
SPECIAL SECTION ON INDUSTRY 4.0

Received August 31, 2016, accepted September 27, 2016, date of publication October 13, 2016, date of current version March 28, 2017.

Digital Object Identifier 10.1109/ACCESS.2016.2616366

Real-Time Near-Optimal Scheduling With Rolling
Horizon for Automatic Manufacturing Cell
CHIH-HUA HSU1 AND HAW-CHING YANG2
1Department of Information Management, Chang Jung Christian University, Tainan City 711, Taiwan
2Graduate Institute of Electrical Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung 811, Taiwan

Corresponding author: C.-H. Hsu (chhsu@mail.cjcu.edu.tw)

ABSTRACT This paper presents position-based optimization methods to schedule the production of
automatic cells of a wheel manufacturing factory. Real-time schedule is challengingwhen a cell is interrupted
by various order changes. Given a sequence of orders to be scheduled, it is sorted based on an earliest due
day policy, a mixed integer linear programming model is formulated, and then rolling-horizon optimization
methods are used to timely find the near-optimal schedule by minimizing earliness and tardiness penalties
with setup times of a manufacturing cell. In addition, an original schedule can be partial rescheduled with the
preset order sequence by using the linear programming model. Experimental results show that the proposed
method enables a wheel manufacturing cell to reschedule its three to five daily orders within the cycle time
of a rim when there exist order changes, e.g., rush orders and customized orders. Hence, these proposed
methods are promising to promptly derive the near-optimal schedule for satisfying the objective of mass
customization for industry 4.0.

INDEX TERMS Earliness and tardiness cost, mixed integer linear programming, real-time scheduling,
rolling horizon optimization, setup times, single machine scheduling.

I. INTRODUCTION
Through the concept of smart factory, Industry 4.0 is
to achieve the goals of greater customization in mass
production by facilitating more flexibility and end-to-end
process automation of manufacturing systems. Mass cus-
tomization is the method of ‘‘effectively postponing the
task of differentiating a product for a specific customer
until the latest possible point in the supply network [1].’’
To gain greater business agility, the manufacturing sys-
tem needs to have adequate capability of dealing with
increasing customizationwhile accommodating various order
changes.

In mass production, a centralized system such as MRP
or EPR system is in charge of weekly or daily schedule of
orders in the factory level. Scheduling determines the optimal
sequence of the operations to meet the customer demands
while achieves certain performance objectives [2], [3]. How-
ever, various issues, e.g., rush orders, customized orders, and
machine failures, could interrupt shop floor production of the
cell or line levels of a factory. There exists urgency for a cell to
perform real-time scheduling and achieve the goal of rapidly
responsive manufacturing.

For single machine scheduling with earliness and tardi-
ness costs without setup times, Baker and Scudder [4] gave

a general review and Garey et al. [5] proved that the optimal
solution is NP-complete. The papers [6] and [7] compared
different mixed integer linear programming (MILP) formula-
tions in terms of computational efficiency with four different
objective functions.

Allahverdi [8] presented a general survey on schedul-
ing problem for different machine configurations, types
of setup times, and performance indexes. In roughly
500 papers from the mid-2006 to the end of 2014 within that
paper, optimization-based approach and metaheuristics are
two main methodologies to solve the problems.

For one machine problems with setup times,
Nogueira et al. [9] detailed six MILP formulations and eval-
uated their computational times with weighted completion
time or tardiness costs. As the problem size increases, the
computational times increases dramatically whichmake them
unsuitable for real-time applications.

To alleviate the computational burden of solving the whole
problem, Ovacik and Uzsoy [10] used rolling horizon and
branch and bound algorithm to solve the problem with
100 jobs in 3 minutes of CPU time with the objective of
minimizing the maximum lateness. Papers [11] and [12]
considered applications in parallel machines and job shop
manufacturing system.

