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ABSTRACT A novel empirical data analysis methodology based on the random matrix theory (RMT) and
time series analysis is proposed for the power systems. Among the ongoing research studies of big data in the
power system applications, there is a strong necessity for new mathematical tools that describe and analyze
big data. This paper used RMT to model the empirical data which also treated as a time series. The proposed
method extends traditional RMT for applications in a non-Gaussian distribution environment. Three case
studies, i.e., power equipment condition monitoring, voltage stability analysis and low-frequency oscillation
detection, illustrate the potential application value of our proposed method for multi-source heterogeneous
data analysis, sensitive spot awareness and fast signal detection under an unknown noise pattern. The results
showed that the empirical data from a power system modeled following RMT and in a time series have
high sensitivity to dynamically characterized system states as well as observability and efficiency in system
analysis compared with conventional equation-based methods.

INDEX TERMS Random matrix theory, data mining, time series analysis, non-Gaussian, condition moni-
toring, static voltage stability, low frequency oscillation.

I. INTRODUCTION

B IG data is considered one of the most promising tech-
niques to adapt conventional fields to the internet era

[1]. The growing intelligence of power system appliances and
operations has resulted in dramatically increased amounts of
information and computations, arousing interest in the use
of big data techniques in Smart Grid applications [2], [3].
In other words, Smart Grid analysis would be characterized
by data-based models developed from system raw data rather
than traditional system models that are built with hypotheses
and simplifications.

Among the ongoing big data studies, researchers primarily
concentrate on the 4 Vs data (data with volume, velocity,
variety and veracity) collection, distributed storage and com-
putation, visualization, etc. [4]. Regarding Smart Grid appli-
cations, there is a necessity for new data-based modeling
and analysis tools for the efficient description of big data
structures as well as for accurate detection of big data cor-
relations and distributions to gain insights into power system
characteristics and stability.

Random Matrix Theory (RMT) has emerged as a use-
ful framework in wireless communication, neural networks,
network science, and cognitive radio technology [5]–[8] for
processing multivariate data. Traditional RMT aims to solve
problems with infinite dimensions, which usually can be
found with asymptotic convergence; however, recent devel-
opments in RMT concerning non-asymptotic RMT [9], [10]
have perfectly resolved finite-dimensional problems. This
may extend RMT to finite- dimensional engineering appli-
cations, as has been illustrated and proven by results from
multiple applications in this paper. Apart from the dimen-
sional limit of the research topics, traditionally, RMT mainly
focuses on a data environment with Gaussian distribution,
which would also significantly limit its applications in real
power systems, where empirical data is better characterized
as a non-Gaussian distribution. This paper has adopted the
method of analyzing these non-Gaussian data under time
series [11]–[14]. A framework of modelling power system
data which treated as a time series by RMT to data mining
in a non-Gaussian environment is proposed for the first time.
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The potentials of RMT as well as RMT in time series analysis
as a significant extension to the existing applications of RMT
are studied and validated with three different applications
from power systems in this paper.

The first application solved by the proposed method
focuses on power line condition monitoring. Power line
condition monitoring for both transmission and distribution
systems provides an important measure for ensuring power
system security. A significant obstacle in applying the tech-
nique of power line condition monitoring is to extract valu-
able information and identify condition features of the system
by processing a large quantity of multi-source heterogeneous
data obtained from numerous pieces ofmonitoring equipment
in real time. The proposed random matrix and eigenvalue
spectrum analysis in this paper provides a more convenient
and intuitive method of assessing and determining system
conditions through big data fromfieldmeasurements, thereby
ensuring real-time processing and instant fault judgments,
even under increasing volume, velocity, and variety of data.

