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ABSTRACT In this paper, we address the problem of social image tagging using practical vocabulary for
mobile users on the social media. On the social media, images usually have an incomplete or noisy set of
social tags provided by the mobile users, and we consider this issue as defective tag assignments. Previous
studies on social image tagging have mostly focused on multi-label classification without considering the
defective tags. In these studies, the usage of multi-label classification techniques is expected to synergically
exploit the linear relations between the image features and the semantic tags. However, these approaches
usually aimed to capture the linear relations from the training data while ignoring the helpful information
from the test data. In addition, they failed to incorporate the non-linear associations residing in the visual
features as well as in the semantic tags. To overcome these drawbacks, we introduce a novel approach based
on non-linear matrix completion for image tagging task with defective tags. Specifically, we first construct
the entire feature-tag matrix based on the visual features with non-linear kernel mapping. Then, we present a
formal methodology together with an optimization method under the matrix completion framework to jointly
complete the tags of training and test images. Experimental evaluations demonstrate that our method shows
promising results on image tagging task on two benchmark social image datasets with defective tags, and
establishes a baseline for such models in this research domain.

INDEX TERMS Social image tagging, tag completion, defective tag assignment.

I. INTRODUCTION
The last five years have witnessed the surge of social media
and mobile computing. More users than ever have been using
a wide range of mobile devices to post images to various
social media, such as Facebook, Instagram and Google Plus,
to record their daily lives. When posting images, the users
are usually given the chance to specify a set of tags or
labels to describe the semantic content of each image. Proper
labels significantly improve the usefulness of the images and
facilitate exciting applications such as keyword-based image
retrieval/indexing [1]–[3] and large-scale image collection
management on the cloud [4]–[6].

However, as revealed in [7] and [8], the user-provided tags
tend to be ambiguous, incomplete or even imprecise due

to the time-consuming labeling process and the uncertainty
of human. These imprecise and incomplete tags, which can
be considered as defective tags, usually adversely affect the
usefulness of the images. One approach for solving this prob-
lem is to utilize various sensors found on mobile devices.
Qin et al. [9] proposed to perform activity recognition on
mobile devices using input from various sensors to auto-
matically tagged images when they are taken. However,
such methods rely on the appropriate fusion of sensor
data and are not always able to extract semantic infor-
mation embedded in the images. Therefore, we explore
a machine learning based approach to complete defective
tags for images on social media. The proposed algorithm
not only properly completes these defective labels, but
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FIGURE 1. Example images with defective tag assignments in social
image datasets IAPRTC-12 (left) and MIR Flickr (right): italic tags are
provided ground truth tags, underlined tags are incorrect noisy tags, and
bold tags are potentially missing tags.

also extracts the semantic information to facilitate further
applications.

Given an defective initial tag matrix for the training
images, where images are represented by rows and tags by
columns, our goal is to complete this matrix by i) recovering
the missing tags and ii) removing or reducing the noisy tags
that are not relevant to the visual contents of the images.
In addition, it is also desired to predict more accurate
labels for the untagged test images. The problem set-
ting in this work is different from the traditional image
annotation [10]–[13], which assumes that the training images
are completely and appropriately labeled. Instead, it is similar
to the recent studies of tag refinement [14] and tag comple-
tion [15]–[18], which intends to denoise the imprecise labels
or enrich the incomplete tags in the training data. Tag refine-
ment utilizes a wide range of techniques (such as tag prop-
agation, sparse training and partial supervision) to choose a
subset of user-provided tags based on visual features and tag
correlation [19] to handle noisy tags, but it does not explicitly
address the problem of missing tags. On the contrary, tag
completion treats the missing tags as an independent problem
and various algorithms (e.g., data factorization [20], hyper-
graph model [21]) have been introduced to search for the
optimal tagging matrix that is consistent with both observed
tags and visual similarities; however, these approaches does
not handle the problem of defective tags.

