit widths recommended above offer a similar
error correction performance to the floating point algorithm
using the max approximation and extrinsic scaling. Note that
if shorter bit widths are chosen, the decoder can exhibit a high
error floor or a turbo cliff at a higher SNR.

IV. FPGA IMPLEMENTATION
In this section, we detail the FPGA implementation of
the algorithm described in Section III. By designing the
algorithm and architecture jointly, we achieve an efficient
exploitation of the decoder hardware, as well as a power-
ful error correction performance. Furthermore, the proposed
FPGA implementation is designed for facilitating the decod-
ing of longer frame lengths than that which can be achieved
with the aid of the previous design of [17] within the limited
amount of hardware resources on an FPGA. This is achieved
by sharing hardware processing elements between pairs of
trellis stages, which also supports efficient pipelining and an
increased clock frequency.

We commence in Section IV-A by detailing the operation
of each hardware processing element in the decoder. We dis-
cuss a generic hardware processing element, which could be
applied to either the LTE or UEC-URC schemes of Figures 3
and 5 respectively. Following this, Section IV-B describes
the timing of the hardware processing elements, as well as
how the algorithmic schedule of Section III-A is implemented
on the hardware. In Section IV-C we discuss the specific
modifications required by the UEC-URC scheme of Figure 5
compared to the LTE scheme of Figure 3, detailing each of the
computation units within each hardware processing element.

Finally, Section IV-D compares our jointly designed algo-
rithm and hardware FPGA implementation with the previous
implementations of the fully parallel decoder.

FIGURE 16. Schematic of a hardware processing element. Here,
k ∈ {1,3,5, ...,N − 1} for each of the N/2 hardware processing
elements. The color shading of the blocks matches with the colors of
previous figures.

A. DECODING BLOCK TOP LEVEL
As described in Section III-A, the 2N algorithmic blocks
of the proposed LTE decoder are implemented using N/2
hardware processing elements, as indicated by the shaded
area of Figure 9b Likewise, the 3N algorithmic blocks of
the proposed UEC-URC decoder are implemented usingN/2
hardware processing elements, as indicated by the shaded
area of Figure 10. The schematic of each of the N/2 hard-
ware processing block is shown in Figure 16. Each hardware
processing element of Figure 16 is used for implementing
the algorithmic blocks in both the top and bottom rows of
the scheme. More specifically, when the hardware processing
elements implement the scheduling of Figure 9, half of the
hardware processing elements process the top decoder, while
half the processing elements process the bottom decoder
during steps (a) and (b). For steps (c) and (d), each hard-
ware processing element switches to carrying out the other
decoder’s actions.
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In this work, each hardware processing block is comprised
of an α̃/β̃ unit, a b̃e unit, a γ̃ unit, as well as other multiplexers
and registers. More specifically, in the α̃/β̃ unit, we use a
single piece of hardware to undertake the α̃ and β̃ calculations
of (10), (11), (15), (16) and Figure 9. This is in contrast
to [17], where separate hardware was used for the α̃ and β̃ cal-
culations. This also allows a more heavily pipelined design,
which increases the clock frequency, as will be detailed in
Section IV-B. Furthermore, the γ̃ unit of Figure 16 is used to
calculate equation (9) and (14), while the b̃e unit is used to
calculate the final extrinsic output of equation (13) and (18).
This b̃e unit is pipelined, enabling the hardware processing
element to achieve very similar path lengths for the α̃/β̃ unit
and the two b̃e unit stages, facilitating high clock frequencies
and hence high throughputs and low latencies. The LLRs
output from each b̃e unit must be interleaved and input to
the appropriate hardware processing element. In this work we
employ a hardwired interleaver pattern, although our future
work will develop a more flexible interleaver that will enable
the fully parallel turbo decoder to support different frame
lengths and interleaver patterns at runtime. Since each hard-
ware processing element can undertake decoding for both
the upper and lower decoder, the interleaver also employs
multiplexers for selecting between the hardwired interleaver
connections of the upper and lower decoder.

