
SPECIAL SECTION ON RECENT ADVANCES IN SOCIALLY-AWARE MOBILE NETWORKING

Received August 31, 2016, accepted September 19, 2016, date of publication November 8, 2016, date of current version March 8, 2017.

Digital Object Identifier 10.1109/ACCESS.2016.2621010

Social Network-Based Content Delivery in
Device-to-Device Underlay Cellular
Networks Using Matching Theory
CHEN XU1, (Member, IEEE), CAIXIA GAO1, ZHENYU ZHOU1, (Member, IEEE),
ZHENG CHANG2, (Member, IEEE), AND YUNJIAN JIA3, (Member, IEEE)
1State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronic
Engineering, North China Electric Power University, Beijing 102206, China
2Department of Mathematical Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland
3College of Communication Engineering, Chongqing University, Chongqing 400044, China

Corresponding author: Z. Chang (zheng.chang@jyu.fi)

This work was supported in part by the National Natural Science Foundation of China under Grant 61601180 and Grant 61601181, in part
by the Fundamental Research Funds for the Central Universities under Grant 2014MS08 and Grant 2016MS17, in part by the National
High Technology Research and Development Program of China (863 Program) under Grant 2015AA01A706, and in part
by the Academy of Finland under Grant 284748 and Grant 297642.

ABSTRACT With the popularity of social network-based services, the unprecedented growth of mobile
date traffic has brought a heavy burden on the traditional cellular networks. Device-to-device (D2D)
communication, as a promising solution to overcome wireless spectrum crisis, can enable fast content
delivery based on user activities in social networks. In this paper, we address the content delivery problem
related to optimization of peer discovery and resource allocation by combining both the social and physical
layer information in D2D underlay networks. The social relationship, which is modeled as the probability
of selecting similar contents and estimated by using the Bayesian nonparametric models, is used as a weight
to characterize the impact of social features on D2D pair formation and content sharing. Next, we propose
a 3-D iterative matching algorithm to maximize the sum rate of D2D pairs weighted by the intensity of
social relationships while guaranteeing the quality of service requirements of both cellular and D2D links
simultaneously. Moreover, we prove that the proposed algorithm converges to a stable matching and is weak
Pareto optimal, and also provide the theoretical complexity. Simulation results show that the algorithm is able
to achieve more than 90% of the optimum performance with a computation complexity 1000 times lower
than the exhaustive matching algorithm. It is also demonstrated that the satisfaction performance of D2D
receivers can be increased significantly by incorporating social relationships into the resource allocation
design.

INDEX TERMS Social network, device-to-device communication, content delivery, Bayesian
nonparametric models, matching theory.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
With the popularity of high-performance intelligent terminals
and the emergence of new mobile multimedia services, the
demand on wireless high data rate has been growing contin-
uously [1]. The contradiction between the growing service
demands of users and the limited network bandwidth has
become increasingly prominent. The existing wireless net-
work architecture needs to be upgraded [2]–[4].

Researchers in academia and industry therefore attempt
to explore new valuable communication technologies that
can improve the system capacity by spectrum reuse.

Device-to-device (D2D) communication, as one of the key
solutions for future 5G system, allows mobile devices to
transmit data signals over local peer-to-peer links instead of
through a traditional infrastructure, i.e., the base station (BS)
of cellular network. By reusing cellular spectrum resources
under the control of the BS, D2D communication can dramat-
ically increase the spectrum efficiency and network capac-
ity [5]–[10]. Moreover, because of the proximity effect of
direct connections, D2D is expected to enhance the data
transmission rates and promote new applications.

According to the analytical data results [1], a large
amount of data traffic is generated from hotspots, where the
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distribution of mobile users is extremely dense, such as a
subway train, a concert hall, and other public places. From
another perspective, the users located in the hotspots may
have ‘‘relationships’’ with other ones, which can be obtained
from their social data on the social platforms. The social
relationship, generally speaking, includes real friend relations
and virtual relations associated with interests in similar con-
tents. In practice, multiple users may request for the same
content, while the BS has to transmit the content to these
users by multiple repeated transmissions in the traditional
way. For this case, it is reasonable to apply D2D technique
to push or share the same content from the content holder
to users with tight social relationships. It is worth noting
that the appropriate cellular spectrum resources need to be
reused by the D2D links. As a result, the heavy data traffic
is offloaded from the cellular infrastructure, and at the same
time the spectrum efficiency is increased.

There exist some works on cellular data offload-
ing by integrating D2D communications with social
networks [11]–[15]. In such a scenario, the BS pushes the
content to a set of seed users, who then transmit the content
to other users in proximity by D2D links. The relationships
between the seed and non-seed users are defined as ‘‘social
ties’’, which reflect the similarity of users’ preferences on the
content. The core objective is to spread the popular content in
as short a time period as possible. However, in practice, there
is another situation that users in the hotspots may not be inter-
ested in the same content. For instance, two passengers on a
subway train are using Facebook to browse pictures posted by
their mutual friend, while another passenger has just down-
loaded a video that other passengers around himmay be inter-
ested in. Therefore, in order to implement effective content
delivery and achieve good user satisfactions, it is necessary
to consider the different preferences of users on the contents
based on historical data obtained from the social platforms.

The above consideration brings challenges to the system.
First, the social relationships that reflect the close degree of
users, i.e., the consistency degree of preferences on similar
contents, are required for determining the transmitter and
receiver of D2D communication, which can be regarded as
a process of peer discovery. Second, since the D2D trans-
mitters push contents to the receivers by reusing the cellu-
lar spectrum, the co-channel interference cannot be ignored,
which requires an efficient resource management to opti-
mize the system performance and guarantee the quality of
service (QoS) as well. Combining these two aspects, the
strategy of content delivery should consider the system status
information from both social layer and physical layer. On the
one side, the content delivered to the user is expected to be
what he just wants; on the other side, the reused spectrum is
hoped to be the best choice for maximizing the system sum
rate.