In fact, there are only a few studies [15], [19], [21]–[23] in
the area of image annotationwith defective tags. Among these
works, [15], [19] were based on matrix completion (MC)
and have achieved promising performance. The observed
defective tag matrix is composed of an ideal complete matrix
and a sparse noise matrix with the low-rank assumption.
Because the matrix rank function is non-convex, a popular
approach is to replace it with the nuclear norm so a low
rank matrix can be accurately recovered from a small fraction
of its entries even if these entries are corrupted with noise.
However, a key limitation of these methods is that they are
tied to the assumption of linear classification model. They
usually aimed to capture the linear relations from the training
data while ignoring the helpful information from the test
data. In addition, they failed to incorporate the non-linear

FIGURE 2. Overview of the proposed non-linear matrix completion
framework for social image tagging with defective tags. The potentially
missing and noisy tags are estimated from the kernel matrix, where the
full kernel matrix including both training and test features are utilized
during the learning process.

associations residing in the visual features as well as those
in the tags.

To overcome these drawbacks, we impose the non-linear
classification via matrix completion for the social image
tagging problem with defective tags. As the tags of the train-
ing entries may contain multiple missing or noisy tags, the
proposed method first constructs the tag-feature matrix that
integrates both the information of training labels and visual
features of both training and test entries to estimate the labels
of test entries. Fig. 2 shows the components of the introduced
label-feature matrix. Specifically, the visual features of both
training (i.e. 8tr ) and test (i.e. 8te) entries are embedded in
the kernel space, where each column in 8tr and 8te repre-
sents the non-linear feature vector of each training/test entry.
The given training tags (i.e. Ytr ) are defective, due to the
absence of missing tags and presence of noisy tags. Then,
to predict the complete tags for the test entries (i.e. Yte), we
cast the social image tagging problem into a finite-dimension
optimization problem given the non-linear kernels of visual
features and initial training tags.

The main contribution of our work are three-fold: 1) We
introduce the non-linear matrix completion approach and
apply it to the social image tagging problem with defective
tags. The proposed method can effective recover most miss-
ing tags despite the noise in user-provided tags. 2) We for-
mulate a non-linear optimization problem which efficiently
leverages the kernel matrices of both training and test features
along with given defective tags for model learning. 3) We
evaluate the proposed method on two benchmark datasets
with defective tags. The experimental results show promising
taggin results and form a baseline for such models in this
research field.

The remainder of this paper is organized as follows.
Section II gives an overview of the related work. The details
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of our proposed method are presented in Section III. Exten-
sive experimental results are given in Section IV. And finally
we conclude this paper with Section V.

II. RELATED WORK
Image tagging has been widely studied during the
past decade. Comprehensive literature reviews can be
found in [10] and [24]. Generally, previous researches
for image annotation can be roughly categorized into
three groups: generative models [25]–[27], discrimina-
tive models [23], [28] and nearest neighbor (NN) based
models [10]–[12], [29], [30]. The generative models define
the joint distribution over image features and tags with
various probabilistic assumptions, such as latent Dirichlet
allocation, mixture of Gaussian, multi-variant Bernoulli, etc.
The discriminative models cast image tagging problem into
multi-label classification and learn a separate binary classifier
for each label via support vector machine [31]. The NN
based models generally assume that visually similar images
probably share some common tags and propagate the tags
from nearest visual neighbors to the test image. In recent
years, with the rapidly increasing amount of image data,
the NN based models tend to be more preferable because
sufficient information of image-similarity and tag-association
can be obtained.

