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ABSTRACT Time-domain (TD) statistical features are frequently utilized in vibration-based pattern
recognition (PR) models to identify faults in rotating machinery. Presence of possible fluctuations or
spikes in random vibration signals can considerably affect the statistical values of the extracted features
consequently. This paper discusses the sensitivity of TD features against the fluctuations occurred in
vibration signals while classifying localized faults in ball bearing. Based on the sensitivity level, the features
are statistically processed prior to employing a classifier in PR model. A central tendency-based feature
pre-processing technique is proposed that enhances the diagnostic capability of classifiers by providing
appropriate values. The feature processing reduces undesired impact of fluctuations on the diagnostic model.
Several classifiers are utilized to evaluate the performance of the proposed method, and the results are
evident of its effectiveness. The associated advantage of the feature pre-processing over the conventional
pre-processing of raw data is its computational efficiency. It is worth mentioning that only few values in
feature distributions are required to be processed rather than dealing with big TD vibration data set.

INDEX TERMS Pattern recognition, fault diagnosis, feature processing, central tendency of features.

I. INTRODUCTION
Bearing is a critical component of rotating machinery, where
basic dynamic loads and forces are applied. A defective
bearing causes malfunctions in the machinery, and may even
lead to catastrophic failure [1]. To predict the machinery
faults early, vibration analysis has been the most popular and
widely used technology [2]. Usually, the identification of ball
bearings’ localized faults is hard because they produce very
low amplitudes in vibration signals as compared to the faults
like rotor unbalance or misalignment generated by other
joint machinery components. Therefore, the spectra of raw
vibration signals contain very little diagnostic information
regarding the bearing faults [3], and most of the existing
fault diagnosis methods involve certain pre-processing of raw
vibration data to facilitate the fault detection process. The
pre-processing normally includes noise reduction and extrac-
tion of appropriate frequency range before further analysis.
In this regard, enveloping [4], [5] and empirical mode &
wavelets decompositions [6]–[11] are the most frequently

used techniques. Pattern recognition (PR) is another popu-
lar domain for automatic diagnosis of the faults [12]. Yet
the noise in vibration based PR systems often misleads the
statistical classifiers in their training phase [13]. Numer-
ous vibration based machine learning methods have so far
been employed to detect the bearing faults utilizing time
domain (TD) statistical features [14]–[23]. However, main-
taining an optimum classification accuracy using a minimal
set of features has been a challenge, in spite of applying
certain costly pre-processing methods.

Instead of pre-processing the raw vibration data, this
research proposes statistical processing of features prior to
employing classifier in PR model. Besides efficiency, the
pre-processed features considerably enhance the diagnostic
capability of the classifier. The TD features include RMS,
mean, variance, skewness, kurtosis, crest factor (CF), impulse
factor (IF), shape factor (SF), median and range. Fluctu-
ations or spikes may occur randomly in vibration signals,
and can consequently alter the statistical information of

72
2169-3536 
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017



M. M. Tahir et al.: Enhancing Fault Classification Accuracy of Ball Bearing

these features. The feature processing technique is based on
the detection of abnormal values or outliers during data prepa-
ration stage of supervised learning [12]. The purpose is to
supply only the appropriate features to the classifier for better
decision making. The outliers are the values in data pattern
that do not adapt an expected behavior, and outlier detection
methods have been used in a wide variety of applications
such as military surveillance, fraud detection for credit cards,
intrusion detection in cyber security, insurance and fault
detection in critical systems [24]. It is also a well studied
area of data mining, and has been classified mainly into
statistical approaches, depth-based approaches, deviation-
based approaches, distance-based approaches, density-
based approaches and high-dimensional approaches [25].
A number of surveys, review articles and books cover
these approaches in machine learning and statistical
domains [26]–[31]. Data mining generally utilizes a col-
lection of data instances, i.e. pattern, object, record, point,
vector, event, case, sample, observation, entity etc [32]. Each
data instance is described using a set of features or attributes,
which can be of different types such as binary, categori-
cal, or continuous. The nature of attributes also determines
the applicability of the outlier detection methods [32], as
the selection of right detection method is vital according
to the nature of application and normal behavior of the
specific phenomena [24].