The second case study involves application of the new
method for analyzing voltage stability, which has been con-
sidered a major factor leading to power failures. On one hand,
it is increasingly challenging to compute the voltage stability
margin of large power networks in real-time while maintain-
ing an adequate accuracy with traditional stability metrics.
On the other hand, taking into consideration the randomness
(because of the newly adopted distributed generations, elec-
tric vehicles, combined head and power techniques, etc., that
constitute more flexible power demands) in the computation
of power grid voltage stability in a real-time manner can
even aggravate the situation. The proposedmethod eliminates
the procedure of constructing, reducing and solving system
equations that are required for the existing methods, such as
continuation power flow [15] and modal analysis [16], and
provides an approach for real-time determination of voltage
stability conditions,

The third application concerns low-frequency oscillation
analysis with WAMS data. Because of growing system scale
and operation complexity, the eigenanalysis of system model
methods [17], where mathematical equations must be sim-
plified and solved, have low accuracy and are not suitable for
practical applications. Moreover, the widespread installations
of WAMS provide a data platform for online recognition
of the low-frequency oscillation patterns [18]. The Prony
algorithm based on WAMS data is a typical method for
oscillation pattern recognition [19], [20]. However, the com-
putation complexity by higher system order for better fitting
results limits its practical on-line application [21]. The third
application of this paper is based on the proposed use of RMT
for disturbance signal detection under an unknown noise
pattern; this approach involves solving the Prony algorithm
by switching problems for better field application.

The remainder of this paper is organized as follows: section
2 introduces the mathematical concepts and models used in
this paper, including the M-P law, the ring law and corre-
sponding extensions in time series. The method of problem

formation through real-time empirical data is also developed
at the end of the section. Three case studies indicating the
potential applications of RMT in power systems are given in
sections 3, 4 and 5 concerning power line condition monitor-
ing, voltage stability analysis and low frequency oscillation
detection, respectively. Section 6 highlights the key contribu-
tions and section 7 draws the conclusions.

II. RMT AS A BIG DATA MODELING TOOL
A. BASICS OF RMT
When the dimensions of a random matrix are sufficiently
large, the empirical spectral distribution (ESD) of its eigen-
values always converge to their theoretical limits [9]. Note
that although the asymptotic convergence in RMT is con-
sidered under infinite dimensions, the asymptotic results are
remarkably accurate for relatively moderate matrix sizes.
This is the main intention of using RMT as a practical
solution to real world engineering problems. Firstly, some
known results, i.e., the M-P law and ring law from RMT are
summarized as flowing which also presented in our previous
work [22]:

1) MARCHENKO-PASTUR LAW (M-P LAW)
Let X = {xij}1≤i≤N ,1≤j≤T be a random N × T matrix whose
entries with the mean µ(x) = 0 and the variance σ 2(x) <∞
are independent identically distributed (i.i.d.). N is an integer
such that N/T = c ∈ (0, 1]. Thus, the ESD of the cor-
responding sample covariance matrix S = 1/N (XXH ) con-
verges to the M-P law with the following distribution density
function [9]:

fMP(x) =


√
(b− x)(x − a)
2πxcσ 2 , a ≤ x ≤ b

0, otherwise
(1)

where a = σ 2(1−
√
c)2, b = σ 2(1+

√
c)2.

The M-P law proves that there exists an asymptotic behav-
ior of the eigenvalues distribution in large random matrices.

2) THE RING LAW

Consider the matrix product Z =
α∑
i=1

X̃i, where X̃i ∈ CN×N is

the singular value equivalent [10] of rectangular N × T non-
Hermitian random matrixXi, whose entries are i.i.d. variables
with the mean µ(x) = 0 and the variance σ 2(x) = 1. Then
the empirical eigenvalue distribution of Z converges almost
surely to the limit given by:

fZ (z) =


1
πxα
|z|

2
α−2 , (1− c)

α
2 ≤ |z| ≤ 1

0 , elsewhere
(2)

as N ,T → ∞ with the ratio N/T = c ∈ (0, 1]. On the
complex plane of the eigenvalues, the inner circle radius is
(1− c)α/2, and the outer circle radius is unity. In addition, the
singular value equivalent matrix X̃ is calculated by:

X̃ =
√

XXHU (3)

where U ∈ CN×N is a Haar Unitary matrix.
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The ring law extends RMT to large non-Hermitian random
matrices. As shown in [23], [24], the assemble method of Z
by product operation allows us to study the streaming datasets
both space and time.