Each hardware processing element is connected to its
two neighbors, as well as to the interleaver. More specifi-
cally, the ‘α̃ in’ and ‘β̃ out’ signals of Figure 16 connect
to the neighboring hardware processing element that pro-
cesses trellis stages with lower indexes k . Meanwhile, the
‘α̃ out’ and ‘β̃ in’ signals connect to the neighboring hard-
ware processing element that processes trellis stages with
higher indexes k . These connections correspond to the α̃
and β̃ connections between neighboring pairs of algorithmic
blocks in Figures 9b and 10. Since each hardware process-
ing element undertakes decoding for the upper and lower
decoder, these signals alternate between conveying the α̃u

and α̃l values, or the β̃u and β̃ l values in successive half
iterations. In the case of the UEC-URC scheme, when a
hardware processing element is undertaking the decoding of
two URC trellis stages, the signals ‘α̃ in’ and ‘α̃ out’ are com-
prised of {α̃̃α̃αk−1, α̃̃α̃αk+N−1} and {α̃̃α̃αk+1, α̃̃α̃αk+N+1}, respectively.
Meanwhile, the signals ‘β̃ in’ and ‘β̃ out’ are respectively
comprised of {β̃̃β̃βk+1, β̃̃β̃βk+N+1} and {β̃̃β̃βk−1, β̃̃β̃βk+N−1}, in cor-
respondence to the notation used within the URC decoder
of Figure 10.
As shown in Equations (5) and (8), the (α̃ + γ̃ ) term is

common to both the α̃ calculation of (5) and the b̃e cal-
culation of (8). Owing to this, the adders that perform this
operation can be efficiently shared between the α̃/β̃ unit and
the b̃e unit, as shown in Figure 16 and as it will be detailed
in Section IV-C.
Since the same hardware performs both the α̃ and β̃ calcu-

lations in different clock cycles, multiplexers are required for
selecting between the inputs α̃n and β̃n, as shown in Figure 16.
Furthermore, a feedback path is employed across the α̃/β̃ unit

for allowing it to calculate two successive α̃̃α̃α or β̃̃β̃β values in
two successive clock cycles. More specifically, this feedback
path allows the α̃/β̃ unit to calculate α̃̃α̃αk+1 and β̃̃β̃βk−1 based
on the results of α̃̃α̃αk and β̃̃β̃βk , respectively. At the output of
the α̃/β̃ unit, a multiplexer reorders the output state metrics.
In the case of the UEC-URC scheme, this is required since the
UEC and URC trellises differ from each other. In the case of
the LTE turbo scheme, this reordering is required, since the
trellis connections for calculating the α̃̃α̃α values are different
from the trellis connections for calculating the β̃̃β̃β values. This
reordering allows the α̃/β̃ unit to have fixed connections for
both the α̃ and β̃ calculations.
Two register stages placed in series are used to implement

the β̃1 memory of Figure 9. Two registers are required,
since the memory must hold the β̃̃β̃β values for both the upper
and lower decoder during each algorithmic iteration. Another
multiplexer is employed at the input of the b̃e unit in order
to select which β̃̃β̃β values it is provided with. For steps (b)
and (d) of Figure 9, this multiplexer selects the β̃k+1 values
provided by the neighboring processing element. Meanwhile,
in steps (a) and (c) of Figure 9, the β̃k values are selected
from the β̃1 memory. Finally, in the case of the URC-UEC
decoder, another multiplexer is used to provide the appropri-
ate a priori LLRs into the second pipeline stage of the b̃e

unit, as required by Equation (8). More specifically, when the
hardware processing element is undertaking URC decoding,

the multiplexer selects either b̃URC,a1,k and b̃URC,a1,k+N or b̃URC,a1,k+1
and b̃URC,a1,k+N+1. Meanwhile, when the hardware processing
element is undertakingUEC decoding, themultiplexer selects

either b̃UEC,a2,k and b̃URC,a3,k or b̃URC,a2,k+1 and b̃URC,a3,k+1 .