B. CONTRIBUTIONS
In this paper, in order to implement effective content deliv-
ery, we study a joint peer discovery and resource allocation

approach, with the objective of maximizing the system sum
rate weighted by the intensity of users’ social relationships,
and at the same time guaranteeing the QoS of both cellular
and D2D links. Due to the uncontrollability and uncertainty
of users’ activities in social network [16], we utilize the
probabilities of selecting similar contents, which can be esti-
mated by Bayesian nonparametric models [17], to obtain the
social relationships among users. Considering the different
preferences of users on the contents and spectrum resources,
we focus on solving the joint optimization problem bymatch-
ing theory [18], which attempts to describe the formation of
mutually beneficial relationships. Some works have already
employed matching theory to allocate limited resources to
users that maximize resource efficiency [19]–[22], and some
works have proposed energy-efficient resource management
schemes based on matching theory for D2D communica-
tions [23], [24]. Note that in our problem, the matching
between D2D transmitters and receivers, and the matching
between D2D pairs and resource blocks (RBs), should be
jointly considered. Thus, we propose a three-dimensional
matching process to achieve the coordinated allocation of
users, contents, and spectrum resources, based on the social
layer and phasical layer information. The main contributions
of this paper are summarized as follows:
• We propose a social network-based content deliv-
ery approach to offload the cellular data traffic by
D2D links. Specifically, we define the intensity of two
users’ social relationship as the normalized correlation
of the probabilities of selecting similar contents that
estimated by the Bayesian nonparametric models. More-
over, a joint peer discovery and spectrum resource allo-
cation problem, which involves the matching between
content providers (transmitters) and content consumers
(receivers), and the matching between D2D links and
spectrum resources, respectively, is proposed and formu-
lated as a three-dimensional matching that maximizes
the system sum rate weighted by the intensity of social
relationships.

• Due to its combinatorial nature, the joint allocation prob-
lem is intractable and belongs to the class of NP-hard
problems. We simplify the problem based on pricing
strategy and give a sub-optimal solution, which can
approach the performance of the exhaustive optimal
algorithmwith amuch lower complexity. First, we trans-
form the three-dimensional matching into a two-sided
matching, in which the preference lists of transmitters
from one side over the combinations of receivers and
resources from the other side are established based on
the achievable weighted rates. Then we introduce a
pricing strategy to decide the winner when more than
one transmitter propose towards the same combination.
In the algorithm, we also consider the power control
for D2D transmissions to avoid excessive interference
to cellular users.

• The properties of the proposed three-dimensional
matching algorithm including convergence, stability,
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optimality and complexity are analyzed theoretically.
In the simulation, we compare the proposed match-
ing algorithm with the exhaustive optimal and random
matching algorithm in terms of the achieved weighted
sum rate for D2D communications under different
scenarios. Numerical results show that our proposed
scheme can achieve a considerable performance gain,
and the satisfactions of users on the shared contents are
substantially improved with the consideration of social
relationships.

The rest of this paper is organized as follows. In Section II,
we provide a brief review of the related works. The system
model consisting of physical layer and social layer is given
in Section III, and the formulation of the social network-
based content delivery problem is introduced in Section IV.
Section V describes the three-dimensional matching algo-
rithm with relevant theoretical concepts and analysis.
The simulation results and discussions are presented in
Section VI. Finally, we conclude the paper in Section VII.

II. RELATED WORKS
This paper aims to solve the joint peer discovery and resource
allocation problem with power control in D2D communica-
tions underlaying cellular networks by exploring both social
and physical layer information. Utilizing the location infor-
mation of users, a centralized D2D discovery scheme, which
can adaptively allocate resource blocks for the discovery to
avoid the underutilization of spectrum resources based on the
random access procedure in LTE-A system, was proposed
in [25]. In [26], the authors proposed a social-aware peer
discovery scheme for D2D communications based on an
established paradigm, in which mobile users are divided into
groups by utilizing the social domain information including
location, interest and background. A code-based discovery
protocol that studied in [27] utilizes the discovery code con-
taining the compressed information of mobile applications
to find the nearby devices that have interests on the mobile
applications, and thus to realize proximity-based services.
The above works mainly solve the peer discovery issue of
D2D communications considering physical location informa-
tion, social information or interests on mobile applications,
etc.

In addition, social information in social network is uti-
lized to enhance various performance metrics of D2D
communications. For instance, clustering schemes with an
admission policy were proposed to increase system rate
in [29], [28] and [29] with consideration of social interaction,
While in [30], it was proposed to improve the system through-
put and energy efficiency based on the Chinese Restaurant
Process (CRP). Mode selection of content downloading for
D2D users and relay selection for social-trust-based and
social-reciprocity-based cooperative D2D communications
were studied in [11] and [31], respectively. Sharing strategies
utilizing social relationship were proposed in [12] and [13]
with consideration of minimum delay and formation of a
practical network, respectively.

Besides, resource allocation issue for D2D pairs with con-
sideration of the social relationship were studied in different
scenarios, such as a single community in [14], [32]–[35],
cooperative communities in [36] and a slotted system in [37].
In a single community, D2D pairs can simply reuse the RBs
occupied by the cellular users that are in the same community.
While in the scenario of cooperative communities, D2D pairs
can reuse the RBs of the cellular users that are in the com-
munity coalition, namely the aggregation of the cooperative
communities. Due to the human mobility in a slotted system,
a D2D link can be considered for resource allocation only
when the two users encounter and the contact time is long
enough to complete a meaningful transmission. Focus on
different methods, the allocation of RBs to D2D pairs was
solved using the coalitional graph game in [14], matching
game in [32], two-step coalitional game in [36] and other
maximization games in [33]–[37] with different objective
functions. Resource allocation problem can be modeled as
a two-sided matching problem using matching theory. Such
that the problem is formulated as a matching game in which
D2D pairs and RBs rank one another based on the utility func-
tions that consider both physical and social metrics in [32].
Also, matching theory has been utilized to solve resource
allocation problems considering two-dimensional matching
with mutual preferences in D2D communications [24], [38],
heterogeneous cellular networks [19], [21], cognitive
radios [20], and etc.

However, the previous works have not employed
social information to solve the joint peer discovery
and resource allocation problem, which actually involves
a three-dimensional matching among D2D transmitters,
D2D receivers and RBs in the content delivery process.

III. SYSTEM MODEL
We consider a cellular network with one BS and multiple
users involving traditional cellular user equipments (CUEs)
and potential D2D pairs. Each user can receive data from
either the BS, or another user through potential D2D links.
In this paper, the mode selection problem is left out of con-
sideration, and thus we assume that there exist some users
satisfying the physical requirement of D2D, such as the con-
straint of transmission distance. Once it is found that two
users can be matched to form a D2D pair, the content holder
transmits signals to the requester. Here, we focus on two key
problems: 1) How to match the content transmitter (TX) with
the receiver (RX) so that the RX would be satisfied with
the received content; 2) How to design an efficient resource
allocation scheme for D2D pairs to maximize the system
performance.