B. RMT IN TIME SERIES
When applying RMT to power system data mining, a signif-
icant difficulty is that the empirical data may not follow a
Gaussian distribution. Furthermore, the measured filed data
may be correlated in space or time. Therefore, in this paper
we would model power system data as a time series first.
Then, based on the theoretical results for extending RMT in
time series instead of pure Gaussian constraints [25], [26],
the algorithm of power system data modelling as a random
matrix in time series aspect is proposed.

Considering a stationary ARMA(p,q) equation of a time
series first [27]:

φ(B)yt = θ (B)εt (4)

where {yt : t = 0,±1, . . .} is a real variables sequence,
{εt : t = 0,±1, . . .} denotes a white noise vector with zero
mean and σ 2 variance, φ(B) = 1 − φ1B − . . . − φpBp and
θ (B) = 1−θ1B+ . . .+θpBp are real polynomials in B, which
is a backshift operator Bjyt = yt−j, j = 0, 1, . . ..
Let X1 = (X11, X21, . . .XT1), . . .XN = (X1N ,

X2N , . . .XTN ) areN independent copies of y= (y1,y1, . . . yT ),
we have:

X=


X11 X21 · · · XT1
X12 X22 · · · XT2
...

... · · ·
...

X1N X2N · · · XTN


N×T

= (X1,X2, . . . ,XN)
′

(5)

Keeping c = N/T ∈ (0, 1], then the corresponding ESD of
S = 1/N (XXH ) tends to a probability distribution F whose
Stieltjes transform satisfies the equation [25]:

z = −
1
s
+

1
2π

∫ 2π

0

1

cs+ {2π f (λ)}−1
dλ (6)

where sF (z) =
∫ 1

x−zF(dx), z ∈ C+, and f (λ) is the spectral
density of the ARMA(p,q) model:

f (λ) =
σ 2

2π

∣∣∣∣ θ (e−iλ)φ(e−iλ)

∣∣∣∣2 , λ ∈ [0, 2π ) (7)

Equation (6) gives an implicit solution of F which could
be solved easily in some special cases, i.e., AR(1) and
MA(1) [25]. For more complicated cases, a numerical solu-
tion is proposed in [28] to compute F which is depicted in the
following:

We can write (6) as:

s =
1

−z+ A(s(z))
(8)

where A(s(z)) = 1
2π

∫ 2π
0

1
cs+{2π f (λ)}−1

dλ.

For a given real x, let ε be a small enough positive value,
and set z = x + iε. Choose an initial value s0(z) = u+ iε and
iterate for k ≥ 0 according to the iterative equation:

sk+1(z) = {−z+ A(sk (z))}−1 , (9)

until convergence, and then let sk (z) be the final value.
Thus, we have the density function fT (x):

fT (x) =
1
π
=sk (z) (10)

As addressed above, the power system empirical data is
assembled by RMT from a time series point of view which
extends RMT from pure Gaussian to a non-Gaussian context.

C. PROBLEM FORMING FROM EMPIRICAL DATA
Most importantly, a feasible matrix structure for data descrip-
tion and analysis in a power system must be constructed
considering a big data environment. This paper presents an
improvement of the method introduced in [23] and [24],
fitting RMT for heterogeneous data both from a multi-source
and in a time series.

For multi-source data, assuming n types of measurable
variables (which may be heterogeneous) are sampled at
time ti, the collected data can be built as a column vector
x(ti) = (x1, x2, . . . , xn)H . For single source data, we could
also form the matrix following the assembly method intro-
duced by (5).