VOLUME 5, 2017
2169-3536 
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3369



C.-H. Hsu, H.-C. Yang: Real-Time Near-Optimal Scheduling With Rolling Horizon

Based on five dimensions of problem categories over
200 selected papers, Chand et al. [13] surveyed the appli-
cations of rolling horizons in operations management up to
the year 2012. Imposed by the hard constraints or limits
in process engineering, rolling horizon, or receding horizon
control, is a popular strategy to optimize the process while
maintains feasibility and please refer to the book by Kwon
and Han [14] for detail applications in control engineering.

Another popular approach to solve the scheduling problem
is to use metaheuristics as shown in [15] and [16] for prob-
lems with sizes up to 100 orders. For further results, please
refer to [17]–[19] and the references therein.

This research considers the scheduling of an automatic cell
of a wheel manufacturing factory with sequence-dependent
family setup times and total weighted earliness and tardi-
ness costs. By combining the EDD-sorted policy and rolling-
horizon optimization, the proposed method could be used for
timely schedule production with rush/customized orders and
partial preset job sequence.

This paper is organized as follows. Section 2 describes the
research problem. Different optimization strategies are for-
mulated in Section 3. Case study are explained and compared
in Section 4. Finally, Section 5 concludes the study.

II. PROBLEM DESCRIPTION
Consider the problem of daily schedule of orders for the shop
floor. Each customer order of aluminum rims with different
size and shape has a due date, and its order size is around
1000 to 5000 rims. In a typical shop floor of wheel manu-
facturing factory, there are several parallel production cells
in which have similar machine configurations. For simplified
illustration, Fig. 1 shows the structure of an automatic manu-
facturing cell.

FIGURE 1. A rim is fed into the cell for manufacturing and finished after
three operations.

Raw aluminum rims are fed into the system through the
input end by the conveyer as shown in Fig. 1. After a rim

is placed into the chamber of the vertical lathe (OP1) by
the robot, the rim width and bore size of the inner side of
a rim are manufactured as shown in Fig. 2 (B). The drilling
machine (OP2) is to drill the five holes on the rim as shown
in Fig. 2 (A). The horizontal lathe (OP3) is to trim the outer
side of a rim. The rims are transferred among the machines
by a robot and a new rim will be moved into the position
when the previous rim is finished and transported to the next
stage, i.e., there is no inventory between machines. After the
operations, the rim is moved out of the chamber of OP3 by
the robot and put on the conveyer at the output end which is
ready for process at the next stage.

FIGURE 2. Specifications of a rim. (A) Outer side. (B) Cross section.

Before cutting, the right size of the fixtures for holding the
rim firmly should be in place. If the sizes of two consecutive
orders are different, the setup time for tuning and drilling
machines is needed. The robot needs to use different types of
fixtures for different sizes of the rims with setup time which
is smaller than the machine fixture setup times. This extra
setup time for the robot could be ignored because it changes
simultaneously with machine fixtures.

Different size and shape of an aluminum rim needs dif-
ferent cutting tool for the tuning and drilling machines with
setup times. Also, the tools need to be changed after cutting
a certain number of rims with similar setup time. To simplify
the analysis, these two setup times are combined into one
setup after cutting a batch of rims. It is also assumed that
each order is an integer multiple of the basic batch to make
the model tractable. There are possible machine breakdowns
due to ashes and cooling systems, etc., which are ignored for
simpler analysis.

III. OPTIMIZATION
Given a sequence of n jobs with rim size and due days {dj}
released at the same time, the objective is to find an optimal
sequence which minimizes a certain performance index, e.g.,
the total weighted tardiness and earliness costs.

It is beneficial to start the processing just-in-time to min-
imize the cost, so the EDD policy is used as a starting point
in which the sequence is sorted according to its due days and
rim sizes. A similar idea was used in [11] to assign jobs for
parallel machines. After the jobs are sorted, the sequence is
used as an input to the following optimization module.