An illustration of social-aware D2D underlay network is
shown in Fig. 1. The architecture can be divided into two
layers consisting of social layer and physical layer. In the
social layer, users’ behaviors in social network reflect their
real social connections, which can be obtained from social
platforms, such as Microblog, Facebook, Twitter, etc. Thus,
we can derive the real close degree of user relationships by
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FIGURE 1. System model of social network-based content delivery in D2D
underlay cellular networks.

exploring their behaviors in such platforms. In the physical
layer, the establishment of D2D links are mainly determined
by transmission distance between two mobile nodes, namely
smart terminals, such as smartphones and tablets. For each
user in the social layer, there exists a corresponding terminal
in the physical layer. To achieve successful message push-
ing or content sharing through D2D links, both the social
relations and the physical locations need to be taken into
account.

In general, if two users have a stronger social relationship,
the probability of establishing direct link between themwould
be higher, which is because their content preferences are
more similar than that of users with weak social connections.
Meanwhile, a better channel quality between users promotes
an establishment of D2D link. In this section, we introduce
the system model of social-aware D2D underlay network.
The physical transmission model is first described, and then,
the social relationship between users is quantified.

A. PHYSICAL LAYER MODEL
In the system, we assume that D2D links share uplink (UL)
resource blocks (RBs) occupied by cellular users, and for
simplicity, one RB is allocated to one CUE and can be
reused by at most one D2D pair. Furthermore, we assume
that there are N D2D TXs (content providers) and N D2D
RXs, which are denoted by the set NT={1, · · · , i, · · · ,N }
and NR={1, · · · , j, · · · ,N }, respectively. K RBs and the
corresponding cellular users are denoted by the set
NK={N1, · · · ,Nk , · · · ,NK } and K={1, 2, · · · , k, · · · ,K },
respectively. For the channel model, we use the Rayleigh
fading to model the small-scale fading, and employ the free
space propagation path-loss to model the large-scale fading.
The received power of D2D link between transmitter i ∈ NT
and receiver j ∈ NR, and the received power of cellular link

between CUE k ∈ K and the BS, can be expressed as

Pr,j = PDi h
2
ij = PDi d

−α
ij h20,ij, (1)

Pr,k = PCk h
2
k = PCk d

−α
k h20,k , (2)

where PDi and PCk are the transmit power of D2D TX i and
CUE k , respectively. hij and hk denote the channel response
of the D2D link and the cellular link. dij is the transmission
distance between TX i and RX j while dk represents the
transmission distance between CUE k and the BS. α is the
path-loss exponent corresponding to the large-scale fading
of the transmission channel, and h0,ij, h0,k are the Rayleigh
channel coefficient, which obeys the complex Gaussian
distribution CN (0, 1).

As a result of uplink spectrum reusing, both D2D receivers
and the BS suffer from co-channel interference. When D2D
pair Dij that composed of TX i ∈ NT and RX j ∈ NR reuses
the uplink RB Nk ∈ NK , RX j receives interference from
CUE k ∈ K, and the BS is exposed to interference from
D2D TX i. The signal to interference plus noise ratio (SINR)
of user j on RB Nk and the SINR of BS are

γDij,k =
PDi h

2
ij

PCk h
2
kj + N0

=
PDi d

−α
ij h20,ij

PCk d
−α
kj h

2
0,kj + N0

, (3)

γk,i =
PCk h

2
k

PDi h
2
iB + N0

=
PCk d

−α
k h20,k

PDi d
−α
iB h20,iB + N0

. (4)

Here, hkj and hiB are the channel responses of the interference
links between CUE k and D2D RX j, between D2D TX i
and the BS, respectively. N0 is the one-sided power spectral
density of the additive white Gaussian noise (AWGN) at the
receivers. Based on the above expressions, the channel rate
of D2D pair Dij reusing RB Nk and the rate of cellular link
between k and the BS are obtained by

rDij,k = log2

(
1+

PDi h
2
ij

PCk h
2
kj + N0

)
, (5)

rk,i = log2

(
1+

PCk h
2
k

PDi h
2
iB + N0

)
. (6)

B. SOCIAL LAYER MODEL
In social network, users’ behaviors reflect the close degree
of their relationships. Therefore, it is extremely important to
analyze users’ social behaviors during the process of social
layer modeling. However, it is hard to find an appropriate
model to describe the properties of social behaviors due
to their uncontrollability and uncertainty. Thus, we utilize
the probability of selecting similar contents to represent the
similarity of users’ behaviors, which determines the intensity
of their social relationships. Bayesian model is an efficient
model that apply Probability and Statistics into complex area
to handle the uncertainty reasoning. Integrating the prior
information and sample information, it is easy to obtain the
posterior probability distribution. It means that the system
can obtain the probability distributions of users’ content
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selections by integrating the history records collected from
different social network platforms using the Bayesian tech-
nique [39]–[41]. After that, the intensity of social relation-
ship, i.e., the consistency degree of preferences on similar
contents, can be quantified.

Statistical modeling is a useful tool which models
the process as a stochastic variable with a correlative
probability density function (pdf) in a feature space. A par-
ticular statistical distribution, which is supposed to approxi-
mate the practical distribution with the parameters estimated
from the sample, is used to represent the pdf parametrically.
In this process, we have to find an appropriate model that
approximates the actual distribution to estimate the associated
parameters. However, Bayesian nonparametric models can
estimate the pdf directly from the samples without making
any assumptions for the underlaying distribution so as to
avoid the parameter estimation process and the accuracy of
the estimation would be improved as more data are observed.
Dirichlet processes [42], [43], which are a family of stochastic
processes, are often used in Bayesian nonparametric statis-
tics since the prior and posterior distributions in Bayesian
nonparametric models are stochastic processes rather than
parametric distributions. In the following paragraph, We will
introduce the theoretical basis and the process to build the
social relationship among users in details.