In addition, a sliding split time window is used for the
raw data intercept to meet the requirements for real-time
data processing in power system applications. Specifically,
a sliding window is used to truncates the measured data into
vectors continuously whose length isN×T . Each vector then
will be assembled as a matrix X ∈ CN×T for further analysis.
Therefore, T is denoted as the sliding offset and can be used to
adjust the matrix size (c = N/T ∈ (0, 1]) which is important
for real-time processing requirements.

To fulfill the preconditions of RMT, a normalization
operation should be performed to get the normalized
non-Hermitian matrix X ∈ CN×T :

X i,j =
Xi,j −MEAN (Xi)
stdDEV (Xi)

(11)

whereMEAN (Xi) is the mean value of vector Xi, stdDEV (Xi)
is the standard deviation of vector Xi.

Therefore, a general procedure for empirical data process-
ing can be summarized as follows:
Step 1: Obtain raw data matrix X according to the multi-

source or single-source scenario.
Step 2: Calculate X by (11) to convert original matrix X to

a standard non-Hermitian matrix.
Step 3: Obtain the singular value equivalent matrix X̃

through X by (3).
Step 4: Calculate the sample covariance matrix S and the

matrix product Z.
Step 5: Calculate fMP(x) of S according to (1).
Step 6: Calculate the eigenvalue of Z and the inner circle

radius according to (2).
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Step 7: For the time series, obtain the parame-
ters φ(B) and θ (B) of ARMA(p, q) using the MATLAB
toolbox.
Step 8: Calculate fT (x) according to the proposed numeri-

cal method in section II.B.
In this paper, we set α in (2) as 1 for simplicity. All the

data in the three case studies introduced later are analyzed
according to this procedure.

III. RMT APPLICATION IN CONDITION MONITORING
In power system applications of condition monitoring and
diagnosis targeting for power equipment, data from multi-
ple monitoring devices are always analyzed separately [29].
With the extensive installation of monitoring devices, such
as PMUs and AMI, a large volume and variety of data
concerning system conditions are now available quite easily.
Thus, the required feature identification and analysis from
these multi-source heterogeneous data starts to play a more
important role in the whole process of system diagnosis.

We propose a method based on RMT for analyzing fun-
damental voltage and harmonics from PMUs. This method
is first implemented with eight PMUs sampling bus voltages
every 15 minutes alone for each of the three monitored power
transmission lines. The mean and standard deviation of the
eight PMUs are used to evaluate the operation state for each
line.

For example, the fundamental voltage and the third har-
monic waveforms monitored from phase A of the three lines
are shown in Fig. 1, where the curves denote the mean values
and the shadowed areas denote the standard deviations of
the corresponding curves. These time-domain waveforms can
display the empirical data of each power line intuitively. Even
some immediate comparisons and judgments can be made
through observations. However, it is difficult to analyze and
extract more useful hidden information of the data, such as
power quality of the line from time-domain observations.

In Fig. 1 (a), the fundamental voltage average value of
power line 1 is much smoother and closer to the nominal
voltage than those of lines 2 and 3, which can always lead to
an immediate judgment that line 1 has a more stable voltage
waveform (better power quality). In addition, in Fig. 1 (a), the
voltage variance of line 3 is larger than that of line 2 in the first
500 minutes; however, the situation is reversed afterwards,
which leads to an implicit obstacle to determine which line
has better power quality, even with more detailed reference
to the third harmonics from Fig. 1 (b).

A traditional monitoring and analysis method in the time
domain is unable to perform the task of power quality evalua-
tion given intricate situations with large volume multi-source
heterogeneous data.

Following the method introduced in section II.C, we com-
bine the fundamental voltage and harmonic data from above
as a random matrix X, and its corresponding matrix Z is also
obtained. The eigenvalues of matrix Z are shown in Fig. 2
(upper part of each line), along with a defined theoretical ring
between the inner circle (green) and the outer circle (blue).