Unlike the traditional image annotation problem, recent
studies turn to investigate the social image tagging problem,
where the problem of noisy and missing tags widely exists.
One group of studies developed tag refinement approaches
to improve the quality of user-provided tags. Specifically,
tag refinement includes tag denoising and completion and
has recently become an attractive subject of many ongo-
ing researches [14], [15], [19]–[21], [32]. For example,
Lee et al. [33] proposed a scheme to distinguish noisy tags
from correct ones by utilizing neighbor voting to learn the rel-
evance of each tag to image. Zhu et al. [19] cast the problem of
tag refinement as decomposing the initial tagging matrix into
a low-rank refined tagging matrix and a sparse error matrix.
Liu et al. [21] built a hyper-graphmodel with semantic unities
for tag clustering and refinement. Lin et al. [34] developed
an image tag completion framework via image-specific and
tag-specific linear sparse reconstructions. Among the latest
works, the well-known MC philosophy is applied to the
problem of defective tag assignments.Wu et al. [15] proposed
to complete the optimal matrix while preserving the con-
sistence between both observed tags and visual similarities.
Liu et al. [20] utilized the non-negative matrix factorization
algorithm to perform tag completion, embedding various con-
textual information that is available, such aswithin-image and
cross-image relations.

Although a few of these methods (i.e. [15], [20], [21])
demonstrated their capability to accomplish both tag denos-
ing and completion, their performance still needs further
improvement, especially for the methods based on MC,
which only considered the linear relations while ignoring
the non-linear cues residing in the images with defective tag

assignments. In our work, we impose the non-linear classifi-
cation via matrix completion for the image tagging problem
with defective tag assignments to capture the non-linearity by
utilizing both the training and test data.

III. PROPOSED METHOD
A. PROBLEM FORMULATION
Let Otr = {o1, . . . , oNtr } be a collection of Ntr training
entries. Here oi = {xi,Yi}|

Ntr
i=1 contains the visual feature

vector xi ∈ Rd and the tag vector Yi ∈ Rm, Yi ⊆ Y is
a set of tags, where Y = {y1, . . . , ym} is a vocabulary of
m tags and Yi,k is set to one if tag k is assigned to image i
and zero otherwise. For all the Ntr training entries, we denote
the visual feature matrix Xtr = [x1, .., xNtr ] ∈ Rd×Ntr and
the tag matrix Ytr = [Y1, . . . ,YNtr ] ∈ Rm×Ntr . Similarly, we
also have a set of Nte testing entries Ote = {o1, . . . , oNte},
where oj = {xj,Yj}|

Nte
j=1. For all the Nte testing entries, we

denote the visual feature matrix Xte = [x1, .., xNte ] ∈ Rd×Nte

and the tag matrix Yte = [Y1, . . . ,YNte ] ∈ Rm×Nte . Note that
for Ote, Xte is known while Yte is unknown. Our target is to
learn an annotation model from the labeled training entries in
Otr and then apply the learned model to predict the tag matrix
Yte for the test entries inOtr . In the supervised setting, linear
classifiers are introduced to learn mapping between the visual
feature space of X and the label space Y . The above process
can be formulated by minimizing the loss between the output
space and the projection of the input space:

[Ytr Yte] =W>[Xtr Xte], (1)

with W ∈ Rd×m being the classifiers parameters. Inspired
by [35], we cast predicting Yte as a Matrix Completion (MC)
problem. Specifically, we concatenate the tag matrices and
visual feature matrices of training and test entries into a joint
tag-feature matrix M, which is denoted as:

M =
[
Ytr Yte
Xtr Xte

]
∈ R(m+d)×(Ntr+Nte). (2)

If the assumption of linearity hold, the joint matrix M
should be rank deficient. Thus, the classification process can
be considered as filling the unknown tags Yte of test entries.
As mentioned in [35], the classifiers in Eq. 2 impose a linear
dependency between the rows of matrix, indicating that the
intra-relation in the visual feature space and the label space
are not explicitly incorporated. In addition, the unknown tags
of Yte are directly estimated based on remaining part in M.
In practice, there are several challenges in the image auto-
annotation problem that are not well explored in previous
studies [15], [19], [34]. Firstly, there may exist errors and
partial knowledge in the given tags Ytr of training entries;
in another words, the given tags may be incomplete and
noisy. Secondly, the given tag matrix Ytr of training entries
are fixed during the process of matrix completion for M ,
indicating that the matrix completion can only be applied to
test entries rather than the training entries. Thirdly, the matrix
completion framework as introduced in Eq. 2 assumes the
linear mapping between the visual feature space and label
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space; this assumption may prevent it from capturing the non-
linearity inside the two spaces. To overcome the difficulties,
we present a formal methodology that integrate the classifi-
cation capability of the matrix completion framework with
the representation power of non-linear kernels for the visual
features and achieve more accurate tag completion results for
the testing entries. Simultaneously, the completion process
can also be applied to the tags of training entries to better
refine these tags.

