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ABSTRACT In healthcare management, a large volume of multi-structured patient data is generated from
the clinical reports, doctor’s notes, and wearable body sensors. The analysis of healthcare parameters and
the prediction of the subsequent future health conditions are still in the informative stage. A cloud-enabled
big data analytic platform is the best way to analyze the structured and unstructured data generated from
healthcare management systems. In this paper, a probabilistic data collection mechanism is designed and the
correlation analysis of those collected data is performed. Finally, a stochastic prediction model is designed
to foresee the future health condition of the most correlated patients based on their current health status.
Performance evaluation of the proposed protocols is realized through extensive simulations in the cloud
environment, which gives about 98% accuracy of prediction, and maintains 90% of CPU and bandwidth
utilization to reduce the analysis time.

INDEX TERMS Big data, cloud, healthcare, prediction.

I. INTRODUCTION
Wireless Sensor Networks (WSNs) and mobile networks
allow in-hospital and outdoor patients monitoring through
Internet of Things (IoT) [1] in which patients are equipped
with different smart devices such as in-plant pacemaker,
Electrocardiogram (ECG), Electromyography (EMG), Elec-
troencephalography (EEG) and motion sensors, etc. These
wearable devices collect health related data such as body
temperature, blood pressure and heart rate, which can be
applied in physical fitness tracking and medical treatment.
Big data in healthcare [2] is an analytic environment to handle
the massive volume of structured and unstructured patient
data. According to the analysts, the healthcare data volume
of USA healthcare system has reached to 150 exabytes in
2011 [3] and has increased to zettabyte scale [4] in the current
time. Similarly, the California-based health network Kaiser
Permanente has 9 million members and the data [3] collected
from Electronic Health Records (EHRs) including doctor
notes, clinical reports and pathological images range from
26.5 to 44 petabytes.

The health data are attributed as big data, which is defined
by 5Vs in terms of Volume, Velocity, Variety, Value, and

Veracity. The collected patient data are of peta or zeta
bytes, which describe the volume. The velocity is expressed
in terms of data arrival rate from the patients. Variety
explains the diversified data sets with respect to the struc-
tured, semi-structured and unstructured data sets such as
clinical reports, EHRs, and radiological images and verac-
ity explains the truthfulness of the data sets with respect
to data availability and authenticity. The collected data are
transformed intomeaningful insights, which explain the value
in 5Vs.

Physiological data of patients are the primary and vital
entities in healthcare big data analytic. Hence, valid raw
data must be collected with an efficient manner in a medical
environment. In advanced healthcare systems, the patient
data are collected [5] through wearable devices equipped
with different types of sensors. Recently, the advancement
in mobile devices [6] such as multi-sensor equipped smart
phones are also used as the data collection devices. Hence,
colossal amounts of patient data are generated within a hospi-
tal network, which needs to be stored and analyzed efficiently.
Therefore, a cloud computing [7] enabled distributed storage
and processing environment is essential to store and process
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the healthcare data, which can be accessed anywhere and
anytime.

Now-a-days various data intensive applications are
emerged, which need some efficient analytic models. Many
stochastic approaches [8] are considered by different authors
in the recent past for healthcare parameter analysis. More-
over, the similarity [9] between health parameters of a patient
is considered by the physicians for better decisions. Big data
analytic is applied in healthcare [10] to identify the clusters
of patients, diseases and future predictions with the help of
various machine learning tools [11]. In a learning healthcare
system [12], data are analyzed and used as insights contin-
uously for patient care. During this process, the patient data
are combined with the clinical reports for better suggestions
and decisions.

So far limited analyses have accomplished among the
patients taking different numbers of health parameters of
same or different departments. Even, the existing models
cannot support both analysis and processing for the large
volume of multi-structured healthcare data. Recently, the
high performance of cloud platform provides a scalable and
distributable parallel processing framework, i.e. MapReduce
[13] for healthcare data processing. MapReduce has the capa-
bility to process the large volume of data in parallel on a
cloud. The major benefits of MapReduce framework are the
scalability and fault-tolerance during massive data process-
ing on a large cloud. Hence, a hybrid model of stochastic
and parallel processing framework is planned in a medical
environment to process and analyze the huge volume of
healthcare data. In our work, MapReduce parallel processing
framework [14] is used as a backbone for healthcare big
data analysis. Further, the proposed work is extended to a
prognosis model for future health condition prediction of the
patients.

Rest of the paper is organized as follows. Existingworks on
big data in the cloud environment are discussed in Section II.
Section III describes the system model of our work. A prob-
abilistic data collection model is designed in Section IV.
The healthcare data analysis and processing mechanisms are
given in Section V. The prediction of a patient future health
condition is designed in Section VI. Performance evaluation
of our proposed models is given in Section VII and conclud-
ing remarks are made in Section VIII.

II. RELATED WORKS
How to analyze data to derive meaning information is highly
essential for studying the mammoth health related raw data
and to predict the future health condition. The temporal and
spatial correlations of sensing pilate exercise data are ana-
lyzed in [15] for knowing the relief of lower back pain by
keeping track of the patient’s bodymotions. However, limited
works are performed on correlation analysis of healthcare
parameters among different patients. In [16], in-hospital mor-
tality of emergency department patients is predicted using
a local big data-driven random forest model. However, only
clinical data of patients are considered in the existing models

ignoring the history of disease symptoms. A brief survey is
performed on advantages and disadvantages of applications
and technical requirements for in-hospital and BAN patients
monitoring in [17]. Hu et al. [18] have designed the data
acquisition mechanism by using sensors, log files and web
crawler in various applications. However, the frequency of
the patient visit is not considered during data collection.

A new big data architecture with methodology for health-
care is proposed in [3] and Zhang et al. [19] propose
a task-level adaptive and scalable MapReduce framework,
which can estimate the future arrival rate of workload on
the map and reduce phases. In another prospective, MapRe-
duce framework is designed to reduce the re-computation
for incremental iterative computations in [20]. An online
community-based health services is proposed in [21], where
the health data are collected and mined through some ques-
tionnaires and their respective answers. A scalable and dis-
tributable method is proposed in [22] to find the similarity
among patients by modifying the MapReduce framework.
This method can support the storage and information retrieval
over the time stamp. However, the visiting frequency, health
parameters and hidden symptoms of patients are very impor-
tant but are not taken into consideration for analyzing and
processing the data in this work.

Future disease prediction is very crucial and important for
the patients with chronic diseases. Many disease prediction
models have been proposed in the recent past. In [23], dif-
ferent types of artificial neural network (ANN) techniques
are discussed for disease prediction. However, ANN takes
longer time for training the model due to diversified weights
associated with each layer. Even, any small change in the
input data set affects the model, which gives unstable out-
put. In [24], the feature stability is observed by using the
regression based feature graph for the clinical prognosis in
high-dimensional electronic medical records. A predictive
framework is designed in [25] to integrate the EHR data with
risk factors to effectively predict the osteoporosis and bone
fractures. Henriques et al. [26] predict the decompensation
of heart failure by considering the physiological data of the
patients. However, the hidden symptoms of the diseases are
not considered in the current prediction models.