The literature survey reveals that a little work has
been carried out regarding the accurate extraction of diag-
nostic features for rotating machinery fault diagnosis.
Lee et al. [33] recently examined the sensitivity of diagnos-
tic features for prognostic and health management (PHM)
system, with respect to the signal quality and failure modes/
operating conditions of the system like speed, load, or torque.
The presented methods utilized several features from time
and frequency domains to develop algorithms to identify
various faults in bearing, gear and shaft [34]. The frequency
domain features included the fault frequencies exhibited by
the rotating components. The traditional TD statistical fea-
tures, i.e. RMS, kurtosis, crest factor etc. were also examined
for fault detection and prognosis. The authors emphasized
that it is critical to reduce signal noises and eliminate out-
liers before extracting diagnostic features to obtain accurate
results and prevent the system from high false alarm rates.
Widely implemented existing outlier detection methods, such
as distance based [35], density-based spatial clustering of
applications with noise [36], and minimum covariance deter-
minant [37], were employed to identify the data points to be
discarded. While focusing on the front end of a PHM system,
the authors suggested following steps for reliable outcome
from the system; 1) outlier detection to remove abnormal data
from raw vibration signal, 2) pre-processing of the vibration
signal to reduce unwanted noises, 3) cluster based operational
mode detection method to group various operating condi-
tions, and 4) neural network training based feature normal-
ization to mitigate the effects of operating conditions on the
features.

Difficulty with the above mentioned method is its com-
plexity and computational cost, especially employing the TD
features. Reliability of the TD features may be improved by
simpler means rather, particularly for PR-based diagnostic
models. The random nature of vibration signals can contain
fluctuations, which may be due to even change in dynamic
operating conditions. The variations in acquired vibration
signals consequently produce outlying values in the extracted
features. Physical causes or mechanical phenomena behind
the occurrence of signal fluctuations are not discussed in
this study. However, an important and valid assumption was
made here that the particular phenomena should not be asso-
ciated with the faults under investigation, i.e. bearing faults
in our case. This particular situation allows processing of TD
features directly instead of pre-processing the huge set of
raw vibration data. Authors developed a feature processing
method, which is based on central tendency (CT) of the
features distributions. The method deals with the possible
outliers adequately while preparing data before incorporating
classifier in a PRmodel. Several classifiers including Support
vector machine (SVM), BayesNet, Decision Table, and Deci-
sion Tree are used to evaluate the proposed method. All the
classifiers are found better decision makers while utilizing
processed features. The feature processing method works
in two distinct steps; 1) detection of outliers present in the
features distributions, and 2) discarding the affected instances
or examples before introducing classifier in the model. The
features are extracted from the segments of faulty vibra-
tion signals to form data set. This study utilizes the median
score in any feature distribution as its CT measure, as the
median effectively isolated the outliers generated due to the
fluctuations in vibration signals. Median-based commonly
used outlier detection methods include Box Plot and Median
absolute variance (MAD). The Box Plot [38] is employed
because of offering functional simplicity and suitability to our
application.

A substantial advantage of the proposed pre-processing of
TD features over conventional pre-processing of raw data is
the computational cost, as only few values in a feature distri-
bution are required to be processed rather than processing the
huge vibration signals. The adequately processed features are
found to be robust and provide higher diagnostic information
to the models. Moreover, the pre-processing of TD features
has not been reported so far for the purpose of bearing fault
diagnosis. Major contributions of this research include:
• The CT based feature processing method is developed
and employed prior to use classifier in vibration based
PR model to classify ball bearing’s localized faults.

• The presented method ensures the provision of only
appropriate features values to the classifier, and
enhances the fault classification accuracy.

• In addition to computationally efficient, the method is
immune to possible fluctuations present in steady state
vibration signals.

This paper is organized as follows: Section II explains
the bearing faults and experimental setup. Major steps
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FIGURE 1. Structure and basic frequencies in ball bearing.

involved in the proposed scheme are elaborated in Section III.
Section IV discusses the results and findings of the
proposed research, whereas the conclusions are drawn
in Section V.

II. BEARING FAULTS
There can be several kinds of faults in rolling element bearing,
such as surface fatigue damage, bonding and wear. The most
common of these faults is the surface fatigue damage, which
are further categorized as spalling, crack, or other abnormal
conditions [39].When a localized fault appears on the surface
of any element of bearing, cyclical impulsive vibration is
originated consequently. For example, an impact is produced
when the rolling elements strike a local fault on inner or
outer race, or a fault on any rolling element strikes the races.
Frequency of the impulsive vibration is known as fault fre-
quency. The value of fault frequency depends on the fault
size, rotational speed, and damage location. The main fault
frequencies a ball bearing can generate are fundamental train
frequency (FTF), ball pass frequency of inner race (BPFI),
ball pass frequency of outer race (BPFO), and ball spin
frequency (BSF). Figure 1 shows the geometric parameters
of ball bearing that involve to generate the characteristic
frequencies.