FIGURE 1. (a) The fundamental voltage waveforms of phase A and (b) the
third harmonic waveforms of phase A for three power transmission lines.

It can be observed that the eigenvalues of the assembled
random matrix Z are generally outside of the theoretical ring,
and most of them are within the inner circle. According to
the ring law, we can infer that the corresponding data forming
matrix X do not follow i.i.d.; in other words, the data indicate
valid signals of power quality rather than Gaussian noise [8].
This situation coincides with the fact that the monitored
power line fundamental voltage and harmonic data forming
X are time or/and space correlated, which show different
features in RMT based data analysis with Gaussian noise.

Correspondingly, it can be found in Fig. 2 (bottom part
of each line) that the eigenvalue distribution of the sample
covariance matrix of X (denoted as S) is not consistent with
the theoretical M-P law (blue curves) for each line. Some
eigenvalues are outside of the region of M-P law, which also
denote valid signals present in the measured data rather than
Gaussian noise [8].

Furthermore, it is obvious that the eigenvalues are more
sparsely distributed for line 3 than for the other two lines.
Note that the eigenvalues tend to be concentrated (especially
for lines 1 and 2) in a minimal circle with a varying radius,
which is much larger for line 3 than for the other two lines.
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FIGURE 2. Eigenvalue distribution of matrix Z assembled by fundamental voltage and third harmonics data (top), and the eigenvalue distribution
of matrix S and corresponding M-P law in the three lines (bottom).

In addition, the mean spectral radius (MSR) [23] metrics
could be used in quantifying the sparseness and the radius
of the eigenvalue distribution in our analysis, which would
obviously show the same phenomena. From these features
indicated by the RMT analysis method, we can distinguish
line 3 from lines 1 and 2, which is in agreement with the fact
that line 3 is an industrial power line with a more complicated
demand environment, whereas lines 1 and 2 are ordinary
residential power lines. This information is impossible to
obtain through traditional time-domain data analysis.

To conclude, valid information implicated by a large vol-
ume of heterogeneous data can be easily extracted from
Gaussian noise using the RMT method, and the varying
densities of the eigenvalue distributions and the radii of the
minimal circles can be used in analyzing and displaying
different features hidden in the multi-source heterogeneous
data.

IV. RMT APPLICATION IN STATIC VOLTAGE STABILITY
AWARENESS
In this section, we develop RMT for extracting more intrinsic
power system features besides data expression and observa-
tions, with the application of critical point detection of static
voltage stability.

The continuation power flow is one of the most impor-
tant methods to find a complete PV curve starting at some

base load and leading to the steady state voltage stability
limit (critical point) [15]. Power flow equations considered
with uniformly increasing loads are illustrated as follows:

Pis − Vi
n∑
j=1

Vj(Gij cos θij + Bij sin θij)− λPid = 0

Qis − Vi
n∑
j=1

Vj(Gij sin θij − Bij cos θij)− λQid = 0
(12)

where V and θ are the voltage value and angle, respec-
tively, Pis, Qis and Pid , Qid indicate initial and increas-
ing active/reactive power vectors of bus i, respectively, and
λ(0 ≤ λ ≤ λm) is used as the load growth factor [15].

In this case study, the IEEE 9-bus system, shown in
appendix A, is used to compare the awareness of the critical
point between the PV curve at bus 9 and the eigenvalue
distributions evolution of bus 9 voltage with increasing λ.
The simulation is based on the continuation method and per-
formed by the MATPOWER toolbox [30]. For observing the
eigenvalue distribution of bus 9 voltage at each load factor λ,
we change λ with a normal distribution of zero mean and 5%
variance and perform one million times power flow to obtain
bus 9 voltage datasets.

Following the procedure presented in section II.C, the sim-
ulated bus 9 voltages at each λ are assembled as a 500×2000
dimensional matrix X. The eigenvalue distribution of matrix
Z is reported in the left part of Figs. 3 (a), (b) and (c).
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FIGURE 3. PV curve of bus 9 in IEEE 9-bus system and its evolution of eigenvalue distribution.