As given in [27], bio-sensors such as ECG, EMG and EEG
are used to collect and transmit the health parameters to back-
end servers for processing. However, the visiting frequency
of the patient with respect to the doctor and department in a
hospital is not considered, which hasmajor impact on the data
collection process. Though many researchers have proposed
the deployment and sensing strategies of the body sensors for
collecting data, none of them have developed the data collec-
tion models of the indoor and outdoor patients based on the
frequency of visits to a hospital. In our proposed work, data
collection models are developed taking physiological param-
eters and hidden symptoms of the diseases of the patients.
Furthermore, the correlation analysis is incorporated with
disease prediction among the patients in a hospital. Hence,
the main objectives of this paper are to find the distinguished
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characteristics of the diseases by introducing the correlation
analysis of healthcare parameters, which can be summarized
as follows.

• Propose a probabilistic data collection model based on
the frequency of out-patient’s visits and volume of data
generated from the patients with BAN.

• Correlation analysis algorithms are designed for the
patients of intra and inter departments of the hospitals.

• An algorithm for predicting future health condition of
patients based on their current health status is designed.

III. PROBLEM FORMULATION
Consider a cloud based healthcare environment with h num-
bers of hospitals in a setH = {H1,H2, . . . ,Hh}, where h ∈ H
as shown in Fig. 1. Let various departments be associatedwith
one hospital and for simplicity, it is assumed that same and
equal numbers of departments are present in each hospital.
Let, DP = {DP1,DP2, . . . ,DPδ} be the set of δ numbers
of departments associated with each hospital. Besides, each
department is coupled with different numbers of doctors, out-
patients and BAN patients, which are the sources for gener-
ating the big data. It is to be noted that out-patients are the
patients who visit the hospital for treatment without staying
there overnight. BAN patients are the chronic patients fitted
with smart body sensors to monitor their health condition
round the clock. For simplicity, throughout the paper, we refer
to the out-patients and BAN patients as patients and BAN,
respectively.

Let, d be the numbers of doctors present in a set Dkij,
where j = {1, 2, . . . , d} in the ith department of k th hospital,
∀i ∈ DP and ∀k ∈ H . Thus, Dkij = {D

k
1d ∪ D

k
2d ∪ . . . ∪ D

k
δd },

∀i ∈ DP, ∀k ∈ H . For example, D3
21 represents the doctor

1 that belongs to the department 2 in hospital 3. Let, Pkij be
the set of patients, where j = {1, 2, . . . , p} in ith department
of k th hospital, ∀i ∈ DP and ∀k ∈ H . Hence, p numbers
of patients are present in the ith department of k th hospital.
Therefore, Pkij = {P

k
1p ∪ P

k
2p ∪ . . . ∪ P

k
δp}, ∀i ∈ DP, ∀k ∈ H .

For example, P321 represents the patient 1, which belongs to
the department 2 in hospital 3. It is assumed that patients with
BANs are also admitted to a hospital, which could be either a
patient or a BAN at a time. Similarly, let b be the number of
BANs present in a set Bkij, where B

k
ij = {B

k
1b∪B

k
2b∪ . . .∪B

k
δb},

∀i ∈ DP, ∀k ∈ H and different number of BANs are available
in various departments within a hospital. For example, B321
represents the BAN 1 that belongs to the department 2 in
hospital 3.

In our proposed model, a window based temporal data
collection and monitoring model is used to enhance the qual-
ity of patient monitoring. Let, T = {0, 1, 2, . . . , t} be a
continuous time frame, which is divided into w number of
windows, where each window consists of z units of time
duration. Each time duration could be considered as a minute,
an hour, a week, a month or a year that depends on the
applications. Accordingly, Dkij(w), P

k
ij(w), and B

k
ij(w) repre-

sent the volume of data generated from the doctors, patients

FIGURE 1. Communication model between hospital and cloud data
centers.

and BAN, respectively in each window w. The collected data
within window w are stored in different cloud data centers as
shown in Fig. 1. Let, {DC1,DC2, . . . ,DCn} be theN numbers
of geo-distributed data centers located in the cloud, where
n ∈ N . These data centers are connected throughM numbers
of gateways G = {GW1,GW2, . . . ,GWm}, where m ∈ M .
In our framework, H numbers of those hospitals are con-
nected with those N numbers of geo-distributed data centers
via M numbers of gateways.

IV. DATA COLLECTION MODEL
In traditional healthcare systems, the patient data are col-
lected, stored and analyzed in a traditional manner, which
cannot support the diagnosis of complex health conditions.
However, in our proposed data collection scheme, doctors,
patients and BANs are considered altogether as the sources
of generating data based on the frequency of visits (f ) of
a patient instead of considering only numbers of patients
as analyzed in traditional schemes. A window based [28]
temporary data collection and monitoring models are used
to enhance the usefulness of patient monitoring. The win-
dow size could be modified as per the health problem
or requirements. Mostly, this is more beneficial for the
self-monitoring and time series patients, where the patient
condition is observed based on the series of health related
parameters. For example, blood pressure data of patient A
is recorded on the time frame T = {0, 1, . . . , t} with win-
dow frames W = {W1,W2, . . . ,Ww}, as shown in Fig. 2,
where the duration of each window Wi contains 3 units. In
the second window (W2), the average blood pressure data
(Avg.W2) of three time slots (4, 5, 6) is recorded as 140, which
is greater than the critical condition (if (Avg.Ww > 130)).
Those recorded data with time series are collected by using
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FIGURE 2. Window based data collection and monitoring.

our proposed data acquisition scheme and is transmitted to
the data centers in the cloud for storage and analysis.

In healthcare big data environment, the physiological data,
EHR, 3D imaging, radiology images, genomic sequencing,
clinical, and billing data are the sources of big data, which
describe the volume. Real-time and emergency patient mon-
itoring such as BAN patients, heart beat monitoring and
Intensive Care Unit (ICU) patient monitoring are the sources
of streaming data, which describe the velocity of the data.
Similarly, the healthcare data such as ECG, EMG and clinical
reports are the the unstructured data, whereas the patients
visits, personal records are the structured data, which describe
the verity. Though most of the papers consider the patient’s
physiological data as the big data [3], we include visiting
frequency of the patients to the hospitals in our big data
processing models.

