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ABSTRACT Investigating the model ship dynamic positioning system by simulating the actual sea
conditions in the laboratory can not only avoid the risks caused by the directly experiments on a true
ship, but also reduce the costs. With the purpose of realizing the high accuracy control of the dynamic
positioning, besides a high accuracy mathematical model of the ship, an important condition is that the
position information provided by the position detection system must be accurate, reliable, and continuous.
The global positioning system (GPS) signal is restricted when the model ship dynamic positioning system
is set indoors. This paper describes a novel scheme for ship target tracking based on the multi-sensor data
fusion techniques. To improve the accuracy of indoor positioning and ship target tracking, the characteristics
of many sensors are systematically analyzed, such as radar, difference GPS, and ultrasonic sensors. Other
important factors, including the indoor temperature, position, and environment, are also taken into account
to further optimize the performance. Combining the Kalman filter method, the time alignment method,
the coordinate transformation method, and the optimal fusion criterion method, the core algorithm of our
framework employs the track correlation as the performance index of the optimal fusion. The experimental
results indicate that our method outperforms the methods based on a single ultrasonic sensor. The maximum
error between the estimated location and the real location is only 1.32 cm, which meets the standard for
engineering applications.

INDEX TERMS Multi-sensor, data fusion, Kalman filter, optimal fusion, time registration, target track,
ship model.

I. INTRODUCTION
Distributed multi-sensor data fusion (DMSDF) has been
developed to solve a diverse set of problems that share some
common characteristics [1]–[3]. The target tacking trajectory
estimation problem has been a fruitful area of multi-sensor
applications [4]–[6]. Many problems have been solved, yet
new and diversified applications still challenge systems engi-
neers [7]. Issues related to multi-sensor fusion include data

association and management, sensor uncertainty, data traffic,
noise filtering, making predictions and dynamic systemmod-
eling [8], [9]. They arise from the inherent uncertainties in the
sensory information caused by not only device imprecision,
but also noise sources within the system and the sensors [10].
In recent years, there has been increasing emphasis on using
distributed multi-sensor data sources for various applications,
e.g., designing distributed systems, incorporating scenario
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based design approaches [11], high level information
fusion (HLIF), tracking, classification and situation assess-
ment [12], [13]. Being able to deal with these uncertainties,
DMSDF has become an important method to improve the
performance of target tracking and detecting systems when
various sensors are available [14], [15]. Moreover, compared
with single sensor based methods, DMSDF combines data
from multiple sensors and thus can perform inferences more
efficiently and accurately [7], [14].

Due to the desired properties mentioned above, DMSDF
has been foundwidely applicable in the area of target tracking
during the past 20 years [16]. Liggins [9] proposed archi-
tectures for distributed data fusion and algorithms for tar-
get tracking. Their framework can be viewed as distributed
extensions of linear and nonlinear estimation theories. The
DMSDF [14], [15] is mainly used for dissimilar sensors
(sensors with different observed frames), e.g., infrared and
radar. For wide area surveillance applications, both the syn-
thetic aperture radar (SAR) and the moving target indica-
tor (MTI) types are useful for detecting the object of interest.
However, while being able to detect and track an object from a
long distance [14], [15], [17], the radar based systems suffer
some disadvantages such as high noise, strong clutter inter-
ference and high cost for both hardware and software [17].
Moreover, the precision of the distance measurement is
insufficient for applications involving indoor position-
ing [18]–[20]. Similarly, the ranging accuracy of a differen-
tial global positioning system (DGPS) [18], [21], [22] is up to
3-5m, which fails to meet the distance measurement require-
ment for indoor applications [23], [24]. On the other hand,
systems based on the ultrasonic sensors not only are insen-
sitive to the external light and the electromagnetic fields but
also have simpler structures and relatively lower costs [19].
Furthermore, systems based on the ultrasonic sensors
improve the precision that now range from decimeters to cen-
timeters. But when a ship is at sail in the sea, it is affected by
environmental factors such as winds, waves and currents. The
ship has six degrees of freedom including surge, sway, heave,
roll, yaw and bow [25], [26]. Each action is composed of low
frequency components and high frequency components [15],
[17], [18]. In order to effectively simulate the sea environment
an achieve ship’s real time positioning [17], [18], we propose
a scheme on indoor target tracking for ship model based on
distributed multi-sensor data fusion. The schematic of the
DMSDF is as shown in Fig. 1.

Our aim is to improve the accuracy of indoor positioning
and ship target tracking, the characteristics of multi-sensors
are systematically analyzed with winds, waves, currents, and
in the 26 ◦C.
This paper’s contributions are presented as follows.
• Considering the limit of Global Position System (GPS)
signal indoor for dynamic positioning ship model and
the complexity of the sea conditions, environmental
disturbances model (wind, wave and current), we pro-
pose a high accurate indoor location scheme based on
ultrasonic.

FIGURE 1. The schematic of the DMSDF.

• Considering the lack of a unified functional model and
fading of indoor GPS signal, we propose a distributed
fusionmodel to solve the problems of target track extrac-
tion, time alignment, track correlation, spatial align-
ment, coordinate transformation.

• To improve the signal to noise ratio and hence the accu-
racy of the ship indoor dynamic positioning, we propose
a kind of the Kalman Filter (KF) multi-sensor signal
preprocessing methods.

• This paper can achieve the weighted optimal fusion
of many estimates in accordance with the principle of
minimum variance.

This paper is organized as follows. Section II, III and IV
introduce the related work about multi-sensor information
fusion, system model and the DMSDF architecture, respec-
tively. Section V describes the signal preprocessing of the
DMSDF structure and Section VI focuses on the application
of the novel data fusion approach and presents our imple-
mentation for optimized data fusion. Section VII describes
a series of experiments and the related results to quantify
the performance of the multi-sensor data fusion. Finally,
a conclusion and future work are drawn in Section VIII.