B. DESIGN OF NON-LINEAR MATRIX COMPLETION
In the non-linear case, we assume the visual feature is mapped
into a h-dimensional space through a feature mapping φ (e.g.,
RBF kernel mapping). Specifically, for the i-th training entry
oi, its nonlinear feature mapping is denoted as φi = φ(xi).
Similarly, we have 8tr and 8te which are analogous to Xtr
andXte. Furthermore, we denote the kernel matrices asK00 =

8>tr8tr ∈ RNtr×Ntr , K01 = 8>tr8te ∈ RNtr×Nte and K11 =

8>te8te ∈ RNte×Nte . The new tag-feature matrix is define as:

Ẑ =
[
Ytr Yte
8tr 8te

]
∈ R(m+Ntr )×(Ntr+Nte). (3)

Here we still assume the linearity between the tags and the
new features after kernel mapping and we seek for a low-rank
approximation of the matrix Ẑ as:

Z∗ = argmin
Z

rank(Z),

s.t. B(Z− Ẑ) = 0, (4)

whereB plays as an a binary mask over the new tag-feature
matrix of alls features and training tags, ensuring that the
visual feature matrix of 8te be utilized at the training time.
Directly minimizing the rank of Ẑ in Eq 4 is NP-hard and
intractable. Previous matrix completion works such as [19]
and [20] use the nuclear norm ‖ · ‖∗ to compute the sum of
the singular values to formulate the tightest convex envelope
for the rank of Ẑ. Then the minimization problem in Eq. 4 can
be approximated as

Z∗ = argmin
Z
‖Z‖∗,

s.t. B(Z− Ẑ) = 0. (5)

Furthermore, inspired by [35], we also impose the decom-
position Z = LQ>, where L ∈ R(m+Ntr )×r and Q ∈

R(Ntr+Nte)×r , and we also restraint that Q be orthogonal to
avoid many identical local minima in the objective function.
Finally, the optimization problem in our model is formu-
lated as:

(L∗,Q∗) = argmin
L,Q
‖L‖2F + ‖Q‖

2
F ,

s.t. B(LQ> − Z) = 0,Q>Q = I. (6)

C. OPTIMIZATION ALGORITHM
For simplicity, we rewrite L and Q in the form of tag-feature
matrices such asM and Ẑ. In particular, L = [L0;L1], where
L0 ∈ Rm×r and L1 ∈ RNtr×r . Similarly, Q = [Q0;Q1],

where Q0 ∈ RNtr×r and Q1 ∈ RNte×r . In practice, since
given tags and the extracted visual features may be noisy, the
original constrain B(LQ> − Z) = 0 in Eq. 6 is too rigorous.
Instead, we make a more appropriate relaxation for the orig-
inal problem by measuring how close the predictions are to
the available observations. Here the observations includes the
known matrices in tag-feature matrix Ẑ. Hence, the objective
function can be approximated as:

F(Ltr ,Lte,Qtr ,Qte)

= ‖Ytr − L0Q>0 ‖
2
F + ‖8tr − L1Q>0 ‖

2
F

+‖Yte − L1Q>1 ‖
2
F + λ(‖L0‖

2
F + ‖L1‖

2
F ), (7)

where λ is a regularization parameter of the `2 regulariza-
tion terms of ‖L0‖

2
F and ‖L1‖

2
F . In Eq. 7, directly computing

the L1 is infeasible since the features 8tr and 8te are in
kernel space and cannot be explicitly computed. We adopt
the scheme proposed in [35] to iteratively solve the sub-
problems that are derived with respect to L1 and the other
three variables successively.

