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ABSTRACT With the development of wireless sensing technologies, numerous sensing applications from
the Internet of Things (IoT) are widely used in life and industry. Mobile peer-to-peer (MP2P) system
is one of the typical IoT applications, in which peers share their sensing information. Reciprocity-based
incentive mechanisms are widely used to encourage cooperation among peers and maintain robustness
of MP2P systems. However, the effectiveness of different reciprocity-based mechanisms is difficult to
compare theoretically. In this paper, we propose a general evaluating framework to help design and analyze
incentive mechanisms for which reciprocal peers can have different reciprocal policies. Using our proposed
framework, the evolution dynamics of multiple incentive policies that coexist in MP2P systems can be
analyzed. The simulation results show the system robustness and best strategies in various circumstances.
In addition, we consider a most common attack model, whitewashing, in MP2P systems and bring in a small
entry fee to defeat whitewashers. The results show that this framework can well defend whitewashing and is
more suited for real MP2P systems.

INDEX TERMS Co-evolution, reciprocity-based incentive mechanism, evolutionary game, MP2P,
evaluating framework.

I. INTRODUCTION
With the development of wireless communication technolo-
gies and intelligence of smart objects, the ways people
exchange information are redefined [1], [2]. Devices with
sensing, computing, and communication capabilities are con-
nected to each other and form a network to collect informa-
tion, such as traffic monitoring and noise map making, object
tracking and identification.

A typical topology of these wireless sensing devices is a
Mobile P2P (MP2P) structure, in which peers share informa-
tion with each other. However, in a real MP2P system, most
peers are selfish and are not generous enough to share their
limited resources. Peers seek to maximize their own benefits
by consuming their resources. Saroiu’s study [3] showed that
over 70% of peers in Gnutella are free riders who never share
resources with other peers, and the proportion of free riders
in Gnutella increased to 85% five years later. Thus, there is
compelling need to design an effective incentive mechanism
for MP2P systems.

Reciprocity-based incentive mechanisms [4]–[7] are most
commonly conducted solutions to overcome free-riders in a
MP2P system. By using an incentive mechanism, the service
provider decides whether to serve the requester or not based
on requester’s prior transaction histories with other peers,
which makes the MP2P system contribution-aware. To gain a
better history of transactions, rational and selfish peers have
motivations to cooperate with other peers, because doing so
will produce direct or indirect benefits in the future. It can
influence peers’ behaviors and encourage them to provide
services to increase the benefit of the entire MP2P system.

In realistic MP2P scenarios, peers are bounded-rational
and strategic. With the former meaning, the peers want to
maximize their own payoff, but their cognitive capability is
limited, and they may make mistakes for some reason. The
term strategic refers that peers can choose their actions (e.g.,
cooperation or defection) when they interact with other peers.
Thus, evolutionary game theory is a quite appropriate tool to
model the interaction and depict the evolutionary dynamics of
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MP2P peers [8], [9]. Evolutionary game-based mathematical
frameworks have been proposed by researchers to analyze
the robustness of a certain mechanism (Zhao et al. [10];
Wang et al. [11]). Existing work focused mainly on a multi-
round, three-strategy, evolutionary game, which contains sev-
eral rounds. In each round, each peer can choose strategies
from Always Cooperate (ALLC), Always Defect (ALLD),
or Reciprocate (R) and decides whether to cooperate accord-
ing to the requester’s transaction history, i.e., a reciprocator
always grants a service to an ALLC peer and denies serving
an ALLD peer. In order to improve payoff in the future,
peers may imitate others’ strategies with better payoffs in
the current round. However, previous work has two major
disadvantages, i.e., in the proposed approaches, only one
reciprocity policy is considered at a time, which means all the
peers with R strategy have the same and the only reciprocity
policy. For example, assuming A, B, and C are reciprocal
peers, they have the same reciprocity policy, so A and B
will respond with the same action (cooperate or defect) to a
request fromC. But in a realisticMP2P system, peers A and B
may respond with a different action (cooperate or defect)
to C although they are both reciprocators, because they may
have a distinct degree of generosity or cooperation standards.
Thus, for characterizing MP2P peers’ intrinsic diversity, the
reciprocity strategy should be expanded to contain more reci-
procity policies.