II. RELATED WORKS
A. RELATED WORK ON DISTRIBUTED
MULTI-SENSOR DATA FUSION
As the multi-sensor information fusion technology is widely
applied, the number of research works have developed it
aiming at many specific application fields [2]–[4]. These
research works can be classified into [6]–[8]: (1) Several
data fusion models of multi-sensor data fusion system [8],
[9], [14]; (2) The multi-sensor data fusion (MSDF) process,
fusion architectures involve centralized fusion, distributed
fusion and hybrid fusion when designing a multi-sensor data
fusion system [27].

1) DATA FUSION MODELS
The scholars propose some general function models of multi-
sensor information fusion system from different aspects [2],
[7], [8]: the Joint Directors of Laboratories (JDL) model,
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the waterfall fusion processes (WFFP) model, the intelligent
cycle-based (IC) model, the Boyd circuit and the Omnibus
model [9], [14]. The JDL model has five levels of data
processing and a database. The JDL model is supported
by a database-management system, which monitors, evalu-
ates, adds, updates, and provides information for the fusion
processes [2], [7], [8]. The WFFP model has six levels of
processing and some similarities with the JDL model. The
advantage of theWFFPmodel is the simplicity in understand-
ing and applying [2], [7], [14]. The intelligence cycle-based
model consists of five stages: planning and direction stage,
collection stage, collation stage, evaluation stage, and dissem-
ination stage. The IC model tries to capture some inherent
processing cyclic characteristics among stages. The Boyd
model represents the classis decision support mechanism in
military information operations and has been widely used for
multi-sensor fusion; it is considered a cyclical model. The
Omnibus model is a better fusion process model that can be
obtained by a combination of the Boyd and IC models. It is
simple and easy to apply and follow for many non-defense
DF applications.

However, there are some shortages of those models. The
JDL model does not indicate the flow of the whole system.
The new information after the decision of waterfall model
cannot effectively used in other links. The intelligent cir-
cuit model does not contain the management requirements
knowledge base and system data [8], [9], [14]. The Boyd
loop and intelligence cycle realize closed loop flow control
to the information respectively through the ‘‘action’’ and
‘‘spreading’’ modules when the division on fusion process is
relatively rough. The Omnibus model, the practicability of
which is weak, is not taken into account of the management
requirements of knowledge base and system data. With the
development of information processing technology, the con-
tinuous emerging of new equipment and new methods, the
raising of collaborative development, big data, cloud comput-
ing, machine analytics, data sharing, resource management,
other new methods and new concepts, the design model of
fusion system is suffering new challenges. Consequently, the
traditional information fusions JDL, WFFP, the intelligent
loop fusion, the Boyd circuit and the Omnibus functionmodel
need to be revised, mainly including the revise of the division
and the definition of the function level.

2) DATA FUSION ARCHITECTURES
In MSDF process, the data fusion architecture involves cen-
tralized fusion, distributed fusion, hybrid fusion [6], [14].
(1) The centralized fusion architecture used similar multi-
sensor. The data fusion decisions are based on the maxi-
mum possible information gathered from the system sensor
in the centralized fusion [28], [29]. (2) The distributed fusion
is mainly used for dissimilar multi-sensor that sensor with
observation frames [9]. This architecture has been used for
smart structures and large flexible, monitoring of space-
craft health or aircraft, large sensors, huge automated plants,
target tracking applications and chemical industries [14].

(3) The Hybrid fusion has both distributed and centralized
fusion schemes for the disposition of the required sensor
configurations. This structures is very suitable for the infor-
mation fusion and processing system of a flight test range and
cloud computing [14].

B. RELATED WORK ON TARGET TRACKING
FOR DYNAMIC SYSTEM
In [22], the authors survey various mathematical models
of target motion/dynamics proposed for maneuvering target
tracking. According to the coupling among motions along
different environment, these models developed for target
tracking can be classified into 1D, 2D, and 3D categories.

However, few models have been developed that are partic-
ularly suitable for ships, submarines, and ground targets [22].
In order to achieve the target tracking of direction, there
are various algorithms used to realize the multi-sensor data
fusion, such as the particle filter [4], [6], [18], Kalman filter
method [21], [26], [31], [32], the least square method, the α
filter method [7], [14], [18] and the β filter method [18]. It is
well known that the so-calledmeasurement origin uncertainty
and the target motion uncertainty are two major challenges in
target tracking [22]. According to the uncertain measurement
sources, Sun [21] proposed a series of methods, aiming at the
ascertain measurement sources, Rocker and McGillem [16]
proposed the vector state and the measurement fusion. This
article, in the view of the uncertain ship motion trajectory,
presents a kind of average weighted fusion method to achieve
the optimal fusion of N estimate values according to the
minimum variance principle.

C. RELATED WORK ON INDOOR TARGET
TRACKING FOR SHIP MODEL
Considering the influence of wind, wave, current, working
environment (sailing speed, operational model), naviga-
tional conditions and other uncertainties, it’s hard to effec-
tively achieve the ship position on the sea [15], [18], [30].
We used a variety of sensors: wind vane and anemometer are
used to measure the wind direction and speed, gyro-compass
(heading sensor) is used to measure the ship’s directing,
the gyro-compass has a long life and a rich experience on
the sea, so it completely suit for the offshore drilling ship’s
dynamic positioning system [24], [33];MRU sensor ismotion
sensor, it can measure the ship’s dynamic linear motion and
attitude [34]–[36]. It can measure the ship’s rolling, pitching,
yawing and heaving that has a high accuracy. In order to
effectively achieve the ship indoor location, we used for
dissimilar sensors, i.e. Infrared, GPS, Radar, DGPS, RFID,
WLAN, UWB, Time Difference of Arrival (TDOA), and
Ultrasonic. The infrared sensor has following problems: the
design and the development of it are complex and have
a large power consumption, which means that the cost is
high, the applicability is weak and the measuring distance is
short. As the ultrasonic sensor exactly overcomes these
shortcomings, the independent developed ultrasonic recep-
tor is adopted to carry out the indoor ship tracking
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TABLE 1. Comparison of various technologies.

experiments [14], [15], [17]. In the actual measurement,the
received sound waves from the ultrasonic receptor are not
amplified,so for easy observation, two stage amplifier and a
band-pass filter are added near the transducer. In total, the
received sound waves are amplified 50 times to be observed.
A comparison of these technologies [18]–[20] is shown
in Table 1.