3370 VOLUME 5, 2017



C.-H. Hsu, H.-C. Yang: Real-Time Near-Optimal Scheduling With Rolling Horizon

A. MILP
Baker and Keller [6] classified the main decision variables
of an MILP into sequence position by Wagner [20], time
indexing by Bowman [21], and precedence by Manne [22].
We follow closely the formulation of Wagner as in the paper
by Nogueira et al. [9]. The key decision variables αjk assign
a set J of n jobs to a set K of n positions.
The objective function is to minimize the weighted

tardiness Tj and earliness Ej with overdue penalty aj and
finished-part inventory cost bj, respectively. Asmachines age,
accuracy of machines might differ and its fixed purchase
cost is depreciated. These effects could be captured in the
coefficients of the objective functions.

min
>

n∑
i=1

ajTj + bjEj (1)

subject to the constraints∑
k∈K

αjk = 1, ∀j ∈ J , (2)∑
j∈J

αjk = 1, ∀k ∈ K , (3)

βk−1ij ≥ 1−
(
2− αi(k−1) − αj(k)

)
,

∀i, j ∈ J , i 6= j, k ∈ {2, . . . , n}, (4)

yk ≥ yk−1 +
∑
j∈J

pjαjk +
∑
i∈J

∑
j∈J ,j 6=i

βk−1ij sij,

∀k ∈ {2, . . . , n}, (5)

y1 ≥
∑
j∈J

pjαj1 +
∑
j∈J

s0j, (6)

Cj ≥ yk −Mk
(
1− αjk

)
, ∀k ∈ K , j ∈ J , (7)

Tj ≥ yk − dj −Mk
(
1− αjk

)
, ∀k ∈ K , j ∈ J ,

(8)

Ej ≥ dj − yk −Mk
(
1− αjk

)
, ∀k ∈ K , j ∈ J ,

(9)

αjk = 1, (10)

Cj,Tj,Ej, yk ≥ 0, ∀k ∈ K , j ∈ J , (11)

βk−1ij , αjk ∈ {0, 1} , ∀k ∈ K , i, j ∈ J , i 6= j. (12)

The first two constraints denote one job at one position and
one position for one job, respectively. For constraint sets (4),
the binary setup variable βk−1ij is 1 if job i is at the position
k − 1 and job j is at the position k . The completion time yk
for position k in inequality (5) is larger than the summation
of the previous completion time yk−1, processing time pj, and
possible setup time sij if the rim sizes of consecutive jobs
i and j are different. For the first job to be scheduled in (6),
the completion time y1 includes processing time and possible
setup time s0j compared with the initial configuration of the
fixture. If job j is at the position k with αjk = 1, then the left-
hand side of constraint sets (7) denote the completion timeCj.
If job j is not at the position k with αjk = 0, a big constant
Mk is needed so that these constraints are always satisfied,
i.e., feasible solutions exist. The same reasoning is applied to

constraint sets (8) for tardiness time Tj and constraint sets (9)
for earliness time Ej of job j. As proved in [9], the number
Mk is the sum of twice of the total processing times and setup
times under our problem setting.
If there are rush orders coming in with certain due days, the

optimization is resolved to find its new scheduling sequence.
For the shop floor control, some tools need to be ready to
process the order. In this case, some positions of the original
optimal sequence need to be preserved, e.g., the constraint
αjk = 1 for the jth job to be at the kth position in (10) could
be added to the MILP to achieve this goal.
Another way to approach the rush-order problem with

fixed positions is to use precedence variable xji of
Baker and Keller [6], Nogueira et al. [9], and Manne [22],
e.g., xji = 1 for all jobs i follows job j. But the difficulty is
that one does not know in advance which job will show up
before or after those fixed jobs. The authors [15] provided
another interesting MILP by combining sequence-position
and precedence variables, and it needs further investigation
to understand its computational performance.
Given n jobs and time horizon h, the numbers of variables

and constraints [9] of sequence-position, time-indexing, and
precedence formulations are O

(
n3
)
,O

(
n2h

)
, and O

(
n2
)
,

respectively. When the horizon is long, e.g., 1 day with
horizon of 1,440 minutes, the number of decision variables
of time-indexing formulation is huge.