Other problems of MP2P systems are malicious attacks.
Whitewashing attacks [12] are most common attacks in
MP2P systems, under which peers are inclined to leave the
network and join again with a new identity when they have
a bad transaction history. Especially in mobile environment,
peers can frequently join and leave a system easily, therefore
whitewashing is much more serious. These whitewashers
significantly violate the fairness of MP2P networks, but most
existing incentive mechanisms [8], [9] pay little attention
to it.

In this paper, we propose a general evaluating framework
based on evolutionary game theory to analyze and evalu-
ate the incentive mechanisms for MP2P networks. In our
framework, evolutionary game theory is used to describe
peers’ interaction behaviors and dynamic evolutions. More
importantly, we extend the reciprocator strategy to con-
tain multiple reciprocity policies, including the mirror reci-
procity policy, proportional reciprocity policy, and indirect
reciprocity policy [13]. These policies can co-exist in one
MP2P network, and individual reciprocator peers can use
any one of the reciprocal policies. We perform extensive
simulations to analyze the robustness frommany aspects, e.g.,
payoff-cost ratio, co-evolution of reciprocity policies, white-
washing attack, and mutation (mistake to imitate expected
strategies). Simulation results show that our framework is
robust and suitable for stimulating a realistic MP2P network-
ing environment.

The rest of this paper is organized as follows. In Section 2,
we summarize related work on MP2P platform and incentive
mechanisms. In Section 3, we describe our model in detail.

In Section 4, we present simulation results and relative anal-
ysis. In Section 5, we conclude this paper.

II. RELATED WORK
Smart mobile devices have a great potential to improve the
performance of IoT applications by enabling access to their
built-in sensors. In the past few years, significant research
efforts have been made on IoT, mainly from a thing-oriented
perspective. A wide range of areas are covered, including
topology forming [2], [14]–[16], security [17], [18], robust-
ness [19], [20] and etc.

An MP2P structure is a typical topology for these smart
devices, in which peers form a ubiquitous connectivity
through wireless network and share resources with each other
freely [21]. In such MP2P systems, cooperation among peers
are crucial to share and forward information. However, due
to limited resources (such as electricity, CPU, memory, etc.),
sharing resources and maintaining connection is much more
costly for mobile peers. Thus, free-riding problems are much
more serious in MP2P systems as compared to wired P2P
systems.

Incentive mechanisms are used to solve the problem of
free-riders. The concept of incentive mechanisms was bor-
rowed from economics and management. The core thoughts
of incentive mechanisms always target a specific behav-
ior, and they sometimes induce unwanted responses from
workers and produce undesired results [13]. In this way,
a peer will tend to perform more cooperatively to have a
better chance of receiving more services. Incentive mecha-
nisms generally can be divided into four different types, i.e.,
micropayment-based mechanism, fixed contribution-based
mechanism, reciprocity-based mechanism, and evolutionary
game-based mechanism.

Micropayment-based schemes require payments with vir-
tual currency when a specific service is obtained, and the
peer who provides the service may get the corresponding
payment. But this approach may cause problems related to
setting prices, i.e., fairness [22], inflation, and deflation [23].
Fixed-contribution scheme requires peers to provide a fixed
(minimum) amount of services before getting services from
others. However, it mainly restricts the access rights of peers
since it can never force them to cooperate after they enter the
system [2]. The reciprocity-based scheme is also known as
reputation-based scheme. It always has a certain algorithm
to calculate peers’ reputation [5]–[7], which symbolizes the
amount of their service and its quality.

All of the above schemes can encourage peers to cooperate,
but the schemes hardly consider the possibility that peers
might change their strategies after the transaction is finished.
Thus, game theory has been incorporated into the study of
incentive mechanisms to better describe peers’ behaviors.

In MP2P networks, peers always get rational or strategic
features, and they determine their strategies independently
based on the desire to maximize their profit [25]. Consid-
ering the features of peers, game theory is an appropriate
tool to model and analyze their behaviors when conflicts
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occur between individuals’ interests and the overall public
benefit. Thus, game theory is used extensively in the study
and analysis of cooperation in a MP2P system [26]–[28].