Due to the ultrasonic ranging by the echometering distance
principle, calculation of the distance from transducer to the
ship center through measuring the time that the transducer
sending and receiving sound waves.

However, for the environments like high temperature, high
humidity, amounts of dust, steam that was not applicable.
If indoor temperature is higher than 28◦C, the error of the
system will deviate to negative direction, and if it is lower
than 20 ◦C, the error will deviate to positive direction. In order
to improve the detecting accuracy of the ultrasonic sensor,
plentiful experiments were carried out in the 26 ◦C laboratory
via the independent designed ultrasonic sensor, effectively
reduced the error caused by temperature. After plentiful trials,
we found that if the humidity in 50%-60%, the ultrasonic
ranging accuracy will be relatively high.

III. SYSTEM MODEL
Ships are exposed to waves, wind, and current forces in the
sea [24]. The ships motion system provides reliable measure-
ments of heading and position, collects information from the
multi-sensor, such as MRU, compass, speed log, gyros, ultra-
sonic sensor, and accelerometers [24]. So, we independent
researched a set of control version, propeller and designed a
2.8m ship model, the ship model is 0.76m wide, 1m tall is as
shown inAppendix. Above all, we use theDMSDFmodel that
is implemented with some multiple parallel (not in the real
sense of parallelism or on parallel computers. However, this is
feasible and should be implemented in this way for reducing
the computation time) filters. Each filter corresponds to one

of the multiple models. Due to the switching between the
different models, there is an exchange of some information
between the filters. During each sampling period, it is likely
that all the filters of DMSDF approach are in operation.
The overall state estimation is a combination of the state
estimations from the individual filters [14].

According to Section II and Table 1, we use ultrasonic
sensor to implement indoor target tracking for ship model.
Each local ultrasonic sensor is used to process the signal that
can form a local track [37]. For the local track estimations,
the distributed Kalman filter method is used to preprocess
the signals and thereby obtain better accuracy in determining
the local track. By considering the collection of the discrete
time varying linear stochastic control system with N sensors,
the DMSDF model is obtained. The distributed multi-sensor
single target strategy is validated using ship tracking data. The
state and measurement models are given by

Xk (t + 1) = ψ(t)Xk (t)+Wk (t) (1)

Zk (t) = Hk (t)X (t)+ vk (t), t = 1, 2, . . . ,N (2)

where Xk (t) ∈ Rn is the t th state, Wk (t) is white noises,
Zk (t) is the measurement of the k th sensor for t th time, vk (t) is
the measurement noise. In order to ensure the distributed
Kalman filtering is not diverging, the model in [38] is used
as the Kalman filtering, that is x̂k (0) = E[x(0)], Pk (0) =
σ [x(0)], ψ(t) is the N × N transition matrix that propagates
the state Xk (t) from t to t+1;Hk (t) is the measurement model
or sensor-dynamic matrix; ψ(t) = 0.9048I and Hk (t) = 1I
are time varying matrices with suitable dimensions [38],
I is a unit matrice, Zk (t) is the measured data, the subscript k
denotes the k th sensors and N is the number of times. Wk (t)
and vk (t), t = 1, 2, ...,N are white noise with zero mean
and E[W (t)] = 0, E[W (t)W T (j)] = Q(t)δtj, the summary of
indoor tracking variables used for ship model and distributed
multi-sensor data fusion applications is shown in Table 2.

E[vk (t)] = 0, E[vk (t)vTk (j)] = R(t)δtj (3)

where Q(t) is the variance of Wk (t), R(t) is the variance
of vk (t), the superscript T denotes the transpose, and δtj is
the Kronecker delta function. The method is validated using
experimental trajectory data and also actual tracking data as
shown in Fig. 3.

IV. STRUCTURE OF THE DMSDF APPROACH
The DMSDF approach provides two significant advantages
over single sensor source data: one is the statistical advantage
gained by combining data from the same source and the other
one is the use of multiple types of sensors to increase the
accuracy of the DMSDF approach, with which a quantity can
be observed and characterized. The DMSDF approach would
primarily involve the following [23]: (1) the hierarchical
transformations between the parameters of observation and
the generation of decisions regarding the location (kinematics
and even dynamics), characteristics (features and structures),
and the target of an entity [25] and (2) the inference and inter-
pretation based on the detailed analysis of the observed scene
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TABLE 2. Summary of indoor tracking variables used for ship model and
distributed multi-sensor data fusion applications.

FIGURE 2. The two layer structure of the DMSDF approach.

or the entity in the context of a surrounding environment and
the relationships with the other entities.

According to the stage on which the data fusion takes
place, the DMSDF approach can be implemented at two
different processing layers: the signal preprocessing layer and
the optimal data fusion layer. In fact, the DMSDF approach
has a target processing track [18], [21] shown in Fig. 2.