1) THEORETICAL BASIS
Dirichlet distribution, the infinite-dimensional generalization
of which is Dirichlet process, is a multivariate generalization
of the beta distribution. Based on the theoretical meaning of
the beta distribution, we assume that Yf has been observed
ςf − 1 times, f = 1, 2, · · · ,F . yf can be viewed as the
probability of Yf . Then the Dirichlet distribution of order
F ≥ 2 with parameters ς1, · · · , ςF > 0 has a pdf with
respect to Lebesgue measure on the Euclidean space RF−1

that obtained by

Dir(ς1, · · · , ςF )

= f (y1, · · · , yF−1; ς1, · · · , ςF ) =
1

B(ς )

F∏
f=1

y
ςf−1
f . (7)

For all y1, · · · , yF−1 > 0, they satisfy y1 + y2 + · · · +
yF−1 < 1 while yF is an abbreviation for 1−y1−· · ·−yF−1.
The density is zero outside this open (F − 1) dimensional
simplex. The normalizing constant B(ς ) can be expressed
according to the gamma function as it is the multivariate beta
function:

B(ς ) =

∏F
f=1 0(ςf )

0(6F
f=1ςf )

, ς = (ς1, · · · , ςF ). (8)

We define ς0 = 6F
f=1ςf . The beta distributions, which are

the marginal distributions of the Dirichlet distribution, are
given by

yf ∼ Beta(ςf , ς0 − ςf ). (9)

Then, for the Dirichlet process (DP) over a set 2, we intro-
duce a base distribution H and a concentration parameter α,
which is a positive real number. We denote that the random
distribution X is Dirichlet process distributed with H and α,
denoted as X ∼ DP(α,H ), if for every finite measurable
partition G1, · · · ,GU of 2, we have

(X (G1), · · · ,X (GU )) ∼ Dir(αH (G1), · · · , αH (GU )). (10)

The base distribution H is basically the mean of the DP and
the parameter α can be viewed as an inverse variance, which
means that for any measurable partition G ⊂ 2, E[X (G)] =
H (G), V [X (G)] = H (G)(1 − H (G))/(α + 1). We regard α
as the strength parameter corresponding to the strength of the
prior when utilizing the DP as a prior information in Bayesian
nonparametric models. The variance would decrease with
α growing, and thus, the DP would concentrate more on the
mean.

Let X ∼ DP(α,H ). Since X is a random distribution
over2, we can draw the independent samples in turn from X ,
which are written as a sequence χ1, · · · , χn and we note that
the values of χs are in 2. Let nu = #{s : χs ∈ Gu} be the
number of the observed values in Gu, u = 1, · · · ,U . Based
on the conjugacy between the Dirichlet and multinomial dis-
tributions, we have:

(X (G1), · · · ,X (GU )) | χ1, · · · , χn
∼ Dir(αH (G1)+ n1, · · · , αH (GU )+ nU ). (11)

The above is true for all finite measurable partitions, thus
the posterior distribution over X must be a DP and can be
expressed as

X | χ1, · · · , χn ∼ DP(α + n,
α

α + n
H +

n
α + n

6n
s=1ωχs

n
).

(12)

ωs is the point mass located at χs and nu = 6n
s=1ωs(Gu).

We can see that the posterior DP update α as α + n and
update H as

αH+6n
s=1ωχs

α+n . The posterior base distribution is
a weighted average between the prior base distribution H ,
whose weight is proportional to α, and the empirical distribu-
tion

6n
s=1ωχs
n , whose weight is proportional to the number of

observations n. Thus, we can utilize α as the strength associ-
ated with the prior base distribution. When α → 0, the prior
distribution H becomes meaningless such that the posterior
distribution is just obtained from the empirical distribution.
Namely that with the number of observations increasing, the
posterior is mainly determined by the empirical distribution,
which closely approximates the real underlying distribution.

We consider the predictive distribution of χn+1 when given
the sequence χ1, · · · , χn. Since χn+1 | X , χ1, · · · , χn ∼ X ,
for a measurable G ⊂ 2, we have

P(χn+1 ∈ G | χ1, · · · , χn) = E[X (G) | χ1, · · · , χn]

=
1

α + n
(αH (G)+6n

s=1ωχs (G)), (13)
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in which the last step follows from X ’s posterior base distri-
bution when given the prior n observations. With X marginal-
ized out,

χn+1 | χ1, · · · , χn ∼
1

α + n
(αH +6n

s=1ωχs ). (14)

Hence, the posterior base distribution is also the predictive
distribution of χn+1 when given χ1, · · · , χn. However, the
distribution drawn form the DP is discrete, thus we use
kernel [44]–[46] to smooth out the distribution to obtain
its density distribution. That is, when X ∼ DP(α,H ) and
f (x | φ) indexed by φ is used as a family of densities
(kernels), we can smooth out the distribution drawn from the
DP and get the nonparametric density of x as follows:

p(x) =
∫
f (x | φ)X (φ)dφ. (15)

2) ESTIMATION OF PROBABILITY DISTRIBUTION
We assume that the users in our system are denoted by the
set C . For a certain user c ∈ C , q observation sets which
involve the probabilities of selecting the similar contents
can be obtained from social network platforms in several
time periods. And we denote the q observation sets as the
set Q. At a certain time, for observation set Q ∈ Q, user c
selects the similar contents with the probability pQc. Hence,
the value of pQc is a random variable with a pdf PQc(pQc)
over the state space 2 = [0, 1]. In each observation set
Q ∈ Q, ZQc observations are performed, which are denoted
by ZQc={p1Qc, p

2
Qc, · · · , p

ZQc
Qc }, ∀c ∈ C , Q ∈ Q. Employing

the DP, the predictive pdf of the next observation p
ZQc+1
Qc can

be obtained by using the following formula based on the
observation set ZQc:

PQc(p
ZQc+1
Qc ∈ E | p1Qc, p

2
Qc, · · · , p

ZQc
Qc )

=
1

$ + ZQc
($G(E)+6ZQc

z=1ωpzQc
(E)), (16)

where E is a measurable partition of 2. G is the base distri-
bution as the prior and$ is viewed as the strength associated
with the prior base distribution for the estimation of the poste-
rior. With the DPmarginalized out, the predictive distribution
of the next observation p

ZQc+1
Qc conditioned on the observation

set ZQc can be expressed as:

p
ZQc+1
Qc |p1Qc, p

2
Qc, · · · , p

ZQc
Qc ∼

1
$ + ZQc

($G+6
ZQc
z=1ωpzQc

).

(17)

When the base distributionG and the concentration parameter
$ of the DP are unknown, we express the predictive pdf of
the next observation p

ZQc+1
Qc as follows based on (16),

PQc(p
ZQc+1
Qc ∈ E | p1Qc, p

2
Qc, · · · , p

ZQc
Qc ) =

6
ZQc
z=1ωpzQc

(E)

ZQc
.

(18)

ωpzQc
is the point mass located at pzQc and ωpzQc (E) = 1 when

pzQc ∈ E ; ωpzQc (E) = 0 otherwise. Then we use kernel to
smooth out the distribution drawn from the DP to get the
continuous estimate P̃Qc of PQc. However, as the number of
the available observations ZQc is small, we consider another
approach to improve the estimates.