The ESD of the sample covariance matrix S = 1/500(XXH ),
and accordingly, fMP(x) is calculated and reported in the right
part of Figs. 3 (a), (b) and (c).

From observing and comparing the eigenvalue distribu-
tions during normal operation in Fig. 3 (a) and at/near the
critical point in Figs. 3 (b) and (c) by RTM, we can see
that, during normal operations, the eigenvalue distributions of
matrix S coincide with the M-P law, and the eigenvalues of
matrix Z are basically distributed in the theoretical ring with
a relatively large radius; in contrast, at/near the critical point,
eigenvalue distributions of matrix S fluctuate apart from the
M-P law, and the eigenvalues of matrix Z escape from the
theoretical ring and into the inner circle.

In other words, the consistencies of the eigenvalue distri-
butions with both the M-P law and the ring law can reveal
the status of voltage stability. The distributions of eigenvalues
following RMT are highly sensitive to the system voltage
bifurcation point, which provides strong evidence of the
effectiveness of the use of RMT-based big data modeling for
the detection of intrinsic system characteristics.

Compared with traditional complete system modeling and
continuation power flow computations for achieving the sta-
bility limits, RTM-based big data modeling can fulfill the task
of voltage stability critical point detection more intuitively
and immediately using the measured voltage data. During
real-time operation, each bus of the system can be character-
ized with a PDF and theoretical ring plots of eigenvalues from
the corresponding matrices, which can be directly observed
for making judgments on emergencies. Furthermore, with
the latter method, only measured voltage data at the related
bus are required as inputs for the RMT models, instead of
detailed structures and parameters of system components

(lines, buses, loads, etc.) for complete system modeling and
power flow calculations. The RMT based data analysis in
power system can thus provide a new method involving the
flexible and efficient use of massive information collected
through PMUs.

V. RMT APPLICATION IN LOW-FREQUENCY
OSCILLATION DETECTION UNDER
UNKNOWN NOISE PATTERN
Some adverse effects, e.g., noise and system order, greatly
restrain the practical applications of the Prony method.
On the one hand, WAMS data measured throughout the grid
are always subject to random load changes or system opera-
tions at various locations of the network known as ambient
data, acting like colored noise signals [31]. On the other
hand, research studies have been performed to reduce the
system order to accelerate computation speed. Moreover, as
addressed in [21], a sliding data window analysis method has
been proposed to achieve an on-line application. This study
found that the efficiency of WAMS data processing could
be improved further if the starting time of disturbance could
be detected rapidly because no Prony algorithm is required
during the data window without disturbance. Therefore, there
is a requirement for fast detection of disturbances apart from
the ambient data.

To tackle the problem of smooth switching of algorithms,
we propose a fast disturbance detection method based on
RMT under ambient data characterized as colored noise with
an unknown statistical pattern. According to the RMT, if there
is no (disturbance) signal, then the ESD of the sample covari-
ance matrix (S) follows the M-P law [8]. Correspondingly,
whenever the ESD of matrix S departs from the M-P law,
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(disturbance) signal is implied by the data. In our case, the
noise is modeled by ARMA, and the M-P law need to be
extended in time series as introduced in section II.B.

FIGURE 4. Comparative M-P law and M-P law in time series for the ESD
of measured voltage at bus 4.

In this case study, the PMU measured data are obtained by
time domain simulations of a 14-bus system in PSAT [32],
as presented in Appendix B. The whole simulation time is
set as 30 seconds, and the integration time step is set as
0.001 second. The disturbance is designed as a three-phase
ground fault on bus 9 starting at 15 seconds that is removed
0.1 seconds later. We choose bus 4 voltage described in the
time domain as the ambient data which is illustrated in the
subgraph of Fig. 4 together with the disturbance signal for
analysis.