A. THE FIRST LAYER - THE SIGNAL
PREPROCESSING LAYER
The prediction and estimation of the signal state are based on
the signal layer data association (e.g., the collections of the
information systems, the eliminating outliers, and the target
data distribution processing). With the first step prediction FIGURE 3. The Kalman filter process signal experiment.
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and the smoothing errors between any sensors, the signal
preprocessing layer has nested parallel structures. Due to the
different positions of the reference system, the sampling fre-
quency is not necessarily the same. For example,one system
may get a measured value when another system has not sent
a measured value at a period. As a result, each measuring
system has the measured data in real time and requires a
unified sampling frequency to be used in the specific algo-
rithm [26]. Owing to the influence of the difference of the
sensors’ sampling period and boot time, the different delay
of communication network and other factors, there may be
time differences among the observation data of the same
target on the air from different sensors. In order to maximize
the advantages of the multi-sensor data fusion system, the
temporal alignment to the multi-sensor data would be the
premise of data’s parallel fusion. Before data fusion, the time
synchronization of the same target of the real time data must
be performed. For each different reference coordinate used
by the measuring system, there are many ways to define an
arbitrary rotation, scale and transformation to map one coor-
dinate frame into another. In this paper, the some state point
is used to transform into the Cartesian coordinate system, as
shown in Fig. 4.

FIGURE 4. DMSDF plot of the 4 ultrasonic sensors responses for target
tracking.

B. THE SECOND LAYER - THE OPTIMAL FUSION LAYER
The optimal fusion layer, which is mainly used for similar
sensors, involves time synchronization and bias correction of
the sensor data. This layer is the fusion center where data
are fused to determine the optimal weights and to achieve the
optimal weighted data fusion.

V. SIGNAL PREPROCESSING LAYER
A. DMSDF KALMAN FILTER
Random noise is a part of the measured data from a sensor.
To weaken the effect of the noise on the signal, the sampled
data are processed to eliminate outliers and are smoothed via
a filter. The purpose of data filter smoothing is to eliminate the
interference components and change the characteristics of the
original data. The DMSDFmethod can be applied to the track

reconstruction of the maneuvering target. In the distributed
multi-sensor track environment, it is important to know how
to fuse the information from multiple sensors together [28].
Commonly, all the measurement vectors are combined from
the different sensors into one measurement vector, and then
the centralized filter with the standard Kalman filtering [21]
can be obtain. However, the centralized filter [29] will lead
to a high computational burden in the fusion center due to
the high-dimension computation and the large data memory
required. Recently, the data fusion distributed Kalman filter
was widely studied and applied in the communications and
control fields because the parallel structures can increase the
input data rates and enhance reliability. According to [10],
[22], [39], and [40], the DMSDFKalman filter [30], [39], [40]
is given by:

(1) The state and covariance time propagation is given as:

X̂k (t + 1) = ψ(t)X̂k (t) (4)

(2) Covariance matrix:

Pk (t + 1) = ψ(t)Pk (t)ψ(t)T + R(t) (5)

Where Pk (t + 1) = E[X̃k (t + 1)X̃k
T
(t + 1)]; X̃k (t + 1) =

Xk+1(t + 1)− X̂k (t + 1). (3) Kalman gain:

Kk+1(t + 1) = P̃k (t)HT
k (t)[Hk (t)P̃k (t)H

T
k + R(t)]

−1 (6)

(4) The state and covariance update equations are given as:

X̃k+1(t + 1) = ψ(t)X̃k (t)+ Kk+1(t + 1)

× [Zk (t)− ψ(t)X̃k (t + 1)] (7)

(5) The state and covariance update equations are given as:

Pk+1(t + 1) = [I − Kk+1(t + 1)ψ(t)]+ Pk (t + 1) (8)

Where Pk+1(t + 1) = E[X̃k+1(t + 1)X̃Tk+1(t + 1)];
X̃k+1(t + 1) = Xk+1(t + 1) − X̃k+1(t + 1); Kk (t + 1)
is the Kalman filter gain and Pk (t + 1) is the prediction
covariance matrix. The same DMSDF model is involved in
the distributed Kalman filters. The distributed Kalman filter
process signal initializing value can be seen in Section VII.A.

B. TIME SYNCHRONIZATION
A distributed Kalman filtering algorithm is used to estimate
the optimal state and then the estimated result is sent back to
the fusion center. To achieve the ultimate goal of multi-sensor
fusion, the fusion center must perform real time synchroniza-
tion to be sent the same goal of the data for each time point.
A time alignment synchronizes the measurement information
from the same target coming from the desynchronized signals
of different sensors. The results of using data without time
synchronizationmay beworse than the one of using data from
a single sensor to fuse. Therefore, to maximize the superiority
of the multi-sensor data fusion system, achieving the time
alignment of multi-sensor data is a prerequisite for the inte-
gration in parallel, and the pros and cons of the registration
method directly affects the data fusion [41].
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In terms of implementing time synchronization by the
nearest neighbor interpolation method, to minimize the error
of the interpolation, the principle of the interpolation node
selection is used to achieve time synchronization in the mid-
dle of the interpolation interval. According to the principle
of the interpolation method, it is assumed that the time syn-
chronization node is in the middle of the interval, and the
interval estimated value for three points are x̂(k − 1), x̂(k),
x̂(k + 1). The corresponding instants for them are tk−1, tk ,
tk+1. As the difference between the moving distances of a
target in the adjacent scan interval is small, the three moments
can be considered as equal intervals (the interval is 1t).
It can be assumed that tk−1, tk , tk+1 are equally spaced,that
is tk − tk−1 = T . Suppose the time of interpolation node is t:
the measured value of t can be calculated by the Lagrange 3
point interpolation method [25], [32], [33].

x(t) =
(t − tk )(t − tk−1)

(tk−1 − tk )(tk−1 − tk+1)
x̂(k − 1)

+
(t − tk−1)(t − tk+1)
(tk − tk−1)(tk − tk+1)

x̂(k)

+
(t − tk−1)(t − tk )

(tk+1 − tk−1)(tk+1 − tk )
x̂(k + 1) (9)

Corresponding algorithm for time synchronization:
Each ultrasonic sensor station determines different trajec-

tories after data processing; first determine the tracks that are
overlapped in duration. The minimum and maximum time in
these track groups are taken as the starting and ending times of
the time synchronization. Through the track prediction algo-
rithm (this paper takes the relatively simple linear prediction
algorithm), the entire track can be forecasted in the missing
part. One path is taken as a benchmark for the time axis
for time synchronization. The other tracks are interpolated at
the corresponding times through the Lagrange interpolation
method in 3 points. Finally, a matrix of data that has the same
time coordinates, which is used in the following track related
steps, is obtained. Note that according to the corresponding
algorithm of time synchronization, the following two main
problems should be resolved:

1) Ensure the reference point for the time of measuring
station of the sensor to be consistent.