The detailed optimization steps are as follows:

1) UPDATING L1
We first take the derivative of Eq. 7 with respect to L1 as

∂F
∂L1
= −280Q0 + 2L1Q>0 − 281Q1

+ 2L1Q>1 Q1 + 2λL1. (8)

Let Eq. 8 to be zero, we obtain the close-form solution for
L1 as

L1 =
1

λ+ 1
(80Q0 +81Q1). (9)

2) UPDATING L0
We then replace the solution of L1 in Eq. 7 and we obtain a
new objective function as

F(L0,Q1,Q0) = −2Tr(Y>trL0Q>0 )+ Tr(L
>

0 L0Q>0 Q0)

+ λTr(L>0 L0)−
1

λ+ 1
Tr(Q>KQ),

(10)

where K = [Kij]ij ∈ [0, 1] contains the kernel matrices
of visual features of training and test entries. After we the
derivative of L0 for Eq. 10, we obtain the close-from solution
for L0 as

L0 = YtrQ0(Q>0 Q0 + λI)−1. (11)

3) UPDATING Q1 AND Q0
By substituting the solution ofL0 in Eq. 11 to Eq. 10, we have

F(Q1,Q0) = −Tr(Q>0 Y
>
trYtrQ0(Q>0 Q0 + λI)−1)

−
1

λ+ 1
Tr(Q>KQ). (12)

Eq. 12 can be solved with the classical interior-point
algorithm, given the gradient values of Q1 and Q0. The
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TABLE 1. General statistics of the two datasets.

optimization details for Q1 and Q0 are similar as in [35].
Once the optimal solution ofQ1 andQ0 are obtained, we can
recursively compute L0 with Eq. 11 and L1 with Eq. 9.

D. TAG PREDICTION FOR OUT-OF-SAMPLE
Through the iterative updating step depicted above, we
can obtain the optimal solutions for the model parameters
{L0,L1,Q0,Q1}. Under the matrix completion framework,
we can predict the unknown tags of the test entries via learned
L0 and Q1 as:

Yte = L0Q>1 . (13)

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
1) DATASETS
We use two datasets for benchmarking, namely
IAPRTC-12 [36] and MIRFlickr [37] and compare the per-
formance of our method with previous approaches. The
IAPRTC-12 dataset was introduced for cross-lingual retrieval
where each image has a description. We only keep the nouns
and treat them as annotations. The MIRFlickr dataset has
been introduced to evaluate keyword-based image retrieval
methods. The dataset contains images that were downloaded
from Flickr website. The tags for each images are extracted
from the user-assigned tags as well as the EXIF fields.
Note that these two datasets are very challenging due to the
large vocabulary and the significant diversity among visual
content. Statistics of the datasets are shown in Table 1, where
the counts of images are in the format ‘‘training, test’’ in
column 2, and the counts are in the format ‘‘mean, minimum,
maximum’’ in column 4 and 5, respectively. It is worth noting
that a large portion of tags has a frequency less than the mean
tag frequency for both dataset and the median tag frequency
is also far less than the mean frequency. This justifies the
assumption of defective tags that we have previously made in
Section I.

2) FEATURES
To make fair performance comparison with previous meth-
ods, we use similar features in [11], where a combination of
local and global features were used for both datasets. Local
features include SIFT and hue descriptors obtained from
multi-scale grid and Harris-Laplacian key points. Global fea-
tures include histograms in RGB, HSV and LAB color spaces
as well as Gist features. We adopt the scheme proposed
in [38] to obtain the nonlinear representation for each type of
feature, and transform all the features by the nonlinear kernel
mapping. For Gist feature, we use the random Fourier feature
mapping that approximates the Gaussian kernel. All the other

descriptors above are histograms, and for them we extract the
kernel mapping of term-wise square root as in [38]. In our
experiments, we reduce each kernel-mapped feature to 500
dimensions and concatenate them into a 4,000-dimensional
vector.