A. DATA ACQUISITION SCHEME
The numbers of visits of a patient to consult the doctors in
different hospitals need to be analyzed as they can generate
data in each visit. Without loss of generality, let us assume
that a patient (Pkij) visits f times to a department (DPi) within
w intervals. During the visit of each patient, let ℘f , ℘DP and
℘D be the probabilities of patients visiting frequency of hospi-
tals, departments, and doctors in the window w, respectively.
It is to be noted that ℘V and ℘BA are the least value of the
probability of a patient that visits the hospital and BANs,
respectively.
Theorem 1: Probability of visit ℘V of a patient to a hospi-

tal is at least f
dδw .

Proof: Let, f be the frequency of visits by a patient
Pkij to the ith department of k th hospital, where i ∈ DP and
k ∈ H . Hence, the probability of frequency of visits ℘f of a
patient to the hospital within the window w can be expressed
as f

w . Similarly, the visiting probability to a department ℘DP

of a patient within the hospital is 1/
δ∑

ı=1
DPi. Probability of

a patient consulted by a doctor within one department ℘D

= 1/
d∑
ı=1

Di. If there are d numbers of doctors present in δ

numbers of departments in a hospital, the total probability of
visits of a patient can be expressed as ℘V = ℘f * ℘DP * ℘D.
Further, ℘V can be f

w * 1
δ∑

ı=1
DPi

* 1
d∑
ı=1

Di

. If we proceed further,

℘V (w) becomes f
dδw .

It is to be noted that probability of visits of a patient
increases monotonically with f and w. In another scenario,
a BAN (Bkij) is associated with the department in a hospital,
which generates data with time. Similarly, the indoor patients
also generate data time to time. In both scenarios, probability
of frequency of visits (℘f ) is set to be 1, as the BAN or indoor
patients can generate data throughout the observed time (w).
Theorem 2: Probability of consultation of a BAN ℘BA or

indoor patients in a department is at least 1
dδ .

Proof: Let, Bkij be the j
th BAN associated with ith depart-

ment of k th hospital, ∀i ∈ DP and ∀k ∈ H . If d and δ are
the number of doctors and departments present in a hospital,
respectively, the visiting probability of a patient to the doctors
and to a department are ℘D and ℘DP, respectively. The total
probability can be expressed as ℘BA = 1 * ℘DP * ℘D. Hence,
℘BA = 1 * 1

δ∑
ı=1

DPi

* 1
d∑
ı=1

Di

. Finally, ℘BA can be obtained as 1
dδ .

It is observed that the probability ℘BA increases if the
BANs associated with multiple doctors and departments
increase. As given in [29], the clinical test data and radio-
logical images are considered as structured and unstructured
data sets, respectively. According to the authors, one terabyte
of clinical text data and 19 terabytes of image data are gen-
erated by 250000 patients per year. In our data acquisition
scheme, both text and image data of the patients are also
considered, which are generated during visits of the patients.
Let u and v megabytes be the size of each text and image
data, respectively and ϕp be the amount of data generated by
a patient p during a single visit. Thus, ϕp is the aggregated
amount of both text (ϕpTD) and image (ϕpID) data of a patient
p, which can be expressed in Eq. (1).

ϕp(w) =
x∑

ı=1

ϕ
p
TDı (w) ∗ u+

y∑
=1

ϕ
p
ID (w) ∗ v (1)

Where, ϕp(w) is the data generated in the window w.
In Eq. (1) and (2), x and y are the numbers of generated
text and image documents, respectively for a patient p in a
single consultation window w. Similarly, ϕb is the aggregated
amount of text (ϕbTD) and image (ϕbID) data generated from a
BAN b.

ϕb(w) =
x∑

ı=1

ϕbTDı (w) ∗ u+
y∑
=1

ϕbID (w) ∗ v (2)

Considering the visiting probability of a patient within a
window w, amount of data generated from a patient 8p(w)
can be expressed as given in Eq. (3).

8p(w) = ϕp(w) ∗ ℘V (w) (3)

The total amount of data 8b(w) generated by a BAN b
within a window w is given in Eq. (4).

8b(w) = ϕb(w) ∗ ℘BA(w) (4)

Subsequently, 8δ(w) is the amount of data collected from
a department δ within a window w, which can be expressed
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in Eq. (5).

8δ(w) = 8p(w)+8b(w) (5)

The accumulated data 8i
Tot (w) of the patients and BANs

collected within the window w in the ith hospital can be
represented as given in Eq. (6), where i ∈ H .

8i
Tot (w) =

δ∑
ı=1

8ı (w) (6)

Since, h ∈ H is the number of hospitals present in the
healthcare system, the total amount of data 8h

Tot (w) can be
expressed as given in Eq. (7).

8h
Tot (w) =

h∑
=1

δ∑
ı=1

8 ı (w) (7)

B. TASK ALLOCATION MODEL
In our task allocation model, the tasks are assigned with
respect to the computation (µ) rate of an active server and
types (τ ) of the tasks. It is assumed that the tasks are pro-
cessed instantly without any buffering or queuing delay in
the data centers. Before execution of the tasks, the data
are distributed [30] with multiple replicas among the active
servers (θ ) of the data centers for load balancing and data
locality purpose. In our proposed system, arrival of tasks is
considered in two phases, i.e. from the hospital to the gateway
and gateway to the data center’s active servers. Let, λh,g(w)
be the arrival rate of the tasks from a hospital h ∈ H to the
gateway g ∈ G and λg,θ (w) be the arrival rate of tasks from
a gateway g ∈ G to the active servers θ of a data center in
a window w. All incoming tasks from different hospitals to
the active servers of the cloud data centers via gateways are
processed and expressed as given in Eq. 8.

h∑
ı=1

λı,g(w) =
g∑
=1

λ,θ (w) =
θ∑
`=1

µ`(w) (8)

Further, the tasks are categorized into two types based
on the processing time and priority. In healthcare system,
some tasks may need short processing time such as doctor’s
query and short-term analysis. Some other tasks may need
long processing time such as data backup, migration, and
integration. Similarly, priority tasks are defined as the queries
coming in emergency situations such as queries during any
surgery. Let, τ hs (w) and τ

h
l (w) be the short and long processing

type of the tasks during a window w in a hospital h ∈ H ,
respectively. Similarly, let τ hpr (w) and τ

h
po(w) be the amount

of priority and posteriority tasks available during a window w
for processing in a hospital h ∈ H , where τ hs = τ hpr + τ

h
po.

The arrival rate λ(w) is bounded by the task τ (w) during each

window w as given in Eq. 9.

τ hs (w)+τ
h
l (w)=

h∑
ı=1

λı,g(w)=
g∑
=1

λ,θ (w)=
θ∑
`=1

µ`(w)

τ hpr+τ
h
po+τ

h
l (w)=

h∑
ı=1

λı,g(w)=
g∑
=1

λ,θ (w)=
θ∑
`=1

µ`(w)


(9)

V. DATA ANALYSIS MODEL
As discussed in the data acquisition phase, 8h

Tot amount of
data are collected for analysis. Those bulky data sets are
divided into small number of chunks for parallel processing.
Let, χ be the size of each partition (or chunk) of the input
data sets. Now, the total number of equal partitions can be

Up = b
8h
Tot
χ
c. MapReduce model is used to process those

huge amounts of healthcare data, which is discussed in the
following subsection.