2) The sampling measurement period for the sensors is
inconsistent and not the same as the synchronized time
period.

C. COORDINATE TRANSFORMATION
Ship moving targets normally maneuver on circular paths
which have led to tracking filters on circular turns. In this
section, this paper will transform the tracking maneuvering
target problems from the ultrasonic distance to the Cartesian
coordinate. The distance values can be obtained from the N
ultrasonic sensors. The corresponding distance values should
be transformed into the Cartesian coordinate system points.
This method defines the position of a point by its perpendic-
ular distance from two or more reference lines. Two straight
lines, called the x-axis and the y-axis, form the basis of a

two-dimensional Cartesian-coordinate system. The x-axis is
usually horizontal and the y-axis is perpendicular to it. The
intersecting point of the two axes is called the origin (O) [18],
[22], [34]. Any points on this plane can be identified by an
ordered pair of numbers that represents the distances to the
two axes. According to this algorithm, the data observed by
N ultrasonic sensors is extracted, and the resulting numbers
are shown in Table 3.

TABLE 3. The experimental coordinate transformation results of
the DMSDF.

VI. THE DMSDF OPTIMIZED FUSION
A. ULTRASONIC SENSOR TRACK CORRELATION
After time synchronization, the track groups can be deter-
mined that having the same time slot and interval. Then, the
track correlation is determined by the recent field correlation
algorithm. This paper first confirms the size of the tracking
gate of the target track, and determines the primarily related
observation. The tracking gate is a rough inspection method
to assign observation echoes to target tracks whatever they
have been established or not. It can be concluded from the
analysis that if the chosen gate is too large, there will be
many untargeted observations and noise waves that fall into
the gate, negatively influencing the performance of the gate.
Conversely, if the chosen gate is too small, the probability
of performing the target observation out of the gate will
increase. This also negatively influences the data association
performance. So for the DMSDF method, the appropriate
wave gate size should be identified firstly. When the tracking
wave is determined, the approximation of the track and the
observation point, which fell into the gate, the approximate
statistical distance, and the distances between every track and
all of the observed waves will be calculated. AM∗N statistics
matrix, where M is the number of all the tracks and N is the
number of all the observed waves, is finally got [41].

B. ACCURACY OF THE ESTIMATED ULTRASONIC
SENSOR OBSERVATIONS
Owing to the inherent systematic errors of the ultrasonic
sensor and noise caused by measurement error, which can
lead to a large position error obtained by a single ultrasonic
sensor scan, the results of the continuous and repeated scans
should be optimized. Optimizing repeated scan is robust
method which reduces the measurement error. The measure-
ment model of ultrasonic sensor j which scans the target i
times can be expressed as:

Zji = Ztruth +1η + Nji (10)

where Zji is the observation value obtained by sensor j which
scans i times. The Ztruth is the true value of the target location.
The 1η is the inherent system error in the ultrasonic sensor.
Nji is the noise of sensor j which scans i times. To make the
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method more suitable for determining the accuracy of the
ultrasonic optimal data fusion, two methods are introduced
(Section VI.B.(1) and VI.B.(2)).

1) ACCURACY ESTIMATE BASED ON THE OVERALL DATA
For the distributed multi-sensor data fusion measurement
model, Zi = [Zi1,Zi2, ...Zini] is the value of the sensor i
measurements for ni times, the robust estimation Ẑi and the
variance Rii about the target trajectory of the estimates can be
obtained [35].

Let

Z̄i
′
=

1
ni

ni∑
k=1

Zik ; (11)

and set

R′ii =
1
ni

ni∑
k=1

[Zik − Z̄i
′][Zik − Z̄i

′]T (12)

The distance between the mean value and the observed value
is calculated as:

Dik =
√
[Zik − Z̄i

′][Zik − Z̄i
′]T (13)

where Zik is rearranged according to ascending order of Dik ,
and ( ni2 + 1) is the number of observation values that are in
the valid estimated basis. Taking Ẑi as effective observation
mean value [35], [36], that is:

Ẑi =
1
mi

mi∑
k=1

Zik (14)

where mi ≤
ni
2 + 1 is the maximum integer. Rii is effective

variance of observation values, that is:

Rii =
1
mi

mi∑
k=1

[Zik − Ẑi][Zik − Ẑi]T (15)

Now, the δ is taken as a smaller positive number to control
the x-axis data of the robust estimate, (where δ = 0.3), if
|Ẑi− Ẑi

′
| < δ, the estimating value is achieved. Ẑi and Rii are

the location of the counted target estimate and robust variance
estimate, respectively. If |Ẑi− Ẑi

′
| ≥ δ, Z ′i = Ẑi, R′ii = Rii are

taken as the new observation mean value and are taken back
for the cycle estimation.

2) ACCURACY ESTIMATION BASED ON THE PREDICTED
VALUE AND THE ESTIMATED TRAJECTORY
INTERPOLATION VALUE
Since the accuracy of the ultrasonic sensor may also lead to
prediction bias, which makes errors between the prediction
points and the observation points become small, the predic-
tion points and the deviation of the actual observation points
can be used as a standard to measure the accuracy of the
ultrasonic sensor.