3) DEFECTIVE TAG ASSIGNMENTS
To simulate the condition of defective tags, we follow the
setting in the previous works [22], [25]. Specifically, we
consider two cases: incomplete case and noisy case. For the
incomplete case, partial tags are randomly detected from the
given tags for each images. The deletion process complies
the principle min(1, dN × (1−γ )e) ensuring that each image
has at least one tag. For the noisy case, tags other than the
given tags are randomly added to each image. This process
follows the principle N +min(1, dN × ratioe), ensuring that
each image is corrupted by at least one noisy tag. Here N
represents the number of originally tagged tags for an image,
d·e is the ceiling function that returns the largest integer
smaller than the given value, ratio represents the degree of
incompletion or noise. In the experiments, we choose γ =
{30%, 50%, 70%, 90%}, where the larger the ratio, the higher
the degree of incompletion or noise.

4) COMPARED METHODS AND EVALUATION METRICS
For baselines in performance evaluation, we adopt widely
used image auto-annotation methods (JEC [10] and
TagProp [11]), tag recommendation approaches (Vote+ [29])
and recently proposed unified tag refinement frameworks of
denoising and completion (LSR [34] and TMC [15]). Follow-
ing [25], [34], the experimental results are evaluated using
three standard measures: average precision@N (i.e. AP@N),
average recall@N (AR@N) and coverage@N (C@N).
In the top N predicted tags, AP@N measures the ratio of
correctly predicted tags and AR@Nmeasures the percentage
of correct tags that are recovered out of all ground-truth tags.
Both AP@N and AR@N are averaged over all test images.
Besides, Coverage@N measures the ratio of test images with
at least one correct tags. For all the three criteria, a larger
value indicates better performance.

B. SENSITIVITY TO INCOMPLETION
For tag prediction results on IAPRTC-12 and MIRFlickr
datasets, we measure all the algorithms in terms of AP@N,
AR@N and C@N, with the ratio of incompletion γ varying
from [30%, 50%, 70%, 90%]. Fig. 3 and Fig. 4 show the
results for the two datasets measured by AP@N, AR@N
and C@N, respectively. From the experimental results we
can draw the following conclusions. 1) The proposed method
outperform the image auto-annotation, tag refinement base-
lines, providing a demonstration for their effectiveness.
2) In general, both LSR and the proposed method signifi-
cantly outperform all the other approaches. In addition, the
proposed method performs competitively with the state-of-
the-art approach LSR. 3) The proposed method recovers
relevant tag more effectively for a large range of images
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FIGURE 3. Tag prediction performance of the proposed method and other baselines with different ratio of incompletion on IAPRTC-12 dataset.
(a) AP@N. (b) AR@N. (c) C@N.

FIGURE 4. Tag prediction performance of the proposed method and other baselines with different ratio of incompletion on MIRFlickr dataset.
(a) AP@N. (b) AR@N. (c) C@N.

FIGURE 5. Tag prediction performance of the proposed method and other baselines with different ratio of noise on IAPRTC-12 dataset.
(a) AP@N. (b) AR@N. (c) C@N.

with different ratio of incompletion. This is an important
capability of tag completion methods. We can also see that
the proposed method slightly outperforms LSR in terms of
AR@N with larger γ when the degree of incompletion is
serious (i.e. 70%, 90%).

C. SENSITIVITY TO NOISE
We conduct experiments with noisy observed tags to evaluate
the sensitivity to noise. Fig. 5 and Fig. 6 shows the tag predic-
tion performance for different algorithms with different ratio

of noise on the two datasets, respectively. Not surprisingly,
the performance of all methods degrades with the increasing
amount of noise. This is rather expected because with severe
noise, certain images do not have accurate observed tags for
training the model, which is especially true for IAPRTC-12
where the original tags are already noisy. We can also see that
the proposed method generally performs on par with LSR on
three measures with different degree of noise.