For user c ∈ C , given the subset W ⊆ Q and the
observation set Q ∈ Q, we denote that the rest observation
sets in subset W except Q as WQc = W \ {Q}, which
represents the priors. Then, we can integrate the observation
set Q with the set of validated priorsWQc to derive the pdf of
any new observation p

ZQc+1
Qc using the following expression:

PWQc = ϕQP̃Qc(E)+
∑

L∈WQc

ϕL P̃Lc(E). (19)

The contribution of the observation set Q for the generation
of the pdf PWQc is quantified by ϕQ while that of L ∈ WQc is
quantified by ϕL . In practice, we set the weights ϕQ and ϕL
to be proportional to the number of observations, which are
expressed as:

ϕQ =
ZQc∑

V∈W ZVc
, ϕL =

ZLc∑
V∈W ZVc

, ∀L ∈WQc. (20)

With the consideration of the equal availability of observation
sets, we define that Pc = PWQc.

3) INTENSITY OF SOCIAL RELATIONSHIP
Due to the fact that the social relationship close degree of
any two users is measured by the similarity of their selection
on contents, the probability corresponding to the selection of
similar contents is utilized to derive the normalized correla-
tion that indicates the intensity of the social relationship. For
D2D TX i ∈ NT and RX j ∈ NR, the intensity of their social
relationship can be expressed as:

ρij = (corr(pi, pj)+ 1)/2, (21)

where pi ∼ Pi(p) and pj ∼ Pj(p). Pi and Pj represent the
estimated correlative pdfs. And ρij varies from 0 to 1, namely
ρij ∈ [0, 1].

IV. PROBLEM FORMULATION
The purpose of our work is to achieve content delivery with
high satisfactions of users by employing social-aware D2D
techniques, while at the same time, maximizing the trans-
mission sum rate of D2D links. Hence, we need to consider
an optimization problem involving both the social layer and
the physical layer. Furthermore, we formulate the objective
function as a weighted channel rate, i.e., the rate weighted by
the intensity of social relationship. The weighted rate of the
link between D2D TX i and RX jwhen reusing RB Nk can be
obtained by

RDij,k = I(ρij)ρijrDij,k . (22)

In practice, TX i is approved to share contents with RX j only
when the intensity of social relationship between them is no
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less than a threshold δ, that is to say, it is potential for i and
j to form a D2D link when ρij ≥ δ. Hence, we define I(ρij)
as an indicator function of ρij that I(ρij) = 1 when ρij ≥ δ;
I(ρij) = 0 otherwise.

To maximize the weighted sum rate of all the D2D pairs,
we need to design an efficient mechanism for pairing the
content provider (TX) with the content consumer (RX) and
allocating the spectrum resource to the transmission link.
In other word, it is an issue of joint peer discovery and
resource allocation for D2D communication. To avoid exces-
sive interference to cellular links, power control for D2D TX
should be also taken into account. We use a set of binary vari-
ables X = {xi,j,k} to formulate the user pairing and resource
allocation. xi,j,k = 1 denotes that a D2D link is established
between TX i and RX j reusing RB Nk . Accordingly, we
jointly design the binary decision variables {xi,j,k} and the
continuous power variables PDi to optimize the system perfor-
mance. A mixed integer programming problem is formulated
as

max
{X ,PDi }

K∑
k=1

N∑
j=1

N∑
i=1

xi,j,kRDij,k

s.t. C1 : 0 ≤ PDi ≤ Pmax ,

C2 : xi,j,k ∈ {0, 1}, ∀i ∈ NT , j ∈ NR, Nk ∈ NK ,

C3 :
∑

j∈NR,Nk∈NK

xi,j,k ≤ 1, ∀i ∈ NT ,∑
i∈NT ,Nk∈NK

xi,j,k ≤ 1, ∀j ∈ NR,∑
i∈NT ,j∈NR

xi,j,k ≤ 1, ∀k ∈ NK ,

C4 : rDij,k ≥ r
d
min, ∀i ∈ NT , j ∈ NR, Nk ∈ NK ,

C5 : rk,i ≥ rcmin, ∀i ∈ NT , j ∈ NR, Nk ∈ NK .

(23)

Here, constraint C1 gives the transmit power range of D2D
TXs, which ensures the power would not exceed the max-
imum Pmax . The three inequalities in C3 ensures that each
TX can only be paired with at most one RX and vice versa,
while each RB can only be assigned to at most one D2D pair
and vice versa. C4 and C5 guarantee the QoS requirements
of D2D links and cellular links, respectively.

V. SOCIAL NETWORK-BASED CONTENT DELIVERY
MATCHING ALGORITHM FOR D2D UNDERLAY
NETWORKS
In this section, we investigate a three-dimensional
matching approach to solve the mixed integer programming
problem (23). First, we introduce some concepts of matching
theory which are the basis of our algorithm. Then, we give
the establishment process of the preference list, which is
the critical component of matching model. The preference
list is mainly based on maximizing the weighted chan-
nel rate, which is coupled with a power control problem.
Afterwards we introduce a pricing strategy to simplify the

three-dimensional matching problem, and propose an itera-
tive algorithm to derive a stable matching among D2D TXs,
D2D RXs and RBs. Finally, the properties of the proposed
matching approach, including convergence, stability, opti-
mality and complexity, are analyzed in details.

A. MATCHING CONCEPTS
In a formal matching model, there are two finite and
disjoint sets denoted by M={m1,m2, · · · ,mi, · · · ,mn} and
W={w1,w2, · · · ,wj, · · · ,wp}, respectively. Each mi ∈ M
has its own preferences over the set W and the same as
wj ∈ W over M . The individual preferences represent
the priorities of its selection among different alternatives.
If mi prefers w1 to w2, we express it as w1 >mi w2. w1 ≥mi
w2 represents that w1 is liked at least as well as w2 by mi.
It is rational for the preferences of each individual to have
properties involving complete ordering and transitive. Com-
plete ordering means that each individual will never confront
with an indeterminable choice, i.e., any two alternatives can
be compared for an individual to get a preferred one. The
property of transitive represents that if w1 is liked at least as
well as w2 and w2 is liked at least as well as w3 for mi, thus
w1 is liked at least as well as w3 formi. Given the preferences
of the individuals involved, we define that:
Definition 1:Amatchingµ is a one-to-one correspondence

from the set M ∪ W onto itself, denoted by µ: M ∪ W →
M ∪W , such that µ(m) = w means that m and w are paired
andµ(m) = mmeans thatm is not matched. We refer toµ(m)
as the mate of m.
We consider a matching µ where individuals m and w are