B. EDD FIRST WITH POSSIBLE IDLE TIMES
Given a sequence of n jobs and initial configuration, it is
sorted according to its due days and rim sizes and then the
following optimization problem is solved with the sorted
sequence.

min
n∑
i=1

ajTj + bjEj (13)

subject to constraints

Tj ≥ Cj − dj, (14)

Ej ≥ dj − Cj, (15)

with C0 = 0. The number of variables and constraints
are O(n). As before, given a due day dj and a completion time
Cj of job j, the tardiness Tj and earliness Ej need to satisfy the
inequalities (14) and (15), respectively.

Under this formulation, there might exist idle times
between jobs to minimize the earliness costs, that is, the
scheduling policy is just-in-time.

C. ROLLING HORIZON OPTIMIZATION (RHO)
As illustrated in the next section, the computational time
of the optimization problem will grow dramatically as the
number of jobs increases. To alleviate this problem, the full
sequence of n jobs is sorted according to its due days and
RHO is used to find the scheduling sequence.

The key idea of RHO is to select a subset m (<n)
of the sorted sequence, optimize it by using an MILP

VOLUME 5, 2017 3371



C.-H. Hsu, H.-C. Yang: Real-Time Near-Optimal Scheduling With Rolling Horizon

in Section III.A, implement the first position, and then repeat
the process until the full sequence is completed. For the next
iteration, the initial configuration and the starting time are the
rim size and the completion time of the first job in the current
optimized iteration, respectively. For the last iteration, the full
sequence is implemented.

If the number of jobs considered in RHO is close to the
full length, its total cost for all iterations will be close to the
optimal cost of the whole horizon at the expense of additional
computational time. This will be explained in the next simula-
tion section to explore the tradeoff between efficiency versus
accuracy.

D. NUMBER OF TARDY JOBS
When there exist difficulties to assign the coefficients or it is
more important to finish the orders in time, then minimizing
the number of late jobs would be a more suitable performance
index.

If the objective is to minimize the number of tardy jobs,
then the new problem formulation is similar to the one in
Section III.A by minimizing the objective function

∑n
j=1 Uj,

removing the constraints (8)(9), and adding the constraints
Cj ≤ dj + MUj, where Uj ∈ {0, 1} ,∀j ∈ J and M is a big
constant [7]. The resulting problem is still an MILP, but it has
more binary variables Ujs.

IV. CASE STUDY
The company currently uses the EDD policy to schedule the
weekly orders with 2 rim sizes. Our simulation framework
follows closely with the parametric values of its processing
time, setup time, and batch size. Furthermore, randomized
generated job sequences with any number of rim sizes and
prefixed job sequences for rush orders could simulate more
complex production environments and provide useful guide-
lines for future applications.

The simulation programs are written in Java to call
CPLEX 12.6.3 on a Windows 7 notebook with Intel
Core i3-2350M 2.3 GHz processor and 4 GB RAM.

A. SIMULATION CONDITIONS
For the company we study, the batch size is 150 rims. The
operations times of the first rim of a batch at the first
2 machines and the last machine are 2 and 1.5 minutes,
respectively, so the total processing time per batch is
(2 + 1.5 × 150 =)227 minutes. After finishing one batch,
it takes about 40 minutes to change the cutting tools for the
tuning and drilling machines. If the sizes of two consecutive
orders are different, the setup time of the fixtures for holding
the rim for tuning and drilling machines is around 5 hours.
The coefficients of tardiness Tj and earliness Ej are chosen
to be 10 and 1, respectively. Assume 3 different types of rim
sizes with the initial configuration 1 of the fixture. Differ-
ent types of rim sizes will only change the setup times sij
in (5) and (6), so the decision variables and the number of
constraints stay the same as 3 types of rims sizes and hence
it is applicable to mass customization, that is, the maximum

number of rim types could be the same as the number of
orders.