The aforementioned fault frequencies are mathematical
described as;
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Where SF is the motor driving frequency or rotational
frequency of shaft, Nb is the number of bearing balls, Bd is
the ball diameter, Pd is the pitch diameter and β is the contact
angle.

A. EXPERIMENTAL SETUP
The data set from Curtin University (CU) [40] was used to
evaluate the performance of the proposed method. Radial
vibration measurements are taken using a machinery fault
simulator test rig from SpectraQuest. An accelerometer is
mounted on the top of outboard bearing housing to acquire
data for inner race (IR) and outer race (OR) bearing faults.
Ball bearings model MB ER-16K are used to rotate healthy
shaft containing a loader in the middle, as shown in schematic
of the setup in Figure 2. The bearing model contains 9 balls
(Nb = 9) having diameter (Bd ) 7.94 mm, whereas the pitch
diameter (Pd ) is 38.50 mm. Motor speed was 29 Hz mea-
sured using tachometer. Vibration signals along with their
respective speed signals are captured at the sampling rate
of 51200 samples/sec. For more details, the reader is referred
to [40].

FIGURE 2. Schematic of experimental setup.

B. DATA VALIDATION
The metal to metal impacts produce a ringing of the bearing’s
housing and its support structure, which is modulated by the
fault frequency. The low-level impulses having an amplitude-
modulating effect on the vibration signal spread over a wide
frequency range. Therefore, the conventional frequency anal-
ysis are often not be able to show the bearing’s fault frequen-
cies, and thus envelope analysis has been used as benchmark
method for the purpose over many years [3]. The enveloping
is based on demodulation of high frequency resonance associ-
ated with fault impacts. It extracts the signal of interest from
an overall raw vibration signal while focusing on a narrow

74 VOLUME 5, 2017



M. M. Tahir et al.: Enhancing Fault Classification Accuracy of Ball Bearing

band range in the high frequency band. In spite the envelope
analysis is a powerful technique, the improper selection of
the frequency band can render the analysis ineffective [41].
Therefore, appropriate frequency bands were selected using
the fast kurtogram method proposed by Antoni [42] to find
the bands in terms of central frequency along with the
bandwidth [43].

To validate the data set, enveloping was implemented for
IR andOR vibration signals usingNI LabVIEW. The function
OAT Envelope Detection (Even Angle Output) was employed
prior to obtain power spectra of the envelope signals. The
function utilizes a frequency band and tachometer signal
for extracting even-angle envelope signal. The angle-domain
output signal maintains constant number of samples per revo-
lution to mitigate the effect of speed variations. Table 1 shows
BPFI and BPFO frequencies representing IR and OR faults.
The calculated center frequencies and bandwidths of IR and
OR faults are also shown in the table respectively, i.e.
CFIR & BWIR, and CFOR & BWOR.

TABLE 1. Bearing fault frequencies along with the central frequencies
and bandwidths (Hz).

Figure 3(a) shows the enveloped spectrum of IR fault, in
which BPFI is present along with the side-bands of shaft
speed. Figure 3(b) shows the several harmonics of BPFO
to represent OR fault. Hence, the data set contains all the
required information.

FIGURE 3. Enveloped spectra of the bearing faults. (a) Enveloped
spectrum of IR fault. (b) Enveloped spectrum of OR fault.

III. MATERIALS AND METHODOLOGY
The proposed fault diagnostic scheme consists of four steps,
which are elaborated in the block diagram in Figure 4.

FIGURE 4. Block diagram of bearing’s fault diagnostic scheme.

Details of the proposed methodology are in the following
subsections.