not matched with each other but prefer each other to their
mates at µ, namely w >m µ(m) andm >w µ(w). Thus,m and
w form a blocking pair for matching µ, namely that (m,w)
blocks the matching. We say that matching µ is not stable
becausem andwwould prefer to disrupt thematching in order
to pair with each other.
Definition 2: A matching µ is stable if there is not any

blocking pair.
In our system, we attempt to solve the problem (23) by

employing the three-dimensional matching that pairs D2D
TXs, D2D RXs and RBs with each other. For its high com-
plexity, we transform it to a two-sided matching. First, we
define a RX-RB unit which is composed of one RX and
one RB. Due to the assumption that there is one CUE on
each RB, we then rewrite the RX-RB unit as RX-CUE (RC)
unit. Owing to the existence of N RXs and K CUEs, there are
N ×K different RC units, denoted byRC = {RCj,k}j=N ,k=Kj=1,k=1 .
Thus, the three-dimensional matching problem can be sim-
plified to a two-sided matching with N TXs on one side and
N × K RC units on the other side. We have the definition as
below:
Definition 3:Amatching8 is a one-to-one correspondence

NT∪RC → NT∪RC∪{∅} and such that8(i) = RCj,k means
that TX i is matched with the unit RCj,k consisting of RX j
and CUE k .
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Because of the constraint that the matching among TXs,
RXs and RBs is a three-dimensional one-to-one correspon-
dence, when 8(i) = RCj,k , for ∀i

′

∈ NT \ {i}, 8(i
′

) =
{RC \ {RCj,k}} ∪ {∅}. The matching8 is stable when there is
not any blocking pair, that is to say, there is no pair consisting
of TX i and RC unit RCj,k that is not matched with each other
but prefer each other to be their mates under matching 8.

B. PREFERENCE ESTABLISHMENT
In a matching process, individuals on one side propose to
establish pairs with ones on the other side based on their
own preference lists. Since the three-dimensional matching
problem is transformed to a two-sided matching problem
with N TXs on one side and NK RC units on the other
side, the essential issue is to find the preference lists of
TXs on RC units. For TX i, when paired with different RC
units, it can achieve different channel rates and different
content satisfactions of RX, due to the different physical
and social layer information. Therefore, the preference of
TX on RC units can be formulated as the weighted chan-
nel rate (22) with the optimization of power variables PDi .
In the process of preference lists establishment, we need to
temporarily pair each TX (∀i ∈ NT ) with each RC units

({RCj,k}
j=N ,k=K
j=1,k=1 ), and thus to obtain the weighted channel

rate corresponding to each three-dimensional combination
TX-RX-CUE with the transmit power of TX being restricted
to meet the QoS of CUE. Let Ti = {t1, t2, · · · , tN×K }
denote the achieved maximum weighted rate of TX i
paired with each RC units in descending order, and Oi =
{o1, o2, · · · , oN×K } denote the corresponding RC units,
which can be defined as the preference list of TX i. Then,
we define T ={T1,T2, · · · ,Ti, · · · ,TN } as the weighted rate
set of all the TX-RC pairs, O={O1,O2, · · · ,Oi, · · · ,ON } as
the preference list set of TX i,∀i ∈ NT onRC corresponding
to T . To obtain the maximum weighted channel rate for each
TX-RC pair, we formulate the following problem:

max
{PDi }

RDij,k

s.t. C1 : 0 ≤ PDi ≤ Pmax
C2 : rDij,k ≥ r

d
min,

C3 : rk,i ≥ rcmin. (24)

Thus, the preference list of D2D TX i on RC units RCj,k can
be derived by solving problem (24), and a detailed prefer-
ence establishment algorithm is summarized in Algorithm 1,
which constitutes the basis of the matching algorithm.
An illustration of the preference lists establishment and a
stable matching that we expected is shown in Fig. 2.

C. THREE-DIMENSIONAL MATCHING ALGORITHM
Based on the established preference lists, TXs could propose
towards the RC units in their own first order. However, there
exists a situation that more than one TX propose towards the
same RC unit. Here, we propose a pricing strategy to decide

Algorithm 1 Preference Establishment Algorithm
1: Input: NT , NR, NK , K, ρij, rmin.
2: Output: {PDi }, O, T .
3: for i ∈ NT do
4: for j ∈ NR do
5: for k ∈ K do
6: Calculate the maximum weighted rate RDij,k by

using (24) with the optimization of transmit
power PDi .

7: end for
8: end for
9: end for
10: for i ∈ NT do
11: Obtain Ti by sorting the achieved maximum weighted

rates RDij,k , ∀j ∈ NR, k ∈ K in descending order.
Establish the preference list Oi of TX i on RC units by
sorting each RC unit RC j,k in descending order based
on Ti.

12: end for

FIGURE 2. Graphical expressions of preference establishment and a
stable three-dimensional matching.

the winner. The proposed matching algorithm is described
briefly as follows.
• First of all, we introduce the concept of price for each
RC unit which represents the matching cost for each TX.
These prices are set to be zero at the beginning and
they are virtual money without any physical signifi-
cance. Let CR={CR1, · · · ,CRj, · · · ,CRN }, ∀j ∈ NR
and CK={CK1, · · · ,CKk , · · · ,CKK }, ∀k ∈ K denote
the price sets of RXs and CUEs, respectively. The prices
of RC units are denoted by C={Cj,k}j=N ,k=Kj=1,k=1 where the
price Cj,k of RC j,k is the sum of RX j’s price CRj and
CUE k’s price CKk .

• The proposed algorithm proceeds iteratively. In each
iteration, any TX i that has not been matched with
any RC unit would propose to its most preferred RC
unit in Oi based on its payoff, which is equal to the
achieved maximum weighted rate minus the matching
cost, i.e., the current price of the RC unit. If any RX or
CUE receives request from only one TX, the requested
RC units would be directly matched with the TXs that
initiate requests, and thus to form a stable matching.

• Otherwise, the conflicting elements set consisting of
RXs and CUEs that have received requests from more
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than one TX is denoted by �. Then, the elements in �
would raise their prices with the price step s, which is
determined by the minimum of the differences between
any two adjacent values in the ordered weighted rate
set. Accordingly, each TX that has proposed updates its
preference list and renews its request. The process of
rising prices continues until there is only one request
received for the RC units.

• The algorithm would end if there exists no new request
from TXs, i.e., all the TXs are matched when K ≥ N or
all the CUEs are matched when N ≥ K .

The above steps can lead to a stable matching that is
proved in subsection V-D.We summarize the proposed three-
dimensional matching algorithm in Algorithm 2.