Actually, LSR reconstructs the ideal tag matrix from
image- and tag-specific views jointly, where the image-
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FIGURE 6. Tag prediction performance of the proposed method and other baselines with different ratio of noise on MIRFlickr dataset. (a) AP@N.
(b) AR@N. (c) C@N.

FIGURE 7. Samples of tag completion results obtained by the proposed method and other two baselines (JEC and LSR) on the two datasets.

image, image-tag, tag-tag associations are explicitly
incorporated. In contrast, the proposed method formulates a
matrix that consists of both visual features and tags of both
training and testing data, and further completes the matrix
under a nonlinear matrix completion framework. Since these
two method use different methodologies, they may have dif-
ferent performance on various conditions.When the degree of
noise is large, the potential associations of image-tag and tag-
tag are hard to capture, thus affecting the completion results
of LSR and the proposed method.

D. EVALUATION WITH COMPLETELY LABELED
TRAINING SET
Similar as the settings in LSR, we further conduct experi-
ments on the two datasets with completely labeled training
sets to investigate its performance. Specifically, we preserve
the originally given tags for the training set and consider them
as the complete tags. All the algorithms are then applied to
the same test set. Table 2 shows the overall tag prediction
results in terms of AP@N, AR@N and C@N. The best
results obtained by the proposed method and the baselines are
highlighted in bold font. Specifically, N is selected according
to the mean number of tags for each datasets, i.e., N = 6 for
IAPRTC-12 and N = 4 for MIRFlickr. It can be concluded
from Table 2 that 1) all methods consistently performs better

TABLE 2. Experimental results on the two datasets with the completely
labeled training sets, in terms of in terms of AP@N, AR@N and C@N.

with completely labeled training set on the two datasets,
indicating the importance of the quality of training data; 2) the
proposed method and LSR performs significantly better than
the other baselines, further demonstrating their effectiveness;
3) the proposed method performs competitively with LSR,
thus it establishes another baseline for the annotation model
with defective tags.

Fig. 7 shows qualitative samples of image tagging results
obtained by the proposed method and two baselines JEC and
LSR. on the two datasets. The first row contains the raw
images, and the second row of ‘‘Groundtruth’’ represents
the user-provided tags. The last three rows contain the top
five tags predicted by the three methods. It can be observed
that 1) the user-provided tags may be defective, for exam-
ple, some proper tags are missing and some noisy tags are
assigned for these images. 2) the predictions obtained by
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JEC are usually inaccurate, since JEC ignores the issue of
defective tag assignments on the training images, thus it fails
to efficiently capture the relationships of different tags. For
example, JEC prone to prediction frequent tags such as nikon,
d50, and explore, which are usually noisy to describe the
image content. 3) Compared with JEC, the LSR and the
proposedmethods achieve much better tagging results as they
fully consider the issue of defectiveness. Specifically, the
proposed method can recall more appropriate tags than those
of LSR for the first two images such as the tags people, cloud,
grass; while LSR gives some unrelated tags such as front,
road, snow. Moreover, LSR seems to be inferior to tackle
the noisy tags (e.g. etsy, d50) as it is initially designed for
tag completion with incomplete tags. The proposed method
is able to improve LSR for removing noisy tags, as the
nonlinear matrix completion framework ensures the proposed
method to jointly explore the relationships between visual
features and tags and effectively distinguish the importance
of different tags to each image.

V. CONCLUSION
In this paper we proposed an effective method for social
image tagging with defective tags using nonlinear matrix
completion. The proposed method first constructs the tag-
feature matrix of both training and test data and then for-
mulates a formal methodology together with an optimization
method under the matrix completion framework to jointly
complete the tags of training and test images. Extensive
experiments conducted on two social image datasets with
defective tags assignments verified that the proposed method
achieved competitive performance compared with the state-
of-the-art approaches.
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