Different from classic game theory, the evolutionary game
focuses on the dynamics of the peers’ strategies and on ana-
lyzing the stability of the system after a given evolutionary
period. So, in order to use the evolutionary game to solve the
problem of free riders, four basic problems must be solved,
i.e., 1) the composition of rational behavior; 2) how to trans-
form rational individuals to bounded-rational individuals and
how they affect the design of the incentivemechanism; 3) how
to establish a common framework to evaluate and analyze a
certain mechanism; and 4) the optimal contracts in different
tasks and network structures [29].

Some researchers use the evolutionary game to model
and analyze cooperation in both heterogeneous and
homogeneous MP2P systems [10], [30]–[33]. Specially,
Zhao et al. [10] proposed a mathematical framework to
analyze the robustness of a certain mechanism and to con-
sider the cost of transmitting resources. Replicator dynamics
were used to analyze dynamics in an infinite, well-mixed
population, but a real network has a finite population and a
structured network. Thus, Wang et al. [30] proposed another
mathematical method using fixed probability and discussed
the important role of selection intensity in evolution. Fur-
thermore, Wang et al. [31]–[33] considered how to promote
cooperation among different groups by using co-evolution.
These studies show that this research area is progressing in
an interesting direction.

In addition to lack of cooperation, malicious attacks are
another serious problem in MP2P networks. Due to cheap
pseudonyms [9], whitewashers frequently participate and quit
the system to get a new identity and profit from the system.
Collusion [34] is another attack in which peers stick together
to boast each other and gain a high reputation or slander
someone. The Sybil attack [35] is performed as one node and
produces a set of fake identities to control the entire system so
that it can do whatever is desired. In the absence of a trusted
central entity, Sybil attacks can never be eliminated. Due to
the mobility of participants, attacks in MP2P applications
are much more serious and hard to defend. Therefore, a
robust and easy implemented incentive mechanism for MP2P
systems is in great need.

Most of the studies that have been mentioned neglected
the co-existing incentive policies and attacks in the MP2P
system. In this paper, we consider multi-incentive policies
and whitewashing in the system.

III. TRANSACTION GAME
The transaction game is a repeated game that consists of N
players. In one single round, each player randomly sends
requests to m other players. The players who receive the
requests must decide whether to grant a service or not. This
means that a player may be a requester and a provider in each
round. The total benefit (or payoff) a player receives depends
on the number of player gets a service and grants a service.

To simplify the issue, we assume this MP2P network as well-
mixed and each provider has all the services others may
request.

Algorithm 1 Transaction Game
1: for All rounds do
2: for i = 0 to N do
3: for k = 0 to m do
4: providerj← random(N );
5: Playeri sends a request to providerj;
6: providerj grants or denies a service;
7: end for
8: end for
9: end for

We implemented this game in a well-mixed MP2P net-
work. As shown in Alg. 1, in each round, each player ran-
domly sends requests to m players (excluding itself) as a
requester. Providers grant a service according to their own
strategies. It won’t influence the results if a player sends
requests to a player for repeated times.

A. STRATEGIES
We classify available strategies in this paper into three types,
according to their responses when they receive a request.
These include:
ALLC: A peer with ALLC strategy always grants a ser-

vice unconditionally and neglects the requester’s transaction
history.
ALLD: Opposite from ALLC, a peer with ALLD strategy

never grants a service and neglects the requester’s transaction
history.
R: This player grants a service according to the requester’s

transaction history. For instance, a reciprocator may always
serve ALLC and never serve ALLD.

However, in a real system, a reciprocator may follow dif-
ferent rules to decide a response when getting a request. We
call these rules ‘‘reciprocal policy’’. In this paper, we mainly
use three different reciprocal policies that may co-exist in
one homogenous network. The three reciprocal policies are
as follows:

(1) Power_Mirror. The mirror reciprocal policy was first
proposed by Feldman et al. [36] in 2003. It is described as
one’s serving the requester with the same probability that the
requester serves others. The probability is the ratio of the
number of a requester serving others (Nj_serve) to the number
being served by others (Nj_get_request )(see Eq.1).

pmirror =
Nj_serve

Nj_get_request
(1)