B. SCHEDULING
In this section, we propose a novel pipelining technique, in
which the hardware processing elements use two clock cycles
for processing each of the time periods (a)-(d) of Figure 9.
Owing to this, each decoding iteration requires 8 clock cycles
in the proposed decoder.
Figure 17 characterizes the timing of the various operations

performed by the proposed decoder, illustrating the operation
of two hardware processing elements, which we refer to as
A and B. More specifically, Figure 17 shows when each
hardware processing element performs each of the different
operations of Figure 9. Note that the flow of data is the
same in both Figures 9 and 17, but Figure 17 shows how
the hardware implements this data flow on a clock cycle
by clock cycle basis, allowing the pipelining techniques to
be shown. Note that while Figure 17 adopts the notation of
the LTE scheme, the operation of the UEC-URC scheme is
identical.
Figure 17 shows how the hardware processing ele-

ments alternate between performing processing for the
upper and lower decoders in successive half-iterations. More
specifically, N/4 hardware processing elements, including
blocks A and B, use four clock cycles for performing
steps (a) and (b) of Figure 9, where each hardware processing
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FIGURE 17. Timing diagram for two decoder blocks during one iteration of the LTE decoding algorithm. These decoding blocks perform the
operations associated with different bit indexes of the upper or lower decoder in the same time periods. Owing to this, the output b̃e

1,k provided by

hardware processing element A is shown being interleaved to the input b̃a
1,k of hardware processing element B. In the example of Figure 9,

hardware processing element A processes the bits having the indices k ∈ {1,2}, while hardware processing element B processes bits k ∈ {5,6}. For
each decoder, the diagram shows when each of the different tasks are undertaken, as well as the transfer of data between the tasks according to the
dependencies between them. The background shading identifies which step of Figure 9 each operation corresponds to.

element undertakes the processing tasks for two trellis stages.
Following this, these hardware processing elements use four
clock cycles to perform steps (c) and (d) of Figure 9, where
each hardware processing element undertakes the processing
for two trellis stages of the lower decoder. At the same time,
the other N/4 hardware processing elements each perform
steps (a) and (b) of Figure 9 for two trellis stages of the lower
decoder, then perform steps (c) and (d) of Figure 9 for two
trellis stages of the upper decoder.

As shown in Figure 7b, the upper decoder’s extrinsic LLRs
are interleaved to become the lower decoder’s a priori LLR
inputs. Accordingly, Figure 17 provides an example of how
the extrinsic LLRs gleaned from processing element A may
be passed to processing element B through the interleaver.
More specifically, Figure 17 shows that an extrinsic LLR
arriving from the k = 1st block in the upper decoder is
interleaved and entered into the k = 5th block of the lower
decoder. This example illustrates the critical path in the flow
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of information through the different operations, where the
4-stage pipeline transversing through the decoder is shown
for one bit by the bold arrows. This example also shows
that the mod4 interleaver property of Figure 11 is key to
facilitating the 4-stage pipelining technique proposed in this
section. More specifically, if the extrinsic LLR produced by
one algorithmic block in group 1 of Figure 11 was interleaved
to an algorithmic block in group 0 of Figure 11, then the
a priori LLRs output from the interleaver would arrive one
clock cycle too late to be used. This can be seen in Figure 17,
where the extrinsic LLR b̃l,e1,k+1 output from hardware pro-
cessing element A is not interleaved to b̃u,a1,k+1 in time to be
used at the start of step (c) by hardware processing element B,
as may be required by an interleaver that does not have
the mod4 property. Instead of being consumed immediately,
these a priori LLRs would need to be stored in an addi-
tional memory, until the next opportunity to use them arose.
In addition to this additional hardware requirement, this
delay would degrade the decoders error correction capability.
By contrast, the mod4 type A interleaver ensures that these
a priori LLRs do not need storing, since they are consumed
immediately.

C. SCHEME-SPECIFIC IMPLEMENTATION
This section describes the specific features of the FPGA
implementation that are used when implementing the
LTE turbo decoder scheme of Figure 3, as well as the
UEC-URC decoder scheme of Figure 5. In particular, we
detail the components of each hardware processing block that
behave differently for the pair of schemes considered.