A. ANALYSIS IN MapReduce FRAMEWORK
In the data input phase of the MapReduce framework [14],
[30], [31], Up quantity of data blocks are induced, which are
collected from the patients and the BANs in the data acqui-
sition phase. Those Up number of data blocks are distributed
among the active servers to achieve the data locality before
any task execution. Let, Q = {Q1,Q2, . . . ,Qq} be the set of
map functions present in our analytical model, where q num-
bers of Maps are executed in parallel. The intermediatemap()
output is shuffled among Reducers in the shuffle phase to
achieve the data locality for better performance with respect
to the faster execution. Let, R = {R1,R2, . . . ,Rr } be the set
of Reduces present in the MapReduce framework, where r
reduce() functions exist. In general, number of Reduces are
less than or equal to the number of Maps, i.e. R(w) ≤ Q(w).
In our proposed data analysis model, analyzed data aremoved
to the output phase for storage and visualization purpose after
the Reduce phase.

B. CORRELATION ANALYSIS USING MapReduce
The correlation analysis [32] is performed on the fine-grained
processing of the data sets in the MapReduce framework.
In our study, it is assumed that the health parameters are
different in terms of type and number from one department
to another. Let, 9k

ψi
= {9k

ψ1
, 9k

ψ2
, . . . , 9k

ψδ
}, be the set

of health parameters ∀i ∈ DP and ψ1 6= ψ2 6= . . . 6=

ψδ in a hospital k|∀k ∈ H . For example, 91
ψ1

represents
the parameter set 1 that belongs to the department 1 in the
hospital 1.

In healthcare system, some health parameters are closely
associated with each other with respect to the disease and its
impact. Even, the relationships between the health variables
are more complicated when a patient belongs to two or more
departments in a hospital. Hence, we find the interrelation-
ship between the patients having different health parameters
and disease. In our proposed work, two types of analysis
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are performed in correlation evaluation, i.e. Intra-cluster and
Inter-cluster analysis as follows.

1) INTRA-CLUSTER CORRELATION ANALYSIS
In Intra-cluster Correlation [33], the patients within the same
department are clustered based on their resemblance. Here,
each individual is referred to as a patient p in a department
δ, where p ∈ P and δ ∈ DP. Let ψδ be the number of health
parameters associated in a department δ. Hence, the patient p
hasψδ number of health parameters. However, allψδ number
of parameters are not equally responsible for a specific dis-
ease. Therefore, we find the correlation among those health
parameters of a patient within the department DPδ . Before
correlation analysis, the health parameters (ψδ) are presented
in the form of a health parameter matrix (MPh

δp (w)) as given in
Eq. (10), where Ph represents the personal health of a patient
p in a department δ within a window w.

MPh
δp (w)=

( 9k
1δ 9k

2δ . 9k
ψδ

Pkδp (Pkδp, 9
k
1δ) (P

k
δp, 9

k
2δ) . (P

k
δp, 9

k
ψδ)

)
(10)

Besides, within a department δ, p numbers of patients are
available, where p ∈ P with ψδ number of health parameters.
The health parameters are stored in intra-cluster parameter
matrix (Iakδ (w)) as given in Eq. (11).

Iakδ (w) =


9k
ψδ

Pkδ1 MPh
δ1 (w)

Pkδ2 MPh
δ2 (w)

. .

Pkδp MPh
δp (w)

 (11)

After simplification of Eq. (11), all health parameters related
to the department δ can be represented in Eq. (12).

Iakδ (w)

=


9k
1δ 9k

2δ . 9k
ψδ

Pkδ1 (Pkδ1, 9
k
1δ) (Pkδ1, 9

k
2δ) . (Pkδ1, 9

k
ψδ)

Pkδ2 (Pkδ2, 9
k
1δ) (Pkδ2, 9

k
2δ) . (Pkδ2, 9

k
ψδ)

. . . . .

Pkδp (Pkδp, 9
k
1δ) (Pkδp, 9

k
2δ) . (Pkδp, 9

k
ψδ)


(12)

For example,Cardiology department (Crd) has multiple heart
disease parameters with p number of patients. Now, the
matrix IakCrd (w) can be represented as given below.

IakCrd (w) =


9k
1δ=Age 9

k
2δ=Sex . 9

k
ψδ=thlh

PkCrd1 63 1 . 150
PkCrd2 67 1 . 108
. . . . .

PkCrdp 41 0 . 172


In this work, our goal is to find the correlations (0akδ (w))

among different health parameters (ψδ) of patient p unlike
the patients in a department δ within the windoww. However,
the health parameter correlation values are different from one

patient to another within the same department due to the
variance in the range of the parameters and severity of the dis-
ease. The correlation evaluation has different sub-steps such
as column mean (ρakψ (w)), variance (σakδ (w)) and standard
deviation (SDkδ (w)). All those sub-steps are executed in vari-
ous map phases and the intra-cluster correlation (0akδ (w)) is
evaluated in the reduce phase. In the reduce phase, severity
of the disease of a patient with respect to the correlated value
of health parameters is checked and the high risk patients are
clustered into a group (�δ). The correlation factor0akδ (w) lies
always within the range [0, 1], where 1 and 0 are positive, and
no correlation, respectively as given in Eq. (13).

0akδ (w) =

{
1 if positive correlation
0 if no correlation

(13)

Algorithm 1 Intra-cluster Correlation Evaluation (IaCE)
Input: χ : The size of each individual data partition.
Output: 0akδ (w) : Intra-cluster correlation factor within

window w.
�δ(w) : Newly classified patient set within window w.
Notations:
p : # of patients in a hospital.
b : # of BANs in a hospital.
8δTot (w) : Total amount of health data collected in a
healthcare cloud within window w.
ψ : # of health parameters associated with each patient
and department.