However, if only the transaction history is considered to
grant a service, the fairness and efficiency cannot be guaran-
teed. For instance, a reciprocator may serve another recipro-
cator with a low probability. But actually, a reciprocator is a
good peer who never serves a defector. Thus, we incorporate
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FIGURE 1. Power vs. linear function.

punish-reward in the reciprocity strategy. We assumed that
0.5 was the intermediate cooperation probability of a peer.
So, we reward those who have serving probabilities greater
than 0.5, andwe punish those who have probabilities less than
0.5 by using the function shown in Eq.2. The curve of these
two functions (power function and linear function) are shown
in Fig. 1.

y = (
9
4
)x − 1 (2)

Using this function, we introduce punish-reward into this
strategy and modify the original strategy, as shown in Eq. 3.

ppower_mirror = min((
9
4
)pmirror − 1, 1) (3)

(2) Power_proportion. Proportion policy can be described
as onemay serve others according to the requester’s history of
receiving service [28]. The probability is ratio of the number
of getting service from others (get_service) to the number of
sending service to others (send_service)(shown as Eq.4).

pprop = min(
get_service
send_service

, 1) (4)

For the same reason as power_mirror, we modify this
strategy to power_prop, as shown in Eq.5.

ppower_prop = min((
9
4
)pprop − 1, 1) (5)

(3) Indirect. This policy comes from Nowak’s upstream
reciprocity [37]. Onemay serve others only if one gets service
last time. This is a weak strategy to facilitate cooperation, but
it is still useful for restricting defectors.

B. PAYOFF CALCULATION
Table 1 shows the payoff matrix we use in this game. When a
peer gets a service, he has a positive payoff α, and a peer gets
a cost β if he grants a service. For instance, peer A shares
resources with peer B, but peer B shares nothing with peer
A. Thus, peer A gets a negative payoff −β and peer B gets a
positive payoff α.

TABLE 1. Payoff matrix.

In order to assure fairness, we consider the average payoff
of each strategy [38]. The payoff of a peer with strategy i,
i.e., payoffi, is as shown in Eq.6. The ratio of the sum of
peers with strategy i getting service (num_get_service) to
the sum of send requests (num_send_request) symbolizes the
probability that strategy i will get service. So, the first part of
this equation shows the average positive payoff strategy that i
receives. The second part of this equation is the average cost
of strategy i.

payoffi = α ∗
num_get_service
num_send_request

− β ∗
num_send_service
num_get_request

(6)

C. STRATEGY UPDATE
Strategy update models how peers change their strategies to
acquire the maximum payoff. After each round, peers change
their strategies according to their own payoff. Then, peers
begin a new round of transactions until the system is dynam-
ically stable. In this paper, we consider two learning models
which are widely used (CBLM and OLM) and mutations as
parts of the strategy update process.

Algorithm 2 CBLM
1: for each peer do
2: //randomly select a float prob1 ∈ (0,1)
3: prob1← random(0,1);
4: if prob1 < γa then
5: Calculate pi→best ;
6: prob2← random(0,1);
7: if prob2 < pi→best then
8: Change to strategy best
9: else
10: Maintain strategy i
11: end if
12: else
13: Maintain strategy i
14: end if
15: end for

Current best-learning Model (CBLM). As described in
Alg. 2, after each round, each node considers whether to
change its strategy with the probability γa, which is called
the adaptive rate. A peer changes to the most profitable
strategy with the probability as the sensitivity γs to payoff
gap [10] (Eq.7).

pi−→best = γs ∗ (payoffbest − payoffi) (7)

Opportunistic LearningModel (OLM). As shown inAlg. 3,
after each round, each node chooses a teacher node with
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Algorithm 3 OLM
1: for each peer do
2: Choose a teacher with probability γa
3: Calculate pi→teacher
4: prob1← random(0,1)
5: if prob1 < pi→teacher then
6: Change to teacher’s strategy
7: else
8: Maintain strategy i
9: end if
10: end for

probability γa and change to the teacher’s strategy if the
teacher’s payoff is better than its own payoff with probability
as the sensitivity γs to payoff gap [10] (Eq.8).

pi−→teacher = γs ∗ (payoffbest − payoffi) (8)

IV. SIMULATION AND ANALYSIS
We conduct our experiment in four basic steps:
(1) Initialization: Initialize peers’ strategies according to the

proportion of each strategy and set other attributes of a
peer to 0.