In contrast to the LTE turbo code of Figure 3, Figure 6
shows that the UEC and URC decoders employ two different
trellises, both of which must be implemented using the same
hardware in order to maintain a high hardware efficiency.
As described in Section II-B2, the UEC decoder comprises
N trellis stages, where each trellis stage has rUEC = 4 states.
During the processing of each trellis stage, two extrinsic

LLRs b̃e,UEC2,j are generated. By contrast, the URC decoder
comprises 2N trellis stages, where each trellis stage has
rURC = 2 states. Here, each trellis stage generates only
one extrinsic LLR b̃e,URC1,k . In order to maintain a high hard-
ware efficiency, each hardware processing unit is designed
for processing one UEC trellis stage at a time, or process
two URC trellis stages at a time. Since each UEC trel-
lis stage corresponds to the same number of states, transi-
tions and extrinsic LLRs as two URC trellis stages, both
the UEC and URC trellises can be efficiency processed by
the same hardware, as will be described in the following
sections.

1) γ̃ UNIT
Figure 18 illustrates the γ̃ -calculation unit both for the LTE
and for the UEC-URC implementation, which produces the
a priori transition probabilities γ̃ according to (9) or (14).
In the case of the UEC-URC scheme, Figure 18b employs

FIGURE 18. Schematic of the γ̃ -calculation unit of Figure 16 for the
(a) LTE and (b) UEC-URC scheme. Here, the ‘a’ subscript refers to the γ̃m
value for the top-most transition which leaves state m on the trellis, while
the ‘b’ subscript refers to the bottom-most transition.

the four multiplexers with gray shading on the γ̃1b, γ̃2a, γ̃3b
and γ̃4a outputs, in order to switch the pairs of γ̃ values that
are output depending on whether the α̃/β̃ unit is currently
decoding α̃ values or β̃ values. For example, in the URC
trellis of Figure 6b, the αk (1) calculation requires γ̃ (1, 1)
and γ̃ (2, 1), while the βk (1) calculation requires γ̃ (1, 1) and
γ̃ (1, 2), necessitating the γ̃ unit to swap some of the γ̃ values.
Note that the corresponding multiplexers are not required for
the LTE turbo decoder scheme, since the different connec-
tions for the α̃̃α̃α values and β̃̃β̃β values can be handled by the
reordering scheme of Figure 16.

In the UEC-URC scheme, each hardware processing ele-
ment has to carry out both UEC and URC decoding, requiring
the unshaded multiplexers of Figure 18b to switch between
the different inputs that are necessary for UEC and URC
decoding. This is necessary since the transitions of the UEC
and URC trellises to not share the same inputs and outputs.
Furthermore, the UEC trellis decoder also requires the addi-
tion of the conditional transition probabilities ln[P(m|m′)],
as described in Section II-B2. In the proposed implementa-
tion, these conditional transition probabilities are stored using
6-bit fixed point numbers.

2) α̃/β̃ UNIT
The α̃/β̃ units are characterized by the orange boxes in
the top half of Figure 19, which detail the internal opera-
tion of the orange block of Figure 16. In the case of the
UEC-URC scheme, each hardware processing element
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FIGURE 19. The α̃/β̃ unit and b̃e unit for (a) the LTE turbo scheme, and (b) the UEC-URC scheme. Here, the colored outlines correspond to the similarly
colored blocks of Figures 10, 16 and 17.

switches between the UEC trellis decoder and URC decoder
every 4 clock cycles. Accordingly, the α̃/β̃ unit is designed to
switch between carrying out all of the operations of either one
UEC trellis stage or of two URC trellis stages. As shown in
Figure 6, two URC trellis stages can be processed at the same
time to give a similar structure to one UEC trellis stage, but
with some different transition connections. More specifically,
the trellis of Figure 6a can be converted into two copies of the
trellis of Figure 6b by simply switching the transitions asso-
ciated with the central two states. Furthermore, by switching
these two central states, the trellis may be mirrored from
left to right, allowing the same connections to be used for
both α̃ and β̃ calculations. This switching of trellis states
is implemented using the multiplexers of Figure 16. In the
case of the LTE scheme, state switching is also undertaken
by multiplexers shown in Figure 16, in order to produce a
mirrored trellis, allowing the same connections to be used for
both α̃ and β̃ calculations.

The α̃/β̃ unit’s inputs S ′ all have bit widths of wm, as
investigated in Section III-E. However, the bit-widths within
the α̃/β̃ unit grow following successive additions, in order to
ensure that they do not overflow. Following this, clipping is
employed to restore the bit widths of the outputs S to wm.
Note that the two multiplexers in the UEC-URC α̃/β̃ unit
of Figure 19b change the operation of the clipping circuit,
depending on whether outputs 3 and 4 are part of the same

trellis as outputs 1 and 2, as in the case of the UEC, but not
for the URC.