A. DATA SEGMENTATION AND FEATURE EXTRACTION
At first step, vibration signals were segmented, and features
were extracted from the segments to form data set at second
step. Every signal of 10 seconds duration was divided into
40 segments. As the motor speed was 29 Hz, each segment
holds vibratory history of more than 7 revolutions of the shaft.
In this way, the segments contained a valid sample length
to compute trustworthy statistical features. The following
ten feature were extracted from every segment of each fault
to form the data set for the supervised learning and fault
classification.
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( 1
N
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) 1

2
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1
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1
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Median = magnitude
(N + 1

2

)
(13)

Range = max(X )− min(X ) (14)

In the above relations, X is the sequence of samples
obtained after digitizing the time domain signals, X (i) is the
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amplitude of ith sample and N is the total number of samples
in the sequence.

B. FEATURE PROCESSING
The third step implements the feature processing mechanism,
which is the central theme of the proposed research. The
feature processing ensures the use of most appropriate data
by the classifiers. The processing was done in two phases;
firstly the Box Plot outlier detection method was utilized
to implement the Median-based Outlier Detection (MOD)
procedure, and then the instances were pruned based on the
outcome of MOD. Details are in the following subsections.

1) CT BASED OUTLIER DETECTION
The CT attempts to describe a set of data with a single value
using mean, median and mode [44]. However, each measure
can be more advantageous under different conditions. Mean
is frequently used and effective measure when data distri-
bution is symmetric. However, it is susceptible to outliers
and skewed data because of including every element of data
set as part of its calculation. On the other hand, median
score occupies the middle position in an ordered data set and
less sensitive to the outliers [44]. Usually, more than half
elements in a vibration sample belong to normal distribution,
and accordingly outliers in the extracted features should lie
above the median score when sorted in an ascending order.

FIGURE 5. Median as central tendency measure. (a) Ascending ordered
elements of kurtosis feature extracted from IR and OR vibration data
segments. (b) Histogram of lower half distribution of OR kurtosis
feature bisected from the median.

Figure 5(a) shows the ascending ordered kurtosis feature,
where median values of IR and OR distributions are almost
insensitive to the outliers. Figure 5(b) shows histogram of
lower half distribution of OR kurtosis feature, i.e. the part
of distribution below its median score. The histogram shows
that the lower half distribution lies well within the limits, and
therefore no outlier is present in this half of distribution.

FIGURE 6. Parameters of Box Plot.

Figure 6 shows parameters of Box Plot that include a
median, two hinges at lower and upper quartiles (fourths), and
two whiskers that connect these hinges to the limits. Box Plot
can be constructed using the following rules.
• Arrange the data distribution in ascending order.
• Calculate the first quartile (Q1), third quartile (Q3) and
the inter-quartile range (IQR = Q3− Q1).

• Compute Lower limit = Q1 − (1.5 × IQR) and Upper
Limit = Q3 + (1.5 × IQR), where the value 1.5 acts
as a scale to define the limits. Any value in a feature
distribution below the Lower Limit or above the Upper
Limit was considered as outliers.

The median based Box outlier detection method offers
simplicity and suits to our situation.

2) INSTANCE PRUNING
Instance pruning is the process of discarding the unsuitable
instances marked by the MOD, which was applied to every
feature separately. The instances containing outliers were
discarded during the data preparation process. Each element
of every features was checked whether that lie within the
relevant range, otherwise that element was marked as an
outlier. The main stages of the instances pruning are given
below;
• Detection of outliers present in the features by employ-
ing the MOD.

• Discarding the instances containing one or more
outliers.

Table 2 shows the marked outlying value in every fea-
ture by the MOD. The algorithm puts a dummy value
‘‘99.999’’ to mark the outliers, so that the affected instances
(rows) could easily be discarded from the data set.
There is no loss of information as long as the captured
vibration data is of appropriate length, from which the
instances are generated. The smoother values of features
were then fed to the classifiers for training and testing
purpose.
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TABLE 2. Sample instances containing marked outliers as 99.999.

C. FAULT CLASSIFICATION
The supervised learning paradigm was used for bearing’s
fault classification at final stage. The paradigm requires a
dataset with labeled patterns to train a classifier. Once the
classifier is trained, it is then employed to test the unknown
examples, as elaborated by Figure 7. The SVM, BayesNet,
Decision Table and Decision Tree were implemented to eval-
uate the performance of the proposed method.

FIGURE 7. Supervised learning and fault classification procedure.

The performance estimation method K− fold cross valida-
tion was utilized for training and testing of all the classifiers.
Themethod splits the dataD into k equal parts, i.e.D1, ...,Dk .
A single part is retained as the validation data to test the
model, and the remaining k − 1 parts are used as training
data. The process is repeated k times, with each of the k
parts used exactly once as the validation data. The k results
obtained from the folds are then averaged out to produce a
global accuracy or single estimation.