The number of variables and constraints are O(n3) in an
MILP, so the computational time will grow rapidly when
the number of jobs is increasing. As a baseline comparison,
we need to fix the number of jobs to be processed in a
simulation study. According to the results in [6] and [23],
the scheduling problem becomes more difficult if the jobs are
likely to be tardy. Given a fixed number of jobs, 10 sequences
are generated with randomized rim sizes and due days. Each
sequence is then sorted by using the EDD policy and its
makespan is computed. To achieve certain utilization rate of
the production line, the due days are changed accordingly
based on its original makespan.

B. COMPARISONS OF SCHEDULING
POLICIES WITH 10 JOBS
Consider the case of 10 jobs to be scheduled. For each set of
job orders, six scheduling policies are implemented including
the optimal policy, EDD policy, and four rolling horizon
policies with horizon m changing from 6 to 9.
In Figs. 3 and 4, the horizontal axis is the average utiliza-

tion rate which is averaged over 10 simulations and the range
is from 0.5 to 1.2 with an increment of 0.1. The vertical axis is
the average computational time of 10 simulations in seconds.
As shown in the figures, the utilization rate of the dots is not
exactly an integer multiple of 0.1 which is due to rounded
integer due days.

FIGURE 3. 5% lower bound of computational time with 10 jobs.

FIGURE 4. 95% upper bound of computational time with 10 jobs.

The numbers of variables and constraints of sequence-
position formulations are O

(
n3
)
, so the computational time

in terms of job number grows nonlinearly. Given a fixed
number of jobs, the optimal policy needs to solve one

3372 VOLUME 5, 2017



C.-H. Hsu, H.-C. Yang: Real-Time Near-Optimal Scheduling With Rolling Horizon

optimization problem for the full horizon. For RHO, it needs
to solve several sub-problems for the whole horizon, so its
total computational time is possibly larger than the optimal
one as shown in Fig. 3.

The average costs of 10 simulations for each utilization rate
and its optimality gaps as compared with the optimal policy
of Wagner are drawn in Figs. 5 and 6.

FIGURE 5. Costs of different policies with 10 jobs.

FIGURE 6. Optimality gaps of different policies with 10 jobs.

The 5% and 95% bounds of computational times in
Figs. 3 and 4 are all within 20 seconds. The computational
times of the EDD policy are almost zero, but its optimality
gaps vary from 9% to 47%. As the horizon increases, the
computational times of four rolling horizon policies increase
moderately while the optimality gaps decrease from 26% to
0.05%.

C. COMPARISONS OF SCHEDULING
POLICIES WITH 14 JOBS
Consider the case of 14 jobs to be scheduled. To achieve better
cost performance while preserve reasonable computational
times, the new rolling horizons are from 10 to 13.

The number of variables and constraints of EDD is linear,
so its computation times in Figs. 7 and 8 stay almost the same
with maximum time of 2 seconds while its optimality gaps
vary from 14% to 161% in Table 1 which are much bigger
than the range of 10 jobs. The log scale is used in Figs. 7 and 8
for easier visualization.

The number of variables and constraints of an MILP is
cubic, so the maximum 95% bound of computational times
of the optimal Wagner policy in Fig. 8 is 9017 seconds as
compared with 20 seconds with 10 jobs.

FIGURE 7. 5% lower bound of computation time with 14 jobs.

FIGURE 8. 95% upper bound of computational time with 14 jobs.

When the rolling horizon is 10, its maximum 95% bound
of computational times is only 92 seconds while its worst
optimality gap is 2.49% as shown in Table 1. This time is
smaller than the cycle time to produce a rim which makes it
suitable for real-time scheduling of orders for the shop floor
when there is emergent event happening and a new schedule
needs to be computed quickly.