3) b̃e UNIT
Figure 19 illustrates the b̃e-calculation unit of both the LTE
and UEC-URC schemes, which is used for generating the
extrinsic LLRs. Here, we pipeline the b̃e unit into two stages,
in order to facilitate a high clock frequency and hence a
high hardware efficiency. More specifically, this pipelining
ensures that the propagation delay in each of the two b̃e stages
is of a similar length to those of the other parts of the decoder.
This pipelining scheme was detailed in Section IV-B, which
considered the clock cycle by clock cycle scheduling of
each hardware processing element. The connections required
within the b̃e unit for generating extrinsic LLRs are dictated
by the specifics of the LTE, URC or UEC trellis. More
particularly, the input and output bits associated with each
transition identify which specific state and transition metrics
have to be combined, according to (12) and (17). In the
case of the UEC-URC scheme, the required combinations
of state and transition metrics are different, depending on
whether the b̃e unit is generating b̃UEC1,k , b̃e,UEC2,k or b̃e,URC1,k .
The required flexibility is provided by multiplexers in the
first pipeline stage of Figure 19, which are used for selecting
which particular pairs of metrics are input to the max calcu-
lation, as well as by multiplexers in the second stage, which
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bypass the second max calculation, since it is not required
in the case of the URC. The final subtraction in (13) and
(18) is undertaken before the register in the second pipeline
stage. Since the second b̃e output can be used for generating
either the a posteriori LLR bUEC1 or the extrinsic LLR b̃e,UEC3 ,
a multiplexer is required for selection between ‘0’ or the

a priori LLR b̃a,UEC3 , respectively.
In the case of the LTE scheme, the operations of Figure 19a

have been reordered [17] compared to those of the UEC-
URC scheme, in order to reduce the critical path-length,
but at the expense of a slightly increased hardware resource
requirement. This technique dispenses with adding γ̃ val-
ues during the δ̃ calculation of (12) and (17) as well as
with subtracting the a priori LLR in the b̃e calculation of
(13) and (18). Instead, the LLR b̃a2 is added during the b̃e

calculation in Figure 19. Note that this technique cannot
be used for the UEC-URC scheme, owing to the condi-
tional probabilities ln[P(mk−1|mk )], which arise from the
non-equiprobable transitions of the UEC code. Instead, the
UEC-URC scheme passes the (α̃ + γ̃ ) values from the α̃/β̃
unit to the b̃e unit, in order to reduce the required hardware
resources.

D. COMPARISON TO SCHEDULING IN THE EXISTING
STATE-OF-THE-ART IMPLEMENTATIONS
Table 2 characterizes the performance of the proposed algo-
rithmic and hardware scheduling, and compares this both to
the state-of-the-art Log-BCJR [18] implementation and to
the fully parallel decoder of [15], [17], when implementing
the LTE turbo decoder. Compared to the fully parallel turbo
decoder of [15], [17], our proposed implementation requires
4x as many clock cycles per iteration, owing to two design
decisions. Firstly, each processing element in the proposed
approach decodes two trellis stages, while the processing
elements of [15], [17] only decode a single trellis stage. This
allows our proposed decoder to support longer frame lengths
N than the design of [15], [17] using the same amount of
hardware. Secondly, the hardware scheduling of the proposed
approach contains more pipelining, which results in a clock
cycle duration D that is half that of [17]. Furthermore, our
additional pipelining improves the hardware reuse, therefore
reducing the required hardware resources whilst increasing
hardware efficiency, without reducing the throughput.

The complexity C per decoding iteration of the proposed
approach is the same as that of [15], [17], as shown in
Table 2. This is because both implementations perform the
same operations of (4)-(8), although here we propose a
different activation order for these equations. As explored
in Section III-C, our novel scheduling means that the pro-
posed approach achieves the same BER performance as the
benchmarkers using only 28 decoding iterations I , in contrast
to the 39 required by the fully-parallel turbo decoder of [17].