Accuracyglobal =
1
k

k∑
j=1

Accuracyj (15)

The advantage of cross validation method is that all exam-
ples are involved for both training and validation. This
study employed the commonly used 10-fold cross-validation
method.

A brief description of the classifiers are presented. The
interested reader is referred to [45] for details on SVM, [46]

for BayesNet, [47] for Decision Table, and [48] for Decision
Tree.

1) SVM
The SVM is an efficiently learning system, which utilizes a
hypothesis space of linear functions in a high dimensional
feature space. The simple SVM algorithm solves a binary
classification problem. The data are separated by a hyper-
plane defined by support vectors, which are subset of training
data as shown in Figure 8. These support vectors can create
complex boundaries, and the margin of separation is maxi-
mized between each class of data.

FIGURE 8. Margin and support vectors in SVM.

Suppose N -dimensional input data xi belong to class 1 or
class 2, where i = 1...N . The associated labels yi = 1
represent class 1 and yi = −1 correspond to class 2.
In case the data are separable linearly, a hyperplane f (x) can
be determined to separate the data. The hyperplane follows
the rule f (xi) ≥ 0 in case x belongs to class 1, whereas
f (xi) < 0 if x belongs to class 2.

f (x) = w · x + b =
N∑
k=0

wkxk + b (16)

where w is the N -dimensional normal vector which
defines the hyperplane and b is the learning bias. An
optimal hyperplane maximizes the geometrical margin and
is obtained by solving the convex quadratic optimization
problem min 1

2 ‖w‖
2.

2) BayesNet
Bayesian network is a well established algorithm to represent
probabilistic relations among random variables in a set as
a directed acyclic graph. The variables are represented by
nodes, and are connected via edges depicting causal rela-
tions between variables. Conditional probability distribution
is given at each variable. In the example show in Figure 9, the
edge from node A to node B indicates that A causes B.

Conditional probability distribution (CPD) is specified at
each node having parents, whereas the prior probability is
specified at node having no parents, i.e the root node. The
CPDs of variables B and C , are P(B|A) and P(C|A) respec-
tively, whereas the prior probability of A is P(A). The edges
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FIGURE 9. A simple Bayesian network.

in the graph represent the joint probability distribution (JPD)
of the connected variables, i.e. the JPD for edge (A,B) is
P(B,A) representing the probability of joint event B∩A. The
fundamental rule of probability calculus shows that

P(B,A) = P(B|A) · P(A) (17)

Generally the JPD for BayesNet with given nodes X =
X1, ...,XZ is

P(X ) =
Z∏
j=1

P(Xj|Parents(Xj)) (18)

where Parents(Xj) is the parent set of node Xj. The
Equation 18 is known as the chain rule representing the JPD
of all variables in the Bayesian network, as the product of
probabilities against each variable are its parents values.

Computation of probability for each variable is performed
using the known values of other variables. In other words,
once some evidence is asserted into the network regarding
states of the variables, the effect of evidence is propagated
through the network and probabilities of adjacent nodes are
updated in every propagation. The inference process can be
formalized mathematically as the Bayes theorem:

P(X |Y ) =
P(Y |X ) · P(X )

P(Y )
(19)

The above relation represents the probability of node X
given evidence Y . The posterior probability of node X is
P(X |Y ), which can be computed using known likelihood
P(Y |X )) and prior probability P(X ). The term P(Y ) denotes a
normalizing factor.

Fault diagnosis, in a qualitative sense, can be seen as
the cause-effect or fault-symptom relations. Every fault and
symptom is modeled by a random variable in the network
with a probability distribution. Taking the observed symp-
toms or evidences as input to the network, probabilities of
every fault are computed accordingly to the Bayes rule.

3) DECISION TABLE
Decision tables are used to model complex rule sets com-
prising conditions and actions in a compact way. A decision
table is formulated to have four quadrants as shown in Table
3. The quadrants on the left describe the conditions as well
as the actions being modeled in the table, while the right
hand quadrants show the corresponding condition alternatives
and action entries. The columns in the right quadrants are

TABLE 3. Four quadrants structure.

called rules. Thus each column has two portions; some of
its values are in the condition portion, called inputs, while
others are in the action area, termed as outputs. A rule, hence,
associates a set of input conditions to a corresponding set of
output actions.