1: Initialize 8δTot (w) = 0;
2: e = p + b; // Total # of patients and BANs within the

department δ.
3: for ı = 1 to e do
4: for  = 1 to ψ do
5: 8δTotı (w) is calculated based on Eq. (5);
6: end for
7: end for
8: Up = b

8δTot
χ
c;

9: The steps from 10 to 17 are executed on Up number of
data blocks;

10: for ı = 0 to |Up| do
11: for  = 0 to ψ do
12: Intra-cluster matrix Iakδ (w)[ı][ ] = [Pkı , 9

k
 ];

13: end for
14: Find the column mean ρakı (w) based on the Eq. (14);
15: end for
16: Evaluate the variance (σakδ (w)) based on Eq. (15);
17: Calculate standard deviation (SDkδ (w)) based on Eq. (16);
18: Find Intra-cluster correlation (0akδ (w)) based on Eq. (17);
19: if 0akδ (w) ≥ ϒa then
20: �δ(w) = {Pı };
21: end if
22: Return 0ωa (w) and �δ(w);

The formal steps of intra-cluster correlation are described
in Algorithm 1. Initially, the input and output parameters are
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set in Intra-cluster Correlation Evaluation (IaCE) algorithm
before its execution. According to the IaCE algorithm, the
total collected data (8δTot (w)) is initialized. The total (e =
p + b) number of patients and BANs are calculated within
a department δ. Afterward, 8δTot (w) is calculated within the
window w. In MapReduce model, each block size is fixed
to be χ MB and is used as the input data set. Hence, Up
number of data blocks are generated and distributed among
the active servers and all the statistical analysis are performed
on those data blocks. The collected data are represented in an
intra-cluster matrix (Iakδ (w)). The column mean (ρakψ (w)) is
calculated for all ψ number of parameters ψ ∈ 9 of all (e)
number of patients and BANs present in the department δ,
which is expressed in Eq. (14).

ρakψ (w) =
1
ψ

1
e

ψ∑
ı=1

e∑
=1

Iakδ [ı][ ] (14)

Once the column mean is calculated in some mapı () for
each column in Iakδ (w) and for ı ∈ Q, the variance ((σakδ (w))

2)
and standard deviation (SDkδ (w)) are evaluated within another
map (), where  ∈ Q and ı 6=  within the window w for
entire cluster matrix as expressed in Eq. (15).

(σakδ (w))
2
=

1
e

ψ∑
=1

e∑
ı=1

(Pkı ψ − ρa
k
ψ )

2 (15)

After the variance, standard deviation (SDkδ (w)) is calcu-
lated as given in Eq. (16).

SDkδ (w) =
√
(σakδ (w))

2 (16)

After ρakψ (w), σa
k
δ (w) and SD

k
δ (w) are calculated in differ-

ent map phases, the intermediate results are shuffled among
the Reducers to achieve the data locality during execution.
The intra-cluster correlation (0akδ (w)) is evaluated in the
reduce() function as shown in Fig. 3 and is expressed in
Eq. 17.

0akδ (w) =
1
eψ

ψ∑
=1

e∑
ı=1

e−1∑
ℵ=1

(Pkı 9 − ρa
k
ψ )(P

k
ı+ℵ9 − ρa

k
ψ )

SDkδ (w)

(17)

Besides, the correlation factor (0akδ (w)) is checked by a
threshold value (ϒa) to know the severity of the parameters
towards the disease. If the value of 0akδ (w) is higher than ϒa,
patients belonging to those highly influenced parameters are
classified into a new set (�δ). This newly classified set (�δ)
holds the high risk patients based on their health parameter
correlated values for future health condition analysis and
medications.

2) INTER-CLUSTER CORRELATION ANALYSIS
Inter-cluster correlation is used to find the similarity or
dissimilarity between health parameters of different depart-
ments. For example, any heart patient p ∈ P that has
neurological disorder belongs to two different departments,

i.e., Cardiology (Crd) department for heart diseases and
Neurology (Neuro) department for the neurological disor-
der. According to two different departments, i.e. DPCrd and
DPNeuro, the health parameters 9k

ψCrd
and 9k

ψNeuro
also varies

with respect to the type as well as number. Hence, the
Inter-cluster analysis is required to know the dependencies
between9k

ψCrd
and9k

ψNeuro
. Further, we also find the high risk

patients and cluster them into a common set (�ı ) such as
(�CrdNeuro) based on their correlated values. Let, ψı and ψ
be the number of health parameters associated with ı th and  th

departments, respectively. Before Inter-cluster correlation
analysis, the health parameters 9k

ψı
and 9k

ψ
of ı th and  th

departments are presented in inter-cluster parameter matrix
(Iekψı

(w)) within window w as given in Eq. (18).

Iekψı
(w) = Iakψı

(w) ∪ Iakψ (w) (18)

The Inter-cluster correlation factor (0ekı (t)) ranges
between [0, 1], where 1, and 0 are the positive and no cor-
relation, respectively, as given in Eq. (19).

0ekı (t) =

{
+1 if positive correlation
0 if no correlation

(19)

The Inter-cluster Correlation Evaluation (IeCE) is
described in Algorithm 2. The input and output parameters
are set initially in IeCE algorithm before the execution.
Total 8ı

Tot (w) amount of data are generated from ı th and  th

departments within the window w. Let, U ı
p be the number of

data blocks generated from8ı
Tot (w) amount of data sets and is

distributed among the active servers. Afterward, Inter-cluster
matrix Iekψı

is set according to Eq. (18) in which ψı and ψ
amount of health parameters are present. Now, the column
mean (ρekψı

(w)) is calculated for all parameters of both ı th

and  th departments, which is expressed in Eq. (20).

ρekψı
(w) =

1
ψıψ

ψı∑
i=1

ψ∑
j=1

Iekψı
[i][j] (20)

After calculation of the column mean, the variance
((σekı (w))

2) is computed within different map functions in
window w, which can be given in Eq. (21).

(σakı (w))
2
=

1
ψıψ

ψı∑
i=1

ψ∑
j=1

(Iekψı
[i][j]− ρekψı

)2 (21)

Hence, the standard deviation (SDkı (w)) is measured for ı th

and  th departments and is expressed in Eq. (22).

SDkı (w) =
√
(σakı (w))2 (22)

Thereafter, the inter-cluster correlation (0ekı (w)) is evalu-
ated in the reduce() function after ρekψı

(w), (σekı (w))
2 and

SDkı (w) calculations are finished in different map phases.
The intermediate results are shuffled among the Reducers for
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Algorithm 2 Inter-Cluster Correlation Evaluation (IeCE)
Input: χ : The size of each individual data partition.
Output: 0ekδ (w) : Inter-cluster correlation factor at time t .

�ı (w) : Newly classified patient set at time t .
Notations:
8

ı
Tot (w) : Total amount of health data collected from ı th

and  th department within window w.
ψı : # of health parameters associated with ı th depart-
ment.
ψ : # of health parameters associated with  th depart-
ment.