In D2D underlay cellular network, the BS is the controller
of resource management and link establishment, and thus the
global channel state information (CSI) should be available at
the BS for the matching approach. However, it is unnecessary
for D2D users to obtain the global CSI but just to feedback
detected CSI by receiving detection signals at each terminal
to the BS.

D. PROPERTIES OF THE THREE-DIMENSIONAL
MATCHING ALGORITHM
In this subsection, the properties involving convergence,
stability, optimality, and complexity of the proposed three-
dimensional matching algorithm are analyzed in details.

1) CONVERGENCE
We define the achieved maximum weighted rate RDij,k as
valuation vi,j,k of RCj,k for TX i, and the price Cj,k of RCj,k
as the matching cost for TXs. Then the payoff of TX i being
matched with RCj,k can be written as vi,j,k−Cj,k . In addition,
it is denoted that there exists contention among TXswhen any
RX or CUE receives requests from more than one TX. At the
start of each contention, the prices of RXs and CUEs are set to
be zero and they would gradually increase by the step size s in
the process of the contention. Any i ∈ NT that has proposed
to the conflicting elements would change its choice with the
increase of the prices, which is based on its current maximum
payoff:

(j, k) = arg max
j∈NR,k∈K

(vi,j,k − Cj,k ) (25)

The matching rules from Algorithm 2 show that the conflict-
ing elements would be assigned to the TX that is the last
one remaining in the request queue with the increase of the
conflicting elements’ prices. Assuming that TX i is matched
with the conflicting RC unit RCj,k , the contention must come
to an end within vi,j,k/s steps. Hence, we can conclude the
matching process within finite iterations.

2) STABILITY
Theorem 1: The proposed Algorithm 2 can converge to a two-
sided stable matching 8 in finite iterations.

Proof: According to Definition 2, the matching 8 is
said to be stable if there exists no blocking pair. In order to

Algorithm 2 The Three-Dimensional Matching Algorithm
1: Input: NT , NR, K, O, T , CR, CK, C, �, s.
2: Output: 8, {xi,j,k}.
3: Initialization:
4: Every TX i ∈ NT builds its preference list on RC by

using Algorithm 1.
5: Set 8=∅, �=∅, s=0.1.
6: while ∃8(i) = ∅ do
7: if Oi 6= ∅ then
8: for i ∈ NT do
9: TX i which has not been matched proposes to its

most preferred RC unit in updated Oi.
10: end for
11: Count the amount of RXs and CUEs that have

received requests and put the conflicting elements
that have received more than one request into �.

12: if � = ∅ then
13: Match the RC unit with its requestor TX directly.
14: end if
15: if � 6= ∅ then
16: for RCj,k ∈ RC do
17: if RX j and CUE k receive requests from more

than one TX then
18: RX j and CUE k in � increase their prices

CRj and CKk with the price step s, and then
TXs would update their preference lists and
change their choices on RC units according
to the price Cj,k . After this process, RX j
and CUE k would be matched with the last
remaining TX i that proposes to them, which
is denoted by 8(i) = RCj,k .

19: end if
20: end for
21: end if
22: Update: Update O and T by deleting the RC units

involving the matched RX j or CUE k and the cor-
responding achieved weighted rate respectively.
Set CR = {0}, CK = {0}, C = {0}.

23: else
24: break
25: end if
26: end while

prove the stability of the proposed matching algorithm, we
first assume that there exists i ∈ NT , j ∈ NR, k ∈ NK
that TX i and RC unit RCj,k are not matched with each other
under matching 8 but prefer to be mutually matched, i.e.,
8(i) 6= RCj,k , and RCj,k >i 8(i), i >RCj,k 8(RCj,k ).

In the matching, since each TX attempts to maximize its
own payoff, the maximization problem for each TX can be
written as maxj∈NR,k∈K (vi,j,k−Cj,k ),∀i ∈ NT . On account of
the assumption that RCj,k >i 8(i), TX i must have proposed
to RC unit RCj,k based on the matching rules. However, con-
sidering the pricing strategy in Algorithm 2, the inexistence
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of8(i) = RCj,k in thematching result represents that the final
payoff for TX i matched with RCj,k is zero, and it has given
up the request to RCj,k during the process of rising prices.
Moreover, the winner in the contention for RCj,k is8(RCj,k ),
i.e., 8(RCj,k ) >RCj,k i. Therefore, the condition i >RCj,k

8(RCj,k ) cannot hold when RCj,k >i 8(i), which means TX
i and RCj,k cannot form a blocking pair. The analysis result
contradicts the assumption. Thus, the matching 8 obtained
from Algorithm 2 is stable.

3) OPTIMALITY
Theorem 2: The content delivery one-to-one matching 8 is
weak Pareto optimal for D2D transmitters on combinations
of D2D receivers and spectrum resources.

Proof: Before the proof, we give the concept of Pareto
improvement: if a change of assignment can improve one’s
payoff and the change can be approved by others, then it is
a Pareto improvement. Moreover, if there exists no Pareto
improvement, the current assignment is said to be weak
Pareto optimal.

First, we assume that there exists a Pareto improvement for
matching 8. We define the improvement for TX i as RCj,k
, thus we have RCj,k >i 8(i). One case is that RCj,k has
not been matched under 8, i.e., 8(RCj,k ) = ∅. It is obvious
that i >RCj,k 8(RCj,k ). That is, TX i and RCj,k prefer to
be matched with each other and form a blocking pair. This
contradicts with Theorem 1 that8 is stable. The other case is
that RCj,k has already been matched with TX i′, which does
not approve i to be matched with RCj,k . Then, the contention
between i and i′ lead to a process of rising prices. The payoff
of i would reduce, and RCj,k >i 8(i) would not hold any
more.

Based on the above cases, we can conclude that there exists
no Pareto improvement, and the matching 8 is weak Pareto
optimal for D2D transmitters.

4) COMPLEXITY
In the process of preference establishment, the computa-
tional complexity for any TX i ∈ NT to obtain the
preferences is O(NK ) since that each TX has to find its
preference value for each RC unit, which is corresponding
to the achieved weighted rate. The computational complex-
ity to derive the preference list by sorting the preference
values for each TX is O(NK log(NK )). In Algorithm 2, the
complexity of each process, in which TXs that have not
been matched propose to their most preferred RC units, is
O(N loop) [47]. N loop is the required number of iterations in
the process of rising prices based on the step size s, i.e.,
during N loop iterations, the assignment of the conflicting
elements are finished when � 6= ∅. We have N loop

= 1
when � = ∅. Then, the computational complexity of the
matching process is O(NN loop) (N ≥ K ) or O(KN loop)
(K ≥ N ).
For the centralized exhaustive search, the total number of

possible matching results is N ! × K !. The complexity of the

algorithm can be written as O(N ! × K !). It is obvious that
the proposed matching algorithm results in a much lower
complexity for sufficient large values of N and K .