When the horizon increases, the performance is improved
as shown in Table 1 at the price of additional computa-
tional time. Hsu and Shamma [24] considered the opti-
mization of piecewise linear objective function subject to
fixed linear dynamical system and linear constraints by
using manufacturing scheduling as an illustrating example.
They derived sufficient condition for the receding horizon
control to approach the infinite horizon objective function.
Blocher and Chand [25] found out necessary and sufficient
condition for the existence of forecast horizon to be optimal
for the changeover scheduling problem by using cumulative
productions as the fixed state variables. While in current
rolling horizon optimization, the number of the dynamical
equations will grow if the number of horizon increases. It is
unclear how to deal with it to prove the optimality of the
rolling horizon optimization. However, the simulation results
indicate that choosing the horizon to be two thirds of the
whole job number would result in nice performance if the due
dates of jobs are sampled out of uniform distribution over an
interval.

From Figs. 3 to 8, the computational times and costs
are not monotone when the utilization rates increase which
is probably due to 10 simulation runs. Nogueira et al. [9]

VOLUME 5, 2017 3373



C.-H. Hsu, H.-C. Yang: Real-Time Near-Optimal Scheduling With Rolling Horizon

TABLE 1. Cost comparisons of six different policies with 14 jobs.

FIGURE 9. Computational time with 14 jobs and rush orders.

also considered 10 independent instances for each simulation
class. For 10 jobs, 100 simulation runs are experimented and
the computational times and costs are still not monotone.
These results are not included to make it consistent with the
presentation of the 14-job case.

D. RUSH ORDERS
Consider the case of 14 jobs with due day = {2, 2, 3, 1, 4,
4, 2, 4, 2, 2, 1, 4, 2, 4} and rim size = {1, 3, 2, 1, 1, 2,
3, 3, 2, 1, 1, 3, 3, 2}. There are three rush orders with rim
size= {1, 2, 1} and due day= {3, 5, 4}. The simulation is run
once for each additional rush order. With the smallest horizon
of 8, its optimality gap is within 7% as in Fig. 10 while its
computational times are all within 20 seconds in Fig. 9 as
compared with over 100,000 seconds of the optimal policy.

FIGURE 10. Optimality gaps of different policies with 14 jobs and rush
orders.

By using an MILP for master production schedule (MPS),
Wu and Chen [26] considered a numerical example to illus-
trate the extra cost for producing the rush order.

E. RUSH ORDER WITH PARTIAL PRESET JOB SEQUENCE
Consider the case of 11 jobs with due day = {1, 2, 2, 2, 2, 2,
2, 3, 3, 3, 4} and rim size = {1, 1, 2, 2, 1, 1, 3, 3, 3, 2, 1}.
A rush order comes in with due day 1 and rim size 3. Please
note that certain groups have the same due day and rim size,
e.g., 2, 5 and 6, so the exchanges of their positions in a
schedule do not change the value of the objective cost.

The optimal scheduling sequence of the original 11 jobs is
shown in the second columns of Table 2. The due day of the
seventh job is 2 which is greater than 1 of the first job, so the
EDD policy is not optimal. The rim size of the seventh job
is 3 which is different from the other jobs with the same due
days, so it is scheduled earlier to the free time slot in the first
day to avoid the setup time of the other clustering jobs.

TABLE 2. Cost comparisons of rush order with partial preset job
sequence.

When there is a rush order with a sequence number 12,
the optimal first job is the rush order as provided in the
third column which changes the position of the other jobs.
If some tools or preparation works are needed, this rush
order would interrupt the flow of the shop floor. With our
current formulations, some jobs from the original optimal
sequence could be accommodated by using (10) to fix their
new positions. When the first job is fixed in column 4, the
cost stays the same. However, it increases dramatically from
8,565 to 24,801 when the second job needs to be fixed, too.

To demonstrate the feasibility of this approach, five jobs
of even and odd numbers are fixed as shown in the last
2 columns. For rolling horizon policies, if the first job in the

3374 VOLUME 5, 2017



C.-H. Hsu, H.-C. Yang: Real-Time Near-Optimal Scheduling With Rolling Horizon

current iteration needs to be fixed, then it will start a new
iteration with the next flexible position and keep those fixed
jobs in need intact.