It is assumed that Z (k) is the observed signal at the
t th moment, Ẑ (k | k) is the predictive value at t th moment,

then the following equation can be obtained:

R =
1
n

n∑
k=2

[Z (k)− Ẑ (k | k)][Z (k)− Ẑ (k | k)]T (16)

The obtained value of R can be taken as an estimate of the
ultrasonic accuracy [18]. If the optimal fusion is required,
R should be minimized. Using the experimental results, a
series of data are processed from four ultrasonic sensors
by the above two methods (Section VI.B.(1) and VI.B.(2))
and the corresponding variance estimate for each ultrasonic
sensor are obtained. The data obtained by the latter method
is relatively (Section VI.B.(2)) stable, so it can be concluded
that the latter method is more suitable for determining the
accuracy of the ultrasonic sensors.

C. THE DMSDF OPTIMIZED FUSION RULE
After performing the time synchronization and trajectory
estimation, several groups of relevant (judged to represent the
same target) track data can be obtained, then it is necessary to
consider which convergence criterion is required to fuse the
target tracking data [35]. Here this paper uses the weighted
optimal method and achieves the optimal fusion of N estima-
tions in accordance with the principle of minimum variance
[18], [36]. According to the minimum variance principle, this
paper proposes a kind of weighted average fusionmethod that
can achieve the optimal fusion of N estimate values.
Assumption 1: Wi, i = 1, 2, ...N is a set of matrices with

W1 + W2 + ...WN = I , where I is a identity matrix,and the
expression of optimal fusion estimation is given by

Z̃ = W1Z̄1 +W2Z̄2 + ...+WN Z̄N (17)

where Z̄i is a true position value and Z̃ is an unbiased esti-
mation of the true position of the target. N is the number of
ultrasonic sensors.

1) THE DMSDF OPTIMAL FUSION CRITERION
First, Z̃ should be an unbiased estimation of the true position
of the target, whichmeans E(Z̃ ) = Z̄ . Second, Z̃ should mini-
mize the trace of the estimation error variance matrices,which
means the optimal fusion estimated variance Rg is smaller
than any other variance estimation of a single sensor.
Lemma 1:UnderAssumption 1 and the DMSDF optimal

fusion criterion, N ultrasonic sensor signals are used in the
fusion of the target tracking data, we obtain.

Z̃N =
N∑
i=1

R−1ii Zi/
N∑
i=1

R−1ii , Rg,N = 1/
N∑
i=1

R−1ii (18)

Proof: (i) Let K = 2. From Eq.(14), one has that

Z̃k = W1Z̄1 +W2Z̄2 = Z̄1 +W2(Z̄2 − Z̄1) (19)

Rg,k = E[(Z̃ − Z̄ )(Z̃ − Z̄ )T ]

= (I −W2)(I −W2)TR11 + (I −W2)W T
2 R12

+W2(I −W2)TR21 +W2W T
2 R22 (20)
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If it is assumed that Z̄1 and Z2 are not correlated,
R12 = R21 = 0, and Wi = W T

i , the Eq.(17) will reduce
to:

Rg,k = (1−W2)2R11 +W 2
2 R22 (21)

Taking the derivative on both sides of the equation and
setting it zero, the following equation is eventually obtained:

W1 =
R22

R11 + R22
, W2 =

R11
R11 + R22

(22)

Substituting Eq.(19) and Eq.(17) into Eq.(16) yields:

Z̃k =
R−111 Z̄1 + R

−1
22 Z̄2

R−111 + R
−1
22

(23)

Rg,k =
1

R−111 + R
−1
22

(24)

(ii) Let K = N− 1, from Eq.(15), one has that

Z̃k =
N−1∑
i=1

R−1ii Z̄i/
N−1∑
i=1

R−1ii , Rg,k = 1/
N−1∑
i=1

R−1ii (25)

Similarly, the algorithm is promoted to N signals to the
integration of the track using mathematical induction

Z̃k+1 = W1Z̄1 +W2Z̄2 + ...+Wk Z̄k +Wk+1Z̄k+1
= Z̃k +Wk+1Z̄k+1 (26)

Z̃k+1 − Z̄k+1 = W1Z̄1 +W2Z̄2 + ...+Wk Z̄k
+Wk+1Z̄k+1 − Z̄k+1

= Z̃k +Wk+1Z̄k+1 − Z̄k+1 (27)

Rg,k = E[(Z̃k+1 − Z̄k+1)(Z̃k+1 − Z̄k+1)T ]

= (I −Wk+1)(I −Wk+1)TRk,k
+ (I −Wk+1)W T

k+1Rk,k+1
+Wk+1(I −Wk+1)TRk,k+1
+Wk+1W T

k+1Rk+1,k+1 (28)

If it is assumed that Z̃k and Z̄k+1 are not related, Rk,k+1 =
Rk+1,k = 0, and Wi = W T

i , the Eq.(17) will be reduced to:

Rg,k = (1−Wk+1)2Rk,k +W 2
k+1Rk+1,k+1 (29)

Taking the Wk+1 derivative on both sides and setting it zero,
we get Wk , Wk+1, which in addition to Eq.(24) are merged
into Eq.(23) to yield:

Z̃k+1 =
k+1∑
i=1

R−1ii Z̄i/
k+1∑
i=1

R−1ii (30)

Rg,k+1 = 1/
k+1∑
i=1

R−1ii (31)

From (i) and (ii), we prove Eq.(15) is true.