TABLE 1. Simulation parameters.

FIGURE 3. A snapshot of user locations for a single cellular network with
K CUEs, N D2D TXs and N D2D RXs (K = 6, N = 6, dmax =50 m, the cell
radius is 200 m and the size of the spot hot is 30 m, respectively).

VI. NUMERICAL RESULTS
In this section, the performance of the proposed itera-
tive matching algorithm and impacts of the social relation-
ships on D2D receivers’ satisfactions are validated through
simulations. The simulation parameters are summarized in
Table 1 [14]. We consider a single cellular network with
a radius of R = 200 m, in which K CUEs are randomly
distributed. N D2D transmitters and N receivers are ran-
domly deployed in a circular hot spot area with the radius
of r = 30 m. Fig. 3 shows a snapshot of UEs’ locations with
K = N = 6. In the circular hot spot area represented by the
blue dotted circle, D2D TXs and RXs that satisfy both the
physical and social requirements of D2D communication can
form a D2D pair to directly exchange contents.

A. CONVERGENCE
The proposed algorithm is compared with two heuristic algo-
rithms, i.e., the exhaustive and random matching algorithms.
In particular, the exhaustive matching algorithmwhich exam-
ines every possible solution to find the optimum one is
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FIGURE 4. Weighted sum rate of D2D pairs vs. number of matching
iterations (N=6).

used to serve as an upper performance benchmark, while
the random matching algorithm is used to serve as a lower
performance benchmark. The convergence of the proposed
matching algorithm is shown in Fig. 4, which represents
the weighted sum rate of D2D pairs versus the match-
ing iterations. In Algorithm 2, we denote that at least one
TX-RX-CUE pair would be formed in each iteration, thus we
can derive that the number of the iterations required for the
proposed algorithm to converge is related with the number of
the TXs, RXs and CUEs. GivenK = 6, we can see that it only
takes 4 and 6 matching iterations for the proposed algorithm
to converge when N = 4 and N = 6, respectively. Moreover,
it can be seen that the performance of matching is quite close
to that of the exhaustive algorithm after the convergence.

FIGURE 5. Weighted sum rate of D2D pairs vs. number of TXs (K=6).

B. WEIGHTED SUM RATE
Fig. 5 shows the weighted sum rate of all D2D pairs versus
the number of TXs, while Fig. 6 shows the weighted sum
rate of all D2D pairs versus the number of CUEs. It is

FIGURE 6. Weighted sum rate of D2D pairs vs. number of CUEs (N=6).

observed that the performance gaps between the proposed
algorithm and the optimum exhaustive matching algorithm
in Fig. 5 and Fig. 6 are small. For instance, in Fig. 5, the
proposed algorithm is able to achieve 94.92% of the opti-
mum performance, and outperforms the random matching
algorithm by as much as 74.89% when N = 5 and K = 6.
In Fig. 6, the corresponding values of the performance com-
pared with the optimum performance and the random perfor-
mance are 93.33% and 74.61%, respectively, when N = 6
and K = 5. On the other hand, the computational complexity
of the proposed matching algorithm is an order of magnitude
lower than that of the exhaustive algorithm. For example,
when N = K = 6, it takes 5.184 × 105 iterations for the
exhaustive matching algorithm to find the optimum solution,
while the proposed algorithm only requires 600 iterations,
which reduces the complexity by nearly a thousand times.
Compared with the exhaustive matching, the proposed algo-
rithm does not need to achieve every possible matching result,
which significantly reduces the computational complexity.

From another perspective, we can find that the weighted
sum rate raises up with both the number of D2D TXs and
the number of CUEs (RBs) increasing. On one hand, when
the amount of RBs is fixed, more D2D pairs contribute to
a higher sum rate of D2D links. On the other hand, as the
amount of RBs increases, the system supports to establish
more D2D links. In Fig. 6, it is obvious that the increment of
weighted sum rate decreases continuously as the number of
RBs increases. The reason is that the probability of accessing
to the most preferred RB for a D2D pair becomes lower as
more D2D pairs access to the network.

C. USER SATISFACTION
Fig. 7 shows the cumulative distribution functions (CDFs)
of the satisfactions for D2D RXs, namely the similarity
of users’ preferences on the content which is reflected by
the intensity of social relationships between the mutually
matched D2D TXs and RXs. To evaluate the impacts of
the social relationships on D2D RXs’ satisfactions, both the
social-aware and social-unaware matching algorithms are
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FIGURE 7. Distribution of content satisfactions for D2D receivers.

compared by varying the threshold of social relationships.
Simulation results show that for the social-unaware algo-
rithm, the proportion of D2D RXs whose satisfaction is
greater than 0.8 is 15%, while the corresponding proportions
achieved by the proposed algorithm are much higher, i.e.,
41%, 47% and 65% for δ = 0.5, δ = 0.6 and δ = 0.7,
respectively. It is noted that when the threshold δ decreases,
the satisfaction performance also becomes worse. The reason
is that it is much easier for D2D TXs and RXs with weak
intensity of social relationship to from a D2D pair when the
threshold is lower, which in turn degrades the satisfaction
performance.

VII. CONCLUSIONS
In this paper, we studied the content delivery problem in
social network-basedD2D communicationswith uplink spec-
trum reusing. Both the social layer and the physical layer
information were exploited in the optimization of the match-
ing among users, contents, and spectrum resources. First,
we modeled the social relationship between two users as
the probability of selecting similar contents, which was esti-
mated by using Bayesian nonparametric models. Then, we
proposed a three-dimensional iterative matching algorithm
to maximize the sum rate of D2D pairs weighted by the
intensity of social relationships while guaranteeing the qual-
ity of service (QoS) requirements of both cellular and D2D
links simultaneously. Finally, the proposed algorithm was
validated through simulations and compared with exhaustive
optimal and random matching algorithms. Simulation results
demonstrated that the performance of the proposed iterative
matching algorithm is much better than that of the random
matching algorithm, and is very close to that of the optimum
exhaustive matching but with a much lower computational
complexity. Furthermore, the content satisfactions of D2D
receivers are dramatically improved if social layer informa-
tion is considered during the matching process. In future
works, we will focus on the design of social-aware resource
allocation algorithms for D2D communication by incorporat-
ing distributed caching schemes.
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