Table 2 also characterizes the breakdown of the hardware
resource requirements into combinational X , registers Y and
RAM Z requirements. As detailed in [15], the combinational

TABLE 2. Comparison of the proposed approach with the state-of-the-art
Log-BCJR decoder and the fully parallel decoder of [15], when used to
decode the N = 6144-bit LTE turbo code.

requirementX is obtained by quantifying the number of adder
and max circuits employed, while, the register requirement
Y is quantified in terms of the number of values that must
be held between successive clock cycles. Finally, Z is deter-
mined by quantifying the number of values that must be
stored in RAM. The ASIC implementation of [17] comprises
2N hardware processing elements, each dedicated to one
trellis stage of either the upper or lower decoder. This decoder
operates on the basis of the odd-even activation order and
so each hardware processing element is inactive in alter-
nate clock cycles. The reduced switching of this approach
reduces energy consumption, but leads to a larger hardware
requirement. Meanwhile, the FPGA implementation of [16]
comprises N hardware processing elements, each of which
alternate between performing decoding for both the upper and
lower decoder. By contrast, the proposed decoder comprises
N/2 hardware processing elements, each of which processes
two trellis stages of the upper decoder and two trellis stages
of the lower decoder. This difference leads to a combina-
tional requirement X that is half of that required by the fully
parallel turbo decoder of [16], for a given frame length N .
The combinational requirement X is further reduced in the
proposed decoder by reusing the same hardware for the α̃ and
β̃ calculations, as discussed in Section IV-B. Note that owing
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TABLE 3. FPGA implementation of the proposed LTE turbo decoder when performing 28 decoding iterations as well as of the proposed UEC-URC decoder
when performing 20 iterations using the Altera Stratix IV EP4SE230 FPGA. Here, the combinational and register utilization quantifies the percentage of the
182,400 ALUTs and registers used, respectively.

to its increased use of pipelining, the proposed design requires
more registers per hardware processing element than the
fully-parallel turbo decoder of [15], [17]. However, Section V
will demonstrate that the combinational requirement is the
limiting factor in the FPGA implementation of both the pro-
posed and benchmarker designs. Owing to this, the use of
more registers to achieve superior performance represents a
more desirable utility of the FPGA resources.

The combinational requirement X , register requirement Y
and RAM requirement Z may be combined to predict the
overall resource requirement of each design considered. Here,
we target the Altera Stratix IV FPGA, which is comprised of
a large number of Adaptive Logic Modules (ALMs). Each
ALM comprises two single-bit registers and two single-bit
adders with a corresponding Look-Up Table (LUT). Since
the combinational requirement X represents the number of
additions and max operations required, we may estimate
that wX/2 ALMs are required to fulfill the combinational
requirement, where w is the average bit-width used in the
decoder. Likewise, the number of ALMs required to fulfill the
register requirement may be estimated bywY/2. In the Stratix
IV device targeted by this work, there are 160 bits of RAM
available for eachALM. Therefore, the total resource require-
ment may be approximated by wmax(X2 ,

Y
2 ,

Z
160 ). Note that

we combine the three elements using the maximum, since
the FPGA has a limited amount of each hardware resource
type and one of these will inevitably impose the ultimate
limitation, as the degree of parallelism is increased [37]. Note
that this analysis can only provide an approximation, but
it may be applied equally to the three designs considered,
allowing a fair comparison. This analysis provides a lower
bound on the required hardware, since it does not consider the
resources required bymultiplexers or the restrictions imposed
by routing, which may lead to the inefficient exploitation of
resources. As shown in Table 2, this analysis reveals that the
overall resource requirement of the proposed design is just
25% of that of the fully-parallel turbo decoder of [15], [17].

Table 2 shows that the overall throughput of our proposed
design is 5 times greater than that of the state of the art

Log-BCJR decoder of [18], but 0.70 times that of the fully
parallel turbo decoder of [17] for a given frame length N .
Although the proposed design requires fewer decoding iter-
ations than that of [17], this reduced throughput may be
expected since each decoding iteration of the proposed design
has a duration TD which is double that of [17]. Note that
this increased decoding iteration duration TD also results in
a slightly longer latency than that of [17]. However, owing
to the significantly reduced hardware requirement of the pro-
posed design, its overall hardware efficiency is almost double
that of the fully parallel turbo decoder of [15]–[17]. While the
hardware efficiency of the proposed design is half that of the
state-of-the-art Log-BCJR decoder of [18], we have achieved
a significantly higher throughput and a much lower latency.