VII. EXPERIMENTAL RESULTS
To effectively achieve the indoor ship location, we inde-
pendent researched a set of control version, propeller and
designed a 2.8 m ship model, the ship model is 0.76m wide,
1m tall is as shown in Appendix. To effectively simulate the
sea environment, we used a variety of sensors: wind vane
and anemometer are used to measure the wind direction and
speed, gyro-compass (heading sensor) is used to measure
the ship’s heading, the gyro-compass has a long life and
a rich experience on the sea, so it completely suit for the
offshore drilling ship’s dynamic positioning system; MRU
sensor is motion sensor, it can measure the ship’s dynamic
linear motion and attitude. It can measure the ship’s rolling,
pitching, yawing and heaving, and has a high accuracy. The
ultrasonic used for indoor distance detection, to get ship’s
actual position, achieves the purpose of indoor positioning.
A Personal Computer(PC) is used to realize the real-time
3D simulation of the ship. The main controller is mainly used
to achieve the data collection, processing and the realization
of the control algorithm. The handle work station is used to
achieve the active work station, and it can achieve real-time
moving.

According to the above algorithm, this section illustrates
the characteristics of the DMSDF algorithms through the
experiment. There are four ultrasonic sensors for measuring
state around the ship. The length of the ship is L = 2.8m,
the depth of the ship is H = 1m, the width of the ship is
B = 0.76m, wind speed is 3m/s and the meaningful height
of waves is 0.3m. The specific physical map is shown in
Appendix. Using the OPC technology in [26], programming
under matlab 7.1, achieved reliable and high speed data
communication among PC, main controller and sensors, the
sampling time is T = 1s. The experimental figure of the
DMSDF is shown in Fig. 1.

Fig. 1 shows that the length and the width of the pond are
11m and 6m, respectively. It could be found that the positions
of the 4 ultrasonic receivers around the pond. There is an
ultrasonic sender on the ship. The 4 ultrasonic receivers detect
the signal from the ultrasonic sender on the ship and send
the data to a local computer (the optimal data fusion center).
We gathered a set of real time data and performed filtering
in Matlab 7.1. The sampling time is 1s, and the sample size
is 300 times.

A. KALMAN FILTER PROCESS SIGNAL EXPERIMENT
The extended Kalman filter (EKF) was introduced
in [38] and [39] for implementing target tracking in a single-
sensor system. However, because the EKF only uses the
first order terms of the Taylor series expansion of nonlin-
ear functions [40], [41], it often introduces large errors in
the estimated statistics of the posterior distributions of the
states. So, using the distributed Kalman filter process signal
in Section V.B, we initialize ψ(t) = e−0.1 = 0.9048I ,
R(t) = 1I , Hk (t) = 1I , Q(t) = 1 − e−0.2 = 0.1813I ,
x̂k (0) = E[x(0)], Pk (0) = σ [x(0)]. In order to show the
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advantages of our proposal method, the results are optimum
with the raw measurements and least square filter values. The
Kalman filter and least square filter process signal experiment
is shown in Fig. 3.

For the following problems: the sensor faults or excep-
tions in the data recording or reading, the sudden change
and interference of the surrounding environment, and the
error of operator, some large error discontinuities values exist
in the collected data. The Kalman filtering can effectively
achieve the dynamic data filtering and smooth processing.
Fig. 3 shows that Kalman filtered data are smoother than
the measured data. In particular, the measured data change
greatly, whereas the filtered data are smoother. Fig. 3 shows
that the least square filter data are smoother than the Kalman
filter data. But the least square filter is bad for real-time data.

B. TIME SYNCHRONIZATION AND COORDINATE
TRANSFORMATION EXPERIMENT
According to Section V.B and V.C, 4 ultrasonic sensors are
used for the DMSDF test, as shown in Fig. 4. After time
synchronization, this paper uses the state point transformation
into the Cartesian coordinate system.

1) THE a, b AND AB COMPOSITION OF THE TRIANGLE
It is assumed that the area is Sab, the1abAB perimeter is Lab,
l = 11 m is the pond length, and w = 6m is the pond’s width.
Then the following equations are obtained:

lab =
a+ b+ 1

2
, Sab =

√
lab(lab − a)(lab − b)(lab − l),

(32)

hab =
2Sab
l
, ab1 =

√
a2 − h2ab =

√
a2 −

4S2ab
l2

(33)

ab2 =
√
b2 − h2ab =

√
b2 −

4S2ab
l2

The coordinate value of the point O, (ab1, hab) or
(l − ab2, hab), can be got.

2) THE b, c AND BC COMPOSITION
OF THE TRIANGLE IS 1bcBC
Similarly, it is called that the area is Sbc, the1bcBC perimeter
is Ibc. Then the following equations are obtained:

lbc =
b+ c+ w

2
, Sbc =

√
lbc(lbc − b)(lbc − c)(lbc − w),

(34)

hab =
2Sbc
w
, bc1 =

√
b2 − h2bc =

√
b2 −

4S2bc
w2 (35)

bc2 =
√
c2 − h2ab =

√
b2 −

4S2bc
w2

The coordinate value of the point O, (l − hbcbc1) or
(l − hbc,w− bc2), can be got.

3) THE c, d AND CD COMPOSITION
OF THE TRIANGLE IS 1cdCD
Similarly, it is called that the lcd area is Scd . The 1cdCD
perimeter is Icd . Then the following equations are obtained:

lcd =
c+ d + l

2
, Scd =

√
lcd (lcd − c)(lcd − d)(lcd − l),

(36)

hcd =
2Scd
w
, cd1 =

√
c2 − h2cd =

√
c2 −

4S2cd
l2

(37)

cd2 =
√
d2 − h2cd =

√
b2 −

4S2cd
l2

The coordinate value of the point O, (l − cd1, hcd ) or
(cd2, hcd ), can be got.

4) THE a, d AND AD COMPOSITION
OF THE TRIANGLE IS 1adAD
Similarly, it is called that the1adAD area is Sad , the1adAD
perimeter is lad . Then the following equations are obtained:

lad =
a+ b+ w

2
, Sad=

√
lad (lad− a)(lad− d)(lad− w),

(38)

had =
2Sad
w
, ad1 =

√
d2 − h2ad =

√
d2 −

4S2ad
w2 (39)

ad2 =
√
a2 − h2ad =

√
b2 −

4S2ad
w2

The coordinate value of the point O,(had , ad2) or
(had ,w − ad1), can be got. Using time synchronization and
coordinate transformation, 4 coordinate values are obtained
as shown in Fig. 5, the sampling time is 1s and the sampling
occurs 300 times, the coordinate transformation data and
4 track trajectories are discrete points.