1: Initialize 8ı
Tot (w) = 0;

2: for ı = 1 to ψı do
3: for  = 1 to ψ do
4: 8

ı
Tot (w) amount of data are collected;

5: end for
6: end for
7: U ı

p = b
8

ı
Tot
χ
c;

8: The steps from 9 to 21 are executed on U ı
p number of

data blocks;
9: for ı = 0 to ψı do
10: for  = 0 to ψ do
11: Intra-cluster matrix Iekψı

(w)[ı][ ] = [9k
ı , 9

k
 ];

12: end for
13: Find the column mean ρekψı

(w) based on the Eq. (20);
14: end for
15: for ı = 0 to P do
16: for  = 0 to 9 do
17: Inter-cluster matrix Iωe (w)[ı][ ] = Pı9 ;
18: end for
19: Find the column mean ρωψ (w)[ı] =

1
P (Pı )(9ı );

20: end for
21: Compute variance ((σekı (w))

2) based on Eq. (21);
22: Calculate standard deviation (SDkı (w)) based on

Eq. (22);
23: Find inter-cluster correlation (0ekı (w)) based on

Eq. (23);
24: if 0ekı (w) ≥ ϒe then
25: �ı (w) = {Pı }||{P };
26: end if
27: Return 0ekı (w) and �ı (w);

data locality as shown in Fig. 3, where rı ∈ R. The inter-
cluster correlation (0ekı (w)) is expressed in Eq. 23.

0ekı (w) =
1

ψıψ

×

ψı∑
i=1

ψ∑
j=1

e−1∑
ℵ=1

(9k
i 9

k
j − ρe

k
ψij
)(9k

i+ℵ9
k
j+ℵ − ρe

k
ψij
)

SDkı (t)

(23)

In addition to the inter-cluster correlation analysis, the
highly influenced health parameters are identified and
grouped together based on the correlation values. A threshold

FIGURE 3. MapReduce model for healthcare data analysis and
processing.

(ϒe) is set as the high risk level and is compared with the
correlation values. If the value of 0ekı (w) is higher than
the ϒe, the respective patients with those health parameters
are classified into a new group (�ı ). This newly classified
group is considered as the high risk patients who need proper
medications and precautions.

VI. FUTURE HEALTH PREDICTION MODEL
In this section, we predict the future health status of the
patients based on their current health parameters (9). Note
that the patients are grouped together in a set (�ı ) in a partic-
ular department δ based on their correlated values (0akδ (w)).
During the diagnosis, many questions may be asked by the
doctors related to the past history of the patients to know a
patient’s current health condition. The doctors also inspect
the hidden symptoms related to the diseases of the patients.
However, the symptoms may vary from patient to patient
with different severity. By understanding the above system,
a Hidden Markov Model (HMM) [34], [35] is formulated
and a Viterbi algorithm [36] is used to know the most likely
sequence of the hidden states.

Let, S = {S1, S2, . . . , SK} and O = {O1,O2, . . . ,OL}
be the state and observe space set in HMM, respectively.
The Flu patients’ future health prediction is considered as
the application of our proposed prediction model. Let, the
ith Flu patient (Pi) be treated by the jth doctor (Dj) having
ψ health parameters within window w0 as the initial case.
A sequence of hidden states γ = {γ1, γ2, . . . , γw} such as
a runny nose (Rn), Sneezing (Sn), Strep Throat (St), i.e.
γ = {γRn, γSn and γSt } are found by the doctor at different
time instances during observations. However, it is assumed
that each observation is associated with different probabili-
ties to make the environment more realistic. Without losing
generality, the initial probability (5) is considered, where
5 = {51,52, . . . ,5K }. Let,αı be the transition probability
from state ı to state  . An emission probability βı is defined
to estimate how likely the patient feels during observationO
on each arrival time, which affects the state Sı .

The Max-product algorithm [37] known as Viterbi algo-
rithm is used to find the posterior probability (future health
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status). Let, 3 be the most probable state sequence of obser-
vations for future prediction, where3= {31,32, . . . , 3w}.
The exact path of the most probable state sequence is stored
in η as a variable, where η = {η1, η2, . . . , ηw}. In case of
healthcare data analysis, future health condition prediction
(state transition) is hard to compute accurately with standard
HMM due to diversified nature of the data sets. Hence, the
Intra-cluster correlation (0akδ (w)) coefficient is added as a
new parameter to the standard HMM in order to improve the
efficiency of the prediction model. By applying the recur-
rences, following equations can be derived.

311(1)= β(γ1|S1) ∗ 0akδ` (w) ∗51, for t, K , and L = 1.

(24)

For L observations and K states within window w, we get

3LK (w)=β(γL | SK ) ∗ αıK ∗ 0akδ` (w) ∗3L−1K−1(w− 1)

ηLK (w)= argmaxı∈S{3LK (w)}

}
(25)

Algorithm 3 Future Health Condition Prediction (FHCP)
Input: 5 : Initial probability where 5 =

{51,52, . . . ,5`}.

αı : Transition probability from ı th state to  th state.
βı :Emission probability of ı th state and  th observation.
0akδ` (w) : Intra-cluster Correlation where ` is the # of
patients available within the risk set �δ .

Output: 3 : Most likely hidden state sequence where 3 =
{31,32, . . . , 3w}.
η : Store the most probable path where η =

{η1, η2, . . . , ηw}.
Notations:
S : States where S = {S1, S2, . . . , S`}.
O : Observation where O = {O1,O2, . . . ,OL}.
γ : Sequence of hidden state observations, where γ =
{γ1, γ2, . . . , γw}.

1: Initialize
3 = 0 and η = 0

2: Find the Intra-cluster correlation(0akδ (w)[`]) = IaCE();
3: for ı = 0 to ` do
4: Calculate 3ı1 = 5ı ∗ 0akδı

(w) ∗ βı1; (base cases)
5: Calculate ηı1 = ı ;
6: end for
7: for  = 0 to w do
8: for ı = 0 to ` do
9: 3ı = max`(3ı−1 ∗α` ∗0akδı

(w)∗βγı ); # w > 1
10: Calculate ηı = argmax`(3ı );
11: end for
12: return 3 and η;
13: end for

As given in Algorithm 3, patients having Flu are diagnosed
and the future health status is checked as the application of
Future Health Condition Prediction (FHCP) algorithm. In a
specific example, suppose a patient p ∈ P has two states,

i.e. healthy or flu, where S = {SHealthy, SFlu}. The health
status is calculated based on some observations (O) such as in
day 1, day 2 etc, and hidden symptoms (γ ) such as a runny
nose (Rn), Sneezing (Sn), Strep Throat (St), i.e. γ = {γRn, γSn
and γSt }. All input and output health notations of patients are
initialized in FHCP algorithm. The initial probability (5) is
set for the state change from starting point to the health state,
where 5 = {5Healthy : 0.5, 5Flu : 0.5}. Further, the intra-
cluster correlated (0akδ (w)) values are calculated to find the
similar group of patients. Hence, the future state is estimated
by considering only those correlated patients instead of all
within the department. The correlation value (0akδ (w)) is set
to be 0.5 in our evaluation. However, this value may vary
with respect to patients and time as well. The state change
probability or transition probability (αHealthy,Flu) is set for the
state change from healthy to flu and viceversa.