V. CONCLUSION
This major contribution of this study is using the EDD-sorted
position-based and rolling-horizon optimization for timely
schedule production of an automatic cell. The optimality
gap between the optimal policy and rolling-horizon policies
could be reduced within 2% if the horizon is big enough.
With rush/customized orders and partial preset job sequence,
the proposed method re-computes the near-optimal schedule
within cycle time of a rim while preserves nice performance.

For possible future directions, one could consider random
processing and setup times, machine failures, and parallel
cells.

REFERENCES
[1] R. B. Chase, F. R. Jacobs, and N. J. Aquilano, Operations Management

for Competitive Advantage, 11th ed. New York, NY, USA: McGraw-Hill,
2006.

[2] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 2nd ed.
Upper Saddle River, NJ, USA: Prentice-Hall, 2002.

[3] J. Y-T. Leung, Ed., Handbook of Scheduling: Algorithms, Models, and
Performance Analysis. Boca Raton, FL, USA: Chapman & Hall, 2004.

[4] K. R. Baker and G. D. Scudder, ‘‘Sequencing with earliness and tardiness
penalties: A review,’’ Oper. Res., vol. 38, no. 1, pp. 22–36, Feb. 1990.

[5] M. R. Garey, R. E. Tarjan, and G. T. Wilfong, ‘‘One-processor scheduling
with symmetric earliness and tardiness penalties,’’ Mathe. Oper. Res.,
vol. 13, no. 2, pp. 330–348, May 1988.

[6] K. R. Baker and B. Keller, ‘‘Solving the single-machine sequencing
problem using integer programming,’’ Comput. Ind. Eng., vol. 59, no. 4,
pp. 730–735, Nov. 2010.

[7] A. B. Keha, K. Khowala, and J. W. Fowler, ‘‘Mixed integer programming
formulations for single machine scheduling problems,’’Comput. Ind. Eng.,
vol. 56, no. 1, pp. 357–367, Feb. 2009.

[8] A. Allahverdi, ‘‘The third comprehensive survey on scheduling problems
with setup times/costs,’’ Eur. J. Oper. Res., vol. 246, no. 2, pp. 345–378,
Oct. 2015.

[9] T. H. Nogueira, C. R. V. Carvalho, and M. G. Ravetti, ‘‘Analysis of
mixed integer programming formulations for single machine scheduling
problems with sequence dependent setup times and release dates,’’ Quart.
J. Oper. Res., Mar. 2014. [Online]. Available: http://www.optimization-
online.org/DB_HTML/2014/07/4442.html

[10] I. M. Ovacik and R. Uzsoy, ‘‘Rolling horizon algorithms for a single-
machine dynamic scheduling problem with sequence-dependent setup
times,’’ Int. J. Prod. Res., vol. 32, no. 6, pp. 1243–1263, Jun. 1994.

[11] I. M. Ovacik and R. Uzsoy, ‘‘Rolling horizon procedures for dynamic
parallel machine scheduling with sequence-dependent setup times,’’
Int. J. Prod. Res., vol. 33, no. 11, pp. 3173–3192, Nov. 1995.

[12] M. Mohammadi and O. Poursabzi, ‘‘A rolling horizon-based heuristic to
solve a multi-level general lot sizing and scheduling problem with multiple
machines (MLGLSP_MM) in job shop manufacturing system,’’Uncertain
Supply Chain Manage., vol. 2, no. 3, pp. 167–178, 2014.

[13] S. Chand, V. H. Hsu, and S. Sethi, ‘‘Forecast, solution, and rolling hori-
zons in operations management problems: A classified bibliography,’’
Manuf. Service Oper. Manage., vol. 4, no. 1, pp. 25–43, Jan. 2002.

[14] W. H. Kwon and S. Han, Receding Horizon Control: Model Predictive
Control for State Models. London, U.K.: Springer-Verlag, 2005.