(2) Warming up: In order to simulate real MP2P transac-
tions, a warming-up process is necessary. During the
warming-up phase, each peer sends 100 requests to other
peers randomly (excludes itself) and gets responses. For
power_mirror and power_prop strategies, onemay never
know whether the requester is good or not when there is
no transaction history. So, they may serve the requester
once before they have the transaction history.

(3) Strategy update: In this phase, each peer chooses to
learn others’ strategies under different learning models
(CBLM or OLM). After learning strategies, mutation
begins (optional in different experiments), and each peer
may have 1% probability of mutating to other strategies
(including its own strategy). To get a stable situation, we
perform 10,000 rounds.

(4) Statistic: Collect information of the system status,
including fractions of each strategy and the average
payoff of the system.

We explore some key factors that impact the system robust-
ness to the greatest extent, i.e., 1) the payoff-cost ratio (α/β),
2) the cost when getting transaction information from the
system, and 3) the co-evolution of various reciprocity strate-
gies. In addition, whitewashing attacks can harm the system,
and the main method we use in the simulation is to add the
cost of getting a new identity. To simplify the experiment,
we set β to 1. According to the definition of robustness
[39], we consider the proportion of cooperation and peers
with incentive strategies as the metric to evaluate the system
robustness. The initial proportion of each strategywas equally
large without specially illustrate. Without special emphasis,
we use the parameters shown in Table 2.

TABLE 2. Parameters.

FIGURE 2. Proportion of C + R under stable status: (a) CBLM; (b) OLM.

A. IMPACT OF α/β
First, we consider the situation with the power_mirror strat-
egy. Zhao et al. [10] gave a specific mathematical proof when
using the mirror and proportion strategy. We obtained similar
results using an improved strategy. Fig.2 shows that, for the
CBLM learning model, when α is small (α < 4), defectors
are always dominant in the system. But, when α is relatively
large (α > 4), the dilemma is weak. Thus, since we have
incentive strategies, the defectors may be eliminated. Similar
results are obtained with OLM. For the power_prop strategy,
generally, as long as the initial proportion of R strategy
is larger than 1/(α − 1), the system is always robust. So,
with only one reciprocity strategy in the system, under the
same condition, the power_prop strategy is better than the
power_mirror strategy. As for the indirect strategy, it could
restrict defect behaviors to some extent, but it is a very weak
strategy to facilitate cooperation.

Mutation is an important mechanism to ensure the diversity
species throughout the world. We consider mutation in our
model. At the end of each round, after the peers changing
strategies using the learning model, each peer has the same
probability of changing its strategy to any of the available
strategies (including his or her own strategy). In this paper,
we set this probability to 0.01. As shown in Figs. 3-5, the
presence of mutation in the system may always help to
keep system stable after a short period of evolution. But the
proportion of each strategy at stable status depends on the
payoff-to-cost ratio. In both the CBLM and OLM learning
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FIGURE 3. Power_mirror under mutation: Top, CBLM; bottom, OLM; Left
to right α = 1α = 5α = 9.

FIGURE 4. Power_prop under mutation:Top, CBLM; bottom, OLM; Left to
right α = 1α = 5α = 9.

models, when α is small, defectors dominate the system. As
α increases, the proportions of C and R also increase. The
indirect strategymay survive undermutation, but a proportion
of it is maintained around the point of the initial proportion.
Still, it shows that the indirect strategy is a weak incentive
strategy.

B. COST OF GETTING TRANSACTION INFORMATION
In a real network, peers who get information from the system
have to cost more or less. So, we consider these costs in
our simulation to determine how these costs affect robustness
of the system. The modified payoff for incentive strategy is
shown by Eq.9.

payoffnew = payoffold − info_cost ∗ α (9)

Adding info_cost means lowering the payoff of strategies
power_mirror and power_prop; the indirect strategy uses its
own information, so info_cost cannot affect it. Figs. 6 and 7
show the proportions of each strategy at stable status with
different info_cost . When the info_cost is low, the incentive

FIGURE 5. Indirect under mutation:Top, CBLM; bottom, OLM; Left to right
α = 1α = 5α = 9.