Decision tables can be represented in a number of ways
according to data being modeled. One way of exploiting deci-
sion tables is to model cause-effect relationship by replacing
conditions with causes and actions with faults. An example of
such an application ismachine diagnostics where, on the basis
of prior knowledge (rules) connecting observed symptoms to
faults, an unknown fault can be classified into known faults.

4) DECISION TREE
The classification algorithm producing decision tree is based
on information theory. Construction of the tree is based on
the learning data set, that is mentioned below;
• Leaf nodes or answer nodes contains the name of fault
class

• Decision nodes or non-leaf nodes specifies some test
to be carried out on a single attribute or feature value.
A decision node contains one branch and sub-tree
against each possible outcome of the test.

Criteria to select the root of tree is based on information
gain. The measure is used to select among the candidate
features at each step of the tree growth. Information gain
(S,A) of a feature A relative to a collection of examples S
is defined as;

Gain(S,A) = Entropy(S)−
∑

v∈Value(A)

|Sv|
|S|

Entropy(Sv) (20)

whereValues(A) is the set of all possible values for attributeA,
and Sv is the subset of S for which feature A has value v.
The information gain is the expected reduction in entropy,

which measures homogeneity in a set of examples. The gain
measures how well a given feature separates the training
examples according to the target classification.

IV. RESULTS AND DISCUSSION
Vibration data from CUwas found appropriate to validate the
proposed feature processing based fault diagnosis scheme.
Figure 10(a) and Figure 10(b) show the time domain signals
of IR and OR bearing faults respectively. The OR signal,
containing fluctuations, has been cut into two segments SegAB
and SegBC as marked in Figure 10(b). The envelope analysis
of both the segments was performed using CFOR and BWOR
in Table 1. The SegAB does not contain any fluctuations and
the spectrum of its enveloped signal testifies the OR fault
frequencies (BPFO) clearly, as shown in Figure 11(a). The
enveloped spectrum is quite similar to that of full OR signal
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FIGURE 10. Waveforms of IR and OR faults. (a) Waveform of IR faults.
(b) Waveform of OR faults.

FIGURE 11. Enveloped Spectra of the segments SegAB and SegBC of
OR waveform. (a) Enveloped Spectrum of SegAB. (b) Enveloped
Spectrum of SegBC .

already shown in Figure 3(b). On the other hand, the SegBC
of OR fault contains some fluctuations, and its enveloped
spectrum shows some extra frequencies regarding the bearing
cage (FTF) in Figure 11(b).

The discussion about the phenomena is out of scope for
the present research. It is worth mentioning that the features
extracted from OR signal generated outliers due to the fluc-
tuations in SegBC , which significantly reduced the classifica-
tion accuracy of the classifier. Nevertheless, the phenomenon
exhibited in the SegBC is undesired to study OR bearing fault.
Outliers in a feature, extracted from different faulty signals,

can cause overlapping of elements from those fault classes.

FIGURE 12. Feature processing via MOD. (a) Disribution of raw values
of Kurtosis feature. (b) Kurtosis values after discarding outliers.
(c) Disribution of raw values of Shape Factor feature. (d) Shape
Factor values after discarding outliers.

This may reduce the diagnostic capability of that particular
feature, and is a factor ofmisleading the classifiers. TheMOD
adequately handled the issue and ensured the usage of only
smoother distributions of the features in diagnostic process.

Figure 12(a) shows the raw elements of kurtosis feature
extracted from IR and OR faulty signals, which are overlap-
ping repeatedly with each other mainly due to the outliers in
OR feature. These outliers were detected by the MOD, and
the respective instances were discarded later by the proposed
scheme.

The value of 1.5 for scale parameter, suggested by [38],
was good enough for the problem as almost all the detected
outliers belonged only to the fluctuated parts of OR signal.
Figure 12(b) shows the kurtosis elements of IR and OR fault
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FIGURE 13. Outlier detection via Box Plot. (a) Box Plot applied on
kurtosis features from IR and OR faults. (b) Box Plot applied on
Shape Factor features from IR and OR faults.