[15] G. Kirlik and C. Oguz, ‘‘A variable neighborhood search for minimizing
total weighted tardiness with sequence dependent setup times on a single
machine,’’ Comput. Oper. Res., vol. 39, no. 7, pp. 1506–1520, Jul. 2012.

[16] R. M’Hallah, ‘‘Minimizing total earliness and tardiness on a permutation
flow shop using VNS and MIP,’’ Comput. Ind. Eng., vol. 75, pp. 142–156,
Sep. 2014.

[17] M. Zweben and M. S. Fox, Intelligent Scheduling. San Francisco, CA,
USA: Morgan Kaufmann, 1994.

[18] H.-C. Chang, Y.-P. Chen, T.-K. Liu, and J.-H. Chou, ‘‘Solving the flexible
job shop scheduling problem with makespan optimization by using a
hybrid Taguchi-genetic algorithm,’’ IEEE Access, vol. 3, pp. 1740–1754,
2015.

[19] M. C. V. Gallego, J. Maya, and J. R. M. Torres, ‘‘A beam search heuristic
for scheduling a single machine with release dates and sequence dependent
setup times to minimize the makespan,’’ Comput. Oper. Res., vol. 73,
pp. 132–140, Sep. 2016.

[20] H. M. Wagner, ‘‘An integer linear-programming model for machine
scheduling,’’ Naval Res. Logistics, vol. 6, no. 2, pp. 131–140, Jun. 1959.

[21] E. H. Bowman, ‘‘The schedule-sequencing problem,’’ Oper. Res., vol. 7,
no. 5, pp. 621–624, Oct. 1959.

[22] A. S. Manne, ‘‘On the job shop scheduling problem,’’ Oper. Res., vol. 8,
no. 2, pp. 219–223, Apr. 1960.

[23] N. G. Hall and M. E. Posner, ‘‘Generating experimental data for computa-
tional testing with machine scheduling applications,’’ Oper. Res., vol. 49,
no. 6, pp. 854–865, Dec. 2001.

[24] C.-H. Hsu and J. S. Shamma, ‘‘Further results on linear nonquadratic
optimal control,’’ IEEE Trans. Autom. Control, vol. 46, no. 5, pp. 732–736,
May 2001.

[25] J. D. Blocher and S. Chand, ‘‘A forward branch-and-search algorithm
and forecast horizon results for the changeover scheduling problem,’’
Eur. J. Oper. Res., vol. 91, no. 3, pp. 456–470, Jun. 1996.

[26] M.-C. Wu and S.-Y. Chen, ‘‘A cost model for justifying the acceptance of
rush orders,’’ Int. J. Prod. Res., vol. 34, no. 7, pp. 1963–1974, Jul. 1996.

CHIH-HUA HSU received the B.S. degree in
electrical engineering from National Sun Yat-sen
University in 1989, the M.S. degree in control
engineering from National Chiao Tung Univer-
sity, Hsinchu, in 1991, and the Ph.D. degree in
aerospace engineering from The University of
Texas at Austin, Austin, TX, in 1998.

He has been an Assistant Professor with the
Department of Information Management, Chang
Jung Christian University, Tainan City, Taiwan,

since 2004. His research interests include operations research and supply
chain management.

HAW-CHING YANG received the B.S. degree in
engineering science from National Cheng Kung
University, Tainan City, in 1989, the M.S. degree
in control engineering from National Chiao Tung
University, Hsinchu, in 1991, and the Ph.D. degree
from the Institute of Manufacturing Engineering,
National Cheng Kung University, in 2003.

He has been an Assistant Professor with the
Institute of System and Control, National Kaoh-
siung First University of Science and Technology,

Kaohsiung, Taiwan, since 2004, and an Associate Professor with the Gradu-
ate Institute of Electrical Engineering, National Kaohsiung First University
of Science and Technology, since 2016. His research interests include pro-
duction simulation, system optimization, and intelligent prognosis.

VOLUME 5, 2017 3375