V. RESULTS
In this section, we characterize the FPGA implementation
of the proposed LTE turbo decoder and UEC-URC decoder
of Figures 3 and 5, respectively. Table 3 shows the key
performance criteria of the proposed implementations using
a midrange Altera Stratix IV EP4SE230 FPGA with 91k
ALMs [38]. This table characterizes the proposed FPGA
implementation of the LTE turbo decoder of Figure 3 using
28 decoding iterations, which was found in Section III-C
to offer the same error correction capability as a Log-BCJR
decoder performing 6 decoding iterations. Table 3 also
characterizes the proposed FPGA implementation of the
UEC-URC scheme of Figure 5 using 20 decoding iterations.

As shown in Table 3, the proposed LTE turbo
decoder implementation achieves a maximum throughput of
306 Mbps with a latency of 1.44 µs. Table 3 also shows that
the proposed UEC-URC decoder implementation achieves
a maximum throughput of 450 Mbps at a latency of 1 µs,
which readily fulfills the requirements of low latency, high
throughput video applications. Table 3 characterizes the
combinational and register utilization, which quantify the
percentage of the FPGA’s combinational Adaptive Look-Up
Tables (ALUTs) and registers used, respectively. Table 3 also
characterizes the total hardware utilization of the proposed
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LTE andUEC-URC decoders, where the percentage of ALMs
used by the designs are quantified. Note that each ALM
comprises two ALUTs and two registers. However, due to
routing constraints, the percentage of ALMs used is higher
than the maximum of the combinational and register usage,
since the FPGA tool cannot produce the most area efficient
design without severely degrading the clock frequency. Note
that the throughput drops slightly as the design reaches 100%
hardware utilization, when longer frames are targeted. This
may be explained by congestion within the FPGA, which also
degrades the achievable clock frequency. Note that the Stratix
IV EP4SE230 FPGA used for implementing the design is a
mid-range device, whilst more powerful FPGAs containing
up to 325k ALMs are also available in the Stratix IV series.
For the LTE turbo decoder implementation, a maximum
frame length of N = 440 is supported. In contrast, the
FPGA fully parallel turbo decoder of [16] achieved a frame
length of N = 720, using a FPGA with 3.5 times more
resources available. An FPGA was used to confirm the SER
performance results of Figure 15, which were obtained in
simulation.

Note that there is some discrepancy when comparing both
the combinational requirementX and register requirement Y -
which are quantified in Table 2 - to the actual implementation
results of Table 3. More specifically, since the analysis of
Table 2 only considers the combinational contribution of
the addition and max operations in the datapath, this analy-
sis underestimates the actual combinational requirement by
not considering other combinational contributions, such as
that from multiplexers in the datapath, the multiplexers in
the interleaver, or the logic circuits required by the con-
troller. Table 2 predicts the register contribution more closely,
since the only registers not considered in the analysis of
Table 2 are those required by the controller. Note that these
discrepancies exist for both the proposed architecture and
the estimation of [16], however the analysis of Table 2 is
useful for comparing the different algorithms before their
implementation.

Since this paper presents the first FPGA implementation
of a UEC-URC decoder, it cannot be compared with any
previous work. However, we may compare the proposed
FPGA implementation of the LTE turbo decoder with those
of [16] and [39]. More specifically, Table 4 characterizes
the proposed FPGA implementation of the LTE decoder and
compares this work with the FPGA-based fully parallel turbo
decoder of [16], as well as the FPGA-based implementa-
tion of the conventional Log-BCJR turbo decoder of [39].
Table 4 characterizes the performance of the proposed turbo
decoder when performing I = 20 iterations, which is the
number required to offer the same error correction capa-
bility as I = 28 iterations of the decoder of [16] and
I = 5 iterations of the decoder of [39]. Here, we compare
the FPGA hardware utilization using only the combinational
utilization, which is quantified by the number of ALUTs
used. While this disregards the register and RAM usage, it
is the combinational usage that imposes the greatest resource