αHealthy,Flu =

( Healthy Flu

Healthy 0.6 0.4
Flu 0.4 0.6

)
Similarly, the emission probability βHealthy,Flu is set accord-
ing to the hidden symptoms for two states.

βHealthy,Flu =

( Rn Sn St Normal

Healthy 0.3 0.1 0.1 0.5
Flu 0.1 0.2 0.6 0.1

)
In the first day of observation, let health condition of

a patient be good as observed by the doctor, i.e. normal:
0.5 and the most probable state (3) is calculated for the
initial step. 31

Start,Healthy = 5Healthy: 0.5 * βHealthy,Normal :
0.5 * 0akδ [ı](t): 0.5. Hence, 3

1
Start,Healthy = 0.125. Similarly,

31
Start,Flu = 5Flu: 0.5 * βFlu,Normal : 0.1 * 0akδ [ı](t): 0.5.

Hence, 31
Start,Flu = 0.025. Then, the exact path of the most

probable state sequence is stored in η, which is selected as
the max{3} for the initial step of the algorithm. Therefore,
η1 = max{31

Start,Healthy : 0.125, 3
1
Start,Flu : 0.025}. Finally,

η1 = {SHealthy : 0.125}.
However, in the next day of the visit, patient p ∈

P is having the runny nose (Rn). Again, the probable
state (3), and path (η) are calculated recursively. By
considering the day one probabilities, i.e. 31

Start,Healthy
and η1 = SHealthy, we can get 32

Healthy,Healthy =

31
Start,Healthy : 0.125 * αHealthy,Healthy: 0.6 * βHealthy,Rn: 0.3 *

0akδ [ı](t): 0.5. Hence, 3
2
Healthy,Healthy = 0.01125. Similarly,

32
Healthy,Flu = 3Start,Flu: 0.025 * αHealthy,Flu: 0.4 * βFlu,Rn:

0.1 *0akδ [ı](t): 0.5. Therefore,3
2
Start,Flu = 0.0005. Now, η is

updated by selecting the value of max{3} and the most prob-
able state is stored. Therefore, η2 = max{32

Healthy,Healthy :

0.01125, 32
Healthy,Flu : 0.0005}.

Let, the patient is having Strep Throat (St) with runny
nose (Rn) on the third day. Here, the previous day symptoms
are also considered by multiplying the previous day observed
probability with the current day observed probability. For
example, Rn probability 0.3 in day 3 is multiplied with the
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probability of St , which is 0.1 for 33
Healthy,Healthy calcula-

tion. Hence, 33
Healthy,Healthy = 32

Healthy,Healthy : 0.01125
* αHealthy,Healthy: 0.6 * βHealthy,Rn: 0.3 * βHealthy,St : 0.1 *
0akδ [ı](t): 0.5. As a result, 33

Healthy,Healthy = 0.00010125.
Similarly, 33

Healthy,Flu = 0.000006. By considering the high-
est vale, η3 = 33

Healthy,Healthy = 0.00010125. Let the
patient has sneezing (Sn) in the fourth day of the observation.
By considering these hidden symptoms, the most probable
state is calculated. Hence, 34

Healthy,Healthy = 2.025e-7 and
34
Healthy,Flu = 2.16e-7. If we take logarithm of both states,

34
Healthy,Healthy = log(2.025e-7) = −6.693 and 34

Healthy,Flu
= log(2.16e-7) = −6.665. According to the rule, the high-
est value is taken as the state of the day, which is η4 =
34
Healthy,Flue =−6.665. Hence, it is concluded that the patient

is having flu after the fourth day. By using backtracking,
the most probable state paths are found from the predicted
to the starting day. The above calculations are only for one
patient. However, to handle a large number of patients, we
can run FHCP algorithm separately in different map phases
for different patients.

VII. PERFORMANCE EVALUATION
In this section, evaluations of the proposed algorithms are
carried out by using CloudSim 3.0 [38] with Java Eclipse
Integrated Development Environment (IDE). All simulations
are performed on the Intel core i7 3.4GHz systems to process
the patient data in cloud MapReduce [39]. For our simula-
tion, healthcare patient data are taken from publicly avail-
able machine learning repository in the center for machine
learning and intelligent systems [40]. In our simulation, car-
diac (heart diseases) patients data are considered for IaCE
and IeCE algorithm, whereas flu patients data are used for
FHCP algorithm execution. All the data are collected from
Cleveland and Hungarian clinic [40] available for public use.
During our analysis, 14 number of heart disease attributes
are used including the structured, semi-structured and un-
structured data. The step-by-step procedure of CloudSim
simulator is shown in Fig. 4.

In CloudSim simulator, the packages and library files are
initialized in the first step, which are going to be used in
the simulation process. By using CloudSim.init (num_user,
calendar, trace_flag) function, the library files are initialized,
where num_user represents the number of cloud users, cal-
endar holds the current date and trace_flag is used to print
the events as shown in step 1 of Fig. 4.

Data centers are the backbone of the cloud environment,
where each data center is comprised of multiple hosts. As
shown in step 2 of Fig. 4, Datacenter datacenter0 = cre-
ateDatacenter (‘‘Datacenter_0’’) is used to create the data
center. Resource provisioning to virtual machines is the basic
objective of the host and the detail list of parameters for the
data center host is shown in Table 1. It is assumed that the
data centers are networked and geographically distributed.
In step 3 of Fig. 4, the broker is created by DatacenterBroker
broker= createBroker()method and acts as a user in the data

FIGURE 4. Simulation steps of CloudSim simulator.

TABLE 1. Parameter list of data centers

TABLE 2. Parameter list of virtual machines

center. The broker is responsible for assigning the Virtual
Machines (VMs) to the hosts (Physical Machines) and also
sets cloudlets (tasks) to the VMs. EachVM is created in step 4
of Fig. 4 to handle the service tasks by sharing the physical
machines with respect to time and resources. The parameters
of the VMs are defined in Table 2 and are set as follows, Vm
vm = new Vm (vmid, brokerId, mips, pesNumber, ram, bw,
size, vmm, new CloudletSchedulerTimeShared()).
The cloudlets (or tasks) are created in step 5 as shown

in Fig. 4. The basic parameters of cloudlets are shown in
Table 3 and are set in CloudSim as follows: Cloudlet coudlet
= new Cloudlet (id, length, pesNumber, fileSize, output-
Size, utilizationModel, utilizationModel, utilizationModel).
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TABLE 3. Parameter list of cloudlets

FIGURE 5. Intra-cluster correlation evaluation values.