TABLE 4. Individual accuracies of the features before and after
processing, using SVM, BayesNet, decision table and
decision tree classifiers.

classes after discarding the outliers. The figure elaborates
smoother distributions of the feature against both the faults.
Similarly, Figure 12(c) and Figure 12(d) show the SF fea-
ture before processing (BP) and after processing (AP) by
the MOD. Box Plot outlier detection process is shown in
Figure 13(a) and Figure 13(b) for kurtosis and SF features
respectively. In this way, every feature was processed sep-
arately to mark the outliers in their respective distributions.
During the data preparation process, for the training and

FIGURE 14. Sensitivity of the features against OR fluctuations.

testing of the classifier, only those instances were selected
which are free from outliers.

Diagnostic capability of the classifiers was observed
against every feature individually. Table 4 elaborates the
impact of proposedmethod on every feature’s fault identifica-
tion ability, using SVM, BayesNet, Decision Table and Deci-
sion Tree classifiers implemented in Weka software. Several
features improved their performances significantly in terms
of enhancing the classification accuracy of the classifiers.
Those features were particularly affected whose elements
from both fault classes were overlapped due to the fluctua-
tions present in the OR signal. The features include Kurtosis,
SF and Range. It is worth noticing that every feature has
shown different sensitivity level against these fluctuations.

Figure 14 shows the sensitivity level of every feature (ρ)
against the OR signal fluctuations. The following relationwas
used to calculate their sensitivity levels.

ρ =
Range of Upper Half Distribution
Range of Lower Half Distribution

(21)

The OR ascending ordered feature distribution is bisected
into two halves from its median point. The ratio of the upper
half to the lower provides an impact of fluctuations through
the spread of outliers in the respective halves of the distribu-
tion. The Kurtosis feature was affected most by these fluctu-
ations, whereas the skewness showed least sensitivity to the
same. Figure 15 shows the skewness feature, which is hardly
effected by the fluctuations in OR signal, and consequently
the results in Table 4 demonstrate least improvement in the
classification accuracy.

FIGURE 15. Skewness feature processing. (a) Disribution of raw values. (b) After discarding outliers. (c) Box Plot.
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FIGURE 16. Variance feature processing. (a) Disribution of raw values. (b) After discarding outliers. (c) Box Plot.

On the other hand, there may be case where a sensitive
feature apparently does not improve its accuracy even after
the processing. For instance, Figure 16 illustrate the process-
ing of variance feature. Figure 16(a) exhibits the sensitivity
of the feature against the OR signal fluctuations, and con-
sequently Box Plot (Figure 16(c)) detects several outliers in
the respective distribution. As a result, the MOD produces
quite smoother distribution, as shown in Figure 16(b)). Yet,
no enhancement in classification accuracy is noticed for
variance feature in Table 4. The reason is that the feature
was well separating the faults even before processing, i.e. no
overlapping exists between the distributions of two classes.
But the unprocessed feature may not demonstrate the same
performance if more fault classes are added to the PR-model.
Nevertheless, it is worthwhile to disassociate the effect of
unrelated fluctuations on the sensitive TD features before
further processing.

V. CONCLUSIONS AND FUTURE RESEARCH
In this research, the effect of feature processing on vibration-
based PR model was investigated with the intent to diagnose
ball bearing’s localized faults. It was observed that undesired
fluctuations occurring randomly in vibration signals produce
outliers in the extracted TD features, which mislead the clas-
sifiers in their supervised learning process. It was also noticed
that the occurrence of these fluctuations was not associated
with the bearing’s fault under investigation. On the basis of
the above observations, this paper presented a new CT based
feature processing method to detect the outliers adequately
by implementing the MOD, and the affected instances were
pruned at the next stage based on the MOD outcome. In this
way, the presented technique assures the employment of only
relevant and precise features in the diagnostic models. The
SVM, BayesNet, Decision Table, and Decision Tree
classifiers were used to evaluate the proposedmethod, and the
classifiers were found better decision makers when processed
features were utilized. Several features, i.e. kurtosis, shape
factor and range, considerably improved their individual
diagnostic capability as per their sensitivity levels to the sig-
nal fluctuations and separation ability. A substantial advan-
tage of the proposed feature processing over conventional

preprocessing of raw data is its computational efficiency, as
only few values in any feature distribution are required to be
processed rather than dealing with big TD data.

The future research may investigate the adaptive value of
the scale parameter to implement theMOD for more accurate
results, especially in systems where greater number of fault
classes involved, i.e. healthy bearing, ball fault, or multiple
localized faults in addition to IR and OR faults.
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