Fig. 5 shows t in the case that a, d and AD composition of
the trajectory has the minimum estimated error. The c, d and
CD composition of trajectory has the maximum estimated
error.

C. THE DMSDF TRACK FUSION EXPERIMENT
According to Section VI and VI.C, these four tracks can be
fused or combined using the optimal fusion method. The
algorithm is promoted to 4 signals for the integration of the
track. The optimal fusion estimated variance is smaller than
any other variance estimation from a single sensor. Here,
it is assumed N = 4, the matrix Wi, i = 1, 2, 3, 4, and
W1 + W2 + W3 + W4 = I , where I is a identity matrix.
The optimal fusion trajectory is better than the single sensor
measurement trajectory, as shown in Fig. 6.

Fig. 6 shows that the optimal fusion trajectory is smoother
than the other trajectories based on single sensor data. The
estimated error is small for the optimal fusion trajectory.
If the signal cannot be received from an ultrasonic sensor,the
optimal fusion system will know the precise location of the
ship via themeasured signal from the other ultrasonic sensors.
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FIGURE 5. The extraction of 4 track trajectories from 4 ultrasonic sensors.

FIGURE 6. The optimal fusion trajectory.

To further demonstrate the performance of the proposed
MSDF algorithm, data in 300s is sampled. The MSDF algo-
rithm,state vector fusion [16] and truth-value are compared
with experiment map, which is shown in Fig. 7.

When the ship is in the static pool and protected from the
influence of wind, wave and flow, a hand-held laser ranger
is used to measure distance (the accuracy is less than 1 mm),
and the measured value is called true value. However, when
the ship is influenced by wind, wave and flow conditions, the
accuracy of laser ranger would be seriously affected. Usually,
the laser ranger needs total reflection prism to cooperate, but
the ranger used in house measures directly utilizes the reflec-
tion of smooth metope. And mainly because the distance is
close, the strength of reflected signal from light is strong,

FIGURE 7. The fusion value and the truth value.

FIGURE 8. The x- and y-axis estimated error values for the optimal fusion
trajectory.

meanwhile, it should be vertical. Otherwise, the return signal
would be too weak to get the accurate distance [3], [42].

Fig. 7 shows that the MSDF fusion values are close to the
truth values. The MSDF fusion algorithm is more accurate
than the state vector fusion in [16] and [43]. According to
Section VI, the result shows that the MSDF fusion algorithm
is able to improve the precision of the data, as shown in Fig. 8.
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FIGURE 9. 2.8 m ship model.

FIGURE 10. Ship’s real-time positioning.

Fig. 8 shows the x- and y-axis estimated error values for
the MSDF fusion trajectory. The maximum error is 1.32cm
between the true value and the MSDF fusion value. After
data fusion, the precision of the data is effectively improved.
But the state vector fusion value [16] of the maximum error
is 5.78cm.
In summary, several experiments indicate that the pro-

posed DMSDF track fusion approach has greatly improved
the target-tracking performance. Note that the performance
of the data fusion is significantly affected by the dynamic
positioning of the ship being tracked [2], [44], [47].

VIII. CONCLUSIONS AND FUTURE WORK
We have introduced a proposed data fusion scheme in the dis-
tributed multi-sensor environment using the optimized fusion
theory. The data fusion algorithm is used to track a ship’s
location based on the input signals from ultrasonic sensors.
The method is used to predict a ship’s moving path and can
be fused to provide improved track performance. It is suit-
able to single object indoor ships tracking with multi-sensor.

The DMSDF optimized fusion theory yields the combination
of information fusion theory and Kalman filtering theory in
the applied indoor ships tracking. The practicality picture
of ship control system is shown in Appendix. The DMSDF
can be performed at two different processing layers. The
optimized fusion trajectory x and y axis estimated maximum
error value is 1.32cm which is between the true value and
fusion value [2], [45], [47]. The DMSDF model is robust and
accurate. The results imply that the DMSDFmodel is suitable
for dealing with ultrasonic sensors systems that are suitable
for indoor track ships. It has the following insights of the
research work [45], [46], [48]:

• The novel scheme of target tracking with the DMSDF
can be further exploited and widely applied in commu-
nication and control fields since the parallel structures
can increase the input data rates and have reliability.

• The novel scheme of target tracking with the DMSDF
has better accuracy than any local measurement does.

• According to the experimental condition limit, it is not
necessary to consider the presence of the multi-target
tracking.

• It is not considered that the centralized fusion will bring
a large computational burden in the fusion center due to
the high dimension computation and large data memory.

APPENDIX
2.8 m SHIP MODEL
The project of Ship Dynamic Positioning System Experiment
uses scale ratio of 26: 1. And the real ship is a work ship with
75 meters electric DP2. In the laboratory, the ship model is
total length of 2.8m. It’s total width of 0.762 m (symmetrical,
half-width 0.381 m) and the total height 0.492m (0.24m deep
main influenza). It draft of 0.167m, this is the specific kind as
shown in Fig.9. In order to effectively simulate the sea envi-
ronment and achieve ship’s real-time positioning as shown
in Fig. 10. We made an indoor pool, the pool is 11m long,
6m wide, 1m deep. The ultrasonic receptor was independent
developed. After plentiful experiments, we have found that
we can effectively improve the positioning accuracy using
multiple ultrasonic receptors. But if too many receptors were
used, it would lead tomuchmore cost. Therefore, we installed
a 1m tall receptor in each angle of the pool.
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