FIGURE 6. Effect of info_cost on power_mirror: Top, CBLM; bottom, OLM;
Left to right α = 4α = 7.

strategy can work well with high α. But when info_cost is
rather large, peers with the reciprocity strategy get very low
payoff, so that they cannot survive in the system.

So, in order to fulfill the need of information cost and
maintain the robustness of the system, we only need a tiny
info_cost .

C. RECIPROCITY STRATEGIES CO-EVOLUTION
Aswe discussed earlier, the expanded strategy set can provide
a better description of the peers’ behaviors. In this simulation,
we did not consider info_cost .
Fig.8 shows that, under CBLM, when α = 1, the

power_mirror strategy is the best, and the power_prop strat-
egy will be eliminated. However, the indirect strategy can
co-exist with the power_prop strategy. After an indirect peer
receives a service, it may continue to serve and deny serving
when gets rejection. As α increases, the situation changes,
and power_prop keeps dominating the system and takes over
the system at stable status.We obtain similar results for OLM.
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FIGURE 7. Effect of info_cost on power_prop: Top, CBLM; bottom, OLM;
Left to right α = 4α = 7.

FIGURE 8. Competition among three incentive strategies:Top, CBLM;
bottom, OLM; Left to right α = 1α = 5α = 9.

In the real world, we may always see role models or selfish
people. So, adding pure strategies is reasonable. Fig.9 shows
that, whether under CBLM or OLM, power_Mirror is always
the best strategy when α is larger than 1. But the proportion of
cooperators may vary for different values of α, and they may
increase following the rule we found in the first experiment.
Overall, with pure strategies in the system, when α is larger
than 1, the system is always robust.

D. WHITEWASHING ATTACK AND DEFENSE
Whitewashing is the most common attack in a MP2P system
due to cheap pseudonyms [30]. They frequently join and leave
the system to eliminate their transaction history to cheat and
get more services. In this paper, we assume that whitewashers
may wipe out their history to get a new identity every time
they receive a request or a service. Under free identity, white-
washers always can dominate the system and cause the entire
system to collapse.

In order to restrict whitewashers, we give all newcom-
ers an identity cost. The payoff is modified as Eq.10.

FIGURE 9. Competition among five incentive strategies: Top, CBLM;
bottom, OLM; Left to right α = 1α = 5α = 9.

FIGURE 10. Restrict whitewashers with ID_cost(no pure): Top, CBLM;
bottom, OLM; Left to right α = 1α = 5α = 9.

FIGURE 11. Restrict whitewashers with ID_cost(with pure): Top, CBLM;
bottom, OLM; Left to right α = 1α = 5α = 9.

For whitewashers, it is Eq.11. When the cost is low, white-
washing is still worthwhile, but, when the cost is large, white-
washers can be eliminated (as shown in Fig.10), but good
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newcomers are hurt in the process.

payoffinew = payoffi−
ID_cost∗change_times

num_transaction
(10)

payoffwhitewasher = payoffi − ID_cost (11)

Whenwe consider pure strategies, D can defeat whitewash-
ers because they have low ID_cost. But when the ID_cost is
large, whitewashers are eliminated due to the cost. ALLD are
eliminated because of large α (shown in Fig.11).

V. CONCLUSIONS
In this paper, we present a simulation framework to analyze
the evolution dynamics of bounded rationality peers in a
MP2P incentive system. In the framework, different recip-
rocal peers have different reciprocity policies, which more
precisely characterize the intrinsic diversity in a realistic
scenario. The reciprocity policies are used in the framework,
including the mirror reciprocal policy, the proportion recip-
rocal policy, and the indirect policy. The proposed simulation
framework can analyze the evolution dynamics of multiple
incentive policies that co-exist in the MP2P incentive system.
Through various experiments, we find that with larger payoff
getting service, using incentive strategies may facilitate coop-
eration. Adding info_cost may be better suited for a real sys-
tem, but a small rate is required to help both cooperation and
the simulation of a real circumstance.Whitewashing harm the
benefits of the entire system, and adding a large ID_cost may
effectively restrict whitewashing behaviors while maintain-
ing the robustness of the system.
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