TABLE 4. Comparison between the proposed FPGA implementation of
the LTE turbo decoder, an FPGA implementation of the fully parallel turbo
decoder of [16], as well as the state of the art FPGA implementation of
the conventional Log-BCJR turbo decoder.

requirement upon all three designs, therefore constituting
the limiting factor of both the design size and the grade of
parallelism. Furthermore, [39] does not quantify the overall
device utilization, preventing any other comparison. In order
to compare the relative performance of the three considered
FPGA implementations, Table 4 characterizes the throughput
when the decoders perform a fixed number of iterations I ,
without early stopping. We note however that the fully paral-
lel turbo decoder implementation of [16] is capable of using
a CRC check to detect when the iterative decoding process
has been successful and can be stopped early. Furthermore,
the implementation of [39] is fully flexible and can support
all the frame lengths specified by the LTE standard, while
the proposed implementation and the work of [16] can only
support a single frame length.

Of the three FPGA implementations compared, it is the
proposed design that achieves the best hardware efficiency of
0.32 kALUT/Mbps, compared to 0.77 kALUT/Mbps for the
fully parallel turbo decoder of [16] and 0.48 kALUT/Mbps
for the Log-BCJR turbo decoder of [39]. Indeed, the turbo
decoding algorithm and architecture proposed here achieves
a 2.4-fold improvement in hardware efficiency over those of
the fully parallel turbo decoder of [16], which is similar to the
expected gain predicted in Section IV-D. Our algorithm and
architecture achieves this gain by requiring fewer decoding
iterations and by employing more efficient pipelining, which
results in a much higher clock frequency. Furthermore, com-
pared to the fully-parallel FPGA LTE turbo decoder imple-
mentation of [16], the register utilization of the proposed
implementation is much closer to its combinational utiliza-
tion, demonstrating better usage of the FPGA’s resources.

Figure 20 shows a comparison of the performance char-
acteristics of the proposed architecture and the architectures
of the benchmarkers. This diagram considers the throughput
achievable for a given frame length; the area efficiency; the
flexibility of the architecture to support different interleaver
designs; themaximum frame length supported given a limited
amount of hardware resource; the energy efficiency; and the
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FIGURE 20. A comparison of the key performance characteristics of the
proposed paired scheduling decoder, the ASIC [17] and FPGA [16]
implementations of the FPTD, and the state-of-the-art BCJR
decoder [39].

BER performance. Here, all schemes can achieve the same
BER performance, albeit after performing a differing number
of iterations, which impacts upon the other characteristics.
This diagram shows that the ASIC FPTD architecture of [17]
has traded-off reduced area efficiency and maximum frame
length, in order to achieve better energy efficiency compared
to the FPGA FPTD architecture of [16]. Likewise, the pro-
posed paired scheduling architecture offers a slightly reduced
throughput for a given frame length, but with the advantage
of being able to support a larger maximum frame length and
greater area efficiency, compared to the FPTD architectures
of [16] and [17].

VI. CONCLUSIONS
In this paper we have shown that in addition to its application
in the LTE turbo decoder, the fully parallel iterative decoder
may be extended to the decoding of a UEC-URC code.
We have shown for both the LTE turbo code and UEC-URC
code that the fully parallel scheduling can be modified to
allow each processing block to operate two trellis stages.
This enables improved pipelining and reduces the number of
decoding iterations required for achieving strong error correc-
tion, leading to a 2.4-fold hardware efficiency improvement
compared to the implementation of the original fully parallel
decoding approach. In particular, we have jointly considered
the algorithm and its implementation. By reusing the same
hardware to process both the forward state metrics α̃ and β̃,
the hardware resource requirement is significantly reduced
and pipelining can be used without impacting upon the error
correction performance. This novel pipelining technique also
enables a better utilization of the FPGA’s resources, by mak-
ing a more equal use of register and combinational resources,
compared to previous designs which under-used the available
register hardware. This technique also allows significantly

longer frame lengths to be supported within a given FPGA.
Our implementation achieves a throughput of 306 Mbps and
a latency of 1.44 µs for the LTE turbo decoder, as well
as a throughput of 450 Mbps with 1.1 µs latency for the
UEC-URC code, when targeting a midrange FPGA.
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