For forming the time series data as matrix X, the sliding
offset unit T is set as 200 ms and the split-window length
is set to be 10000 ms. For example, the first 10000 data is
assembled to a 50 × 200 matrix by (5) which denoted as X.
The ESD of its covariance matrix S = 1/50(XXH ) could be
obtained and reported in Fig. 4 as the green bars. We can
observe that the ESD of matrix S is obviously different with
the M-P law (blue curve), whereas the RMT in time series
by (6) (red curve) could generally match the ESD with some
deviations due to the finite sampling data size (theoretically
infinite data would provide a perfect match).

Assuming in the sliding data window based Prony
method, the split window gradually moves to the right with
the 10000 ms window length and 200 ms offset unit T . Along
with the window moving, a disturbance can be found in
the original voltage data as shown in the subgraph of Fig.4.
By our proposed method, the disturbance in non-Gaussian
noise (modeled by ARMA) can be detected instantly with the
presence of the maximum eigenvalue of matrix S. Fig. 5 illus-
trates the linkage between the maximum eigenvalue
(red dots in black curve) and disturbance (blue curve
indicated by the arrow): the disturbance appears at 15 seconds

FIGURE 5. The maximum eigenvalue based disturbance detection
according to the sliding split window.

(5 s after sliding the window) in the time-domain voltage
data. In other words, for the starting time of the disturbance
to be detected rapidly, we just need perform an eigenvalue
calculation of a 50 × 200 matrix which is an easy task for
existing electronic equipment.

With this application, the RMT-based data modeling
approach has shown the potential to address the case of
non-Gaussian noise. This would extend the applicable range
of RMT in power systems with data obtained from field
tests.

VI. SUMMARY OF THE EVALUATIONS
In this paper, we found that RMT-based data modeling
together with the related theoretical deductions and conclu-
sions can provide an effective analysis method for power
systems with large volume multi-source heterogeneous data.
With the results of the three case studies, the following
contributions and potentials of the RMT-based method are
highlighted.

First, with its specialty of modeling infinite-dimensional
matrices, the RMT-based method can obtain a simple struc-
ture for representing multi-source heterogeneous data and
thus provide a novel representation and analysis scheme
through eigenvalue distributions of matrices.

Second, by considering eigenvalues of data models under
M-P law and ring law and analyzing the correlations between
data models and system states, the method can provide
in-depth system analyses, such as power system voltage sta-
bility analysis, without solving equations.

Third, the RMT-based data models are able to dynamically
characterize real-time system states with high sensitivity.
Because the data models can be updated and comparatively
analyzed under RMT without high-order equations, real-time
analysis of large systems is possible. Thus, RMT can provide
efficient processing of continuously measured data in power
systems and be aware of emergent faults or sudden changes
of the system states.

Fourth, with the extensions of RMT in time series, the
empirical data models can also be analyzed under unknown
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FIGURE 6. IEEE 9-bus system used in section IV.

FIGURE 7. A 14-bus system in PSAT used in section V.

noise patterns and thus be more applicable for power system
analyses, which are containing not only environmental noise
but also small fluctuations from non-local system operations.

Finally, the representing and analyzing structures of
RMT-based models can be implemented with parallel com-
puting, providing high potentials for use of RMT in engineer-
ing applications for large power system analysis in a big data
environment.

VII. CONCLUSIONS
To conclude, the RMT based data mining method could
be efficiently applied to complicated fields, including the

power system, by making sufficient use of the historical and
multi-variate data, instead of or in parallel with the tradi-
tional analytical methods. In this paper, we conducted ini-
tial attempts in three power system applications, concerning
condition monitoring, voltage stability awareness, and low-
frequency oscillation detection. And with the three cases,
an improved RMT model to be applied in time series and
non-Gaussian noise environment is validated, revealing the
flexibility of our proposed method.

APPENDIX A
See Fig. 6.

APPENDIX B
See Fig. 7.
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