Here, our own Map (q ∈ Q) and Reduce (r ∈ R) func-
tions are defined for execution, where each task has either
one Map or Reduce function represented as a cloudlet.
However, the Map and Reduce functions can be defined
externally and import the outputs in CloudSim IDE. In
the next step, i.e., step 6 of Fig. 4, the cloudlet is sub-
mitted to the broker present in the data center by calling
broker.submitCloudletList (cloudletList). Hence, the simula-
tion will start on the next step (step 7) of Fig. 4 by call-
ing CloudSim.startSimulation(). Finally, the simulation is
stopped in step 8 of Fig. 4 and the results are stored by calling
CloudSim.stopSimulation().

A. SIMULATION RESULTS
The pre-processing step is performed to normalize the raw
data for execution in some reserved map() ∈ Q. As shown in
Fig. 5, the intra-cluster correlated (0akδ ) values are plotted for
two sets of patients by executing the IaCE algorithm. Instead
of all the patients, 50 number of patients are considered in
each set to observe the data more clearly. The plot shows
that almost all the patients correlation values are greater than
0.95, which leads to +ve correlation exist between two sets
in one cluster. Therefore, the healthcare attributes of set 1
are highly correlated with the attributes of set 2. From the
figure, it seems that our proposed algorithm is efficient for
correlation analysis of the heart disease patients.

In Fig. 6, the inter-cluster correlated (0ekı ) values are
plotted for two sets of patients belong to two differ-
ent clusters, i.e. Cleveland and Hungarian by executing
IeCE_(Cleveland - Hungarian) algorithm on different sets
of patients other than the sets of patients used in Fig. 5. In
this graph, IaCE_Cleveland and IaCE_Hungarian values are
also plotted to compare with IeCE_(Cleveland-Hungarian).
It is observed that some correlation values are less than 0.6

FIGURE 6. Inter-cluster correlation evaluation values.

FIGURE 7. Correlation variances with # of parameters.

and most of them are greater than 0.95. The values less than
0.6 are treated as the less correlated values, where greater
than 0.9 values are treated as highly correlated patients. This
correlation analysis could be extended to a classification
analysis based on the correlation values.

The number of attributes explained in Fig. 7 plays
an important role in the correlation analysis. According
to the simulation result, initially both intra-cluster cor-
relation, and inter-cluster correlation analysis are varied
due to less number of parameters. However, this varia-
tion is minimized when the number of parameters are
increased. IeCE_(Cleveland - Hungarian) correlation value
is more drifted than IaCE_(Cleveland) correlation value as
IeCE_(Cleveland - Hungarian) is executed with two different
clusters and IaCE_(Cleveland) is carried out within a single
cluster. It is clearly observed that the correlation value is more
stable with more number of parameters.

In Fig. 8, the step by step execution of FHCP algorithm
is exhibited, where Viterbi path is estimated by considering
the current health condition of the patients. In the initial
stage of FHCP, the health states and patient’s observations
are determined. In this scenario, the starting probability is
set to be 0.5 for both Healthy and Flu state by giving equal
opportunity. Similarly, the correlation value is set to be 0.5 at
initial time instance. The initial state probability is calculated
by multiplying the initial probability, correlation factor with
the state transition probability and found that Healthy state
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FIGURE 8. Viterbi path estimation for future health prediction.

FIGURE 9. Accuracy of Viterbi path prediction.

has the higher probability than the Flu one. Therefore, in
Day 1, the patient is felt healthy. Similarly, on the next day,
i.e. Day 2 also the health condition of the patient is Healthy.
However, the patient suffers from Flu in Day 3 as the hidden
symptom (Strep Throat: 0.6) has higher probability, which
affects the change of state. By continuing FHCP algorithm,
the patient condition is estimated to take necessary precaution
and preventions.

It is clearly noticed in Fig. 9 that the accuracy of pre-
diction is also increased with increase in the number of
attributes. When only one attribute is considered, the accu-
racy is touched around 51%. However, it is increased up to
58% with two attributes. The accuracy is about 80%, when
the numbers of attributes are increased to 8 and eventually
we got the maximum accuracy of 98%, when the numbers of
attributes are increased to 14.

Processing time is an important factor to observe the effi-
ciency of the algorithms, which is shown in Fig. 10. Here,
the processing time is defined as the summation of task

FIGURE 10. Processing time.

FIGURE 11. CPU utilization with increase in data size.

scheduling time with data transfer time from different data
centers to achieve the data locality and execution time. It is
observed that the processing time is reduced by usingmultiple
virtual machines in different data centers. The processing
time of IaCE algorithm is longer than the IeCE algorithm as
the taskswithin one data center wait for the execution until the
running tasks are finished. The IeCE algorithm with 3 data
centers is faster than the IeCE algorithm with 2 data centers
due to parallel processing of the map tasks. Here, the main
advantage of using cloud platform is to reduce the processing
time. For example, let us consider one VM in a standalone
system without any cloud platform. The processing time is
longer for IaCE algorithm with this configuration, where the
number of cloudlets are more. However, if we increase the
number of VMs, obviously the processing time is reduced
drastically. Similar trend can be observed for IeCE algorithm
with different numbers of VMs and configuration. However,
always increase in number of data centers does not enhance
the processing time as the data are sparse and require more
time for execution. Therefore, the processing time is directly
proportional to the execution and data transfer time.

The CPU utilization during processing of huge patient data
in the data centers is shown in Fig. 11. In our simulation, the
input data sizes are set in gigabytes that range from 5GB to
50GB. From the simulation result, higher CPU utilization is
observed with an increase of the amount of data size coming
to the data centers, which continues until it reaches at the
processing threshold. If the tasks have a hard deadline, new
data centers are added in the execution process to balance
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FIGURE 12. Bandwidth utilization with increase in data size.

FIGURE 13. Total cost estimation.

the under and over utilization. The main objective here is to
maximize the resource utilization without compromising the
processing deadline though we need to check for the under
and over utilization to minimize the cost.

In Fig. 12, the bandwidth utilization in the cloud service
is displayed. Here, 5 VMs are created and are fixed for each
data centers. It is observed that the percentage of bandwidth
utilization depends on the data size and geographically dis-
tributed data centers associated with the cloud services. For
instance, initially, the bandwidth utilization of DC5 was 59%
for 10GB of data. But, the utilization eventually boosts up
to 96% with 50GB of data. However, the bandwidth directly
depends on the network traffic and time variant in nature,
which affects the bandwidth cost estimation.

From revenue point of view, cost is another major factor,
which cannot be ignored and is shown in Fig. 13. In the
simulation, bandwidth cost, storage cost, computation cost
and data migration cost are taken into account. For cost calcu-
lation, AmazonWeb Service (AWS) pricing model is taken as
the reference and through simulation, the cost per processing
data in GB came out to be 0.5USD approximately. The IaCE
cost is less than theFHCP and IeCE. Most of the cost is varied
due to data transfer among different data centers, which is
directly proportional to the total cost. However, the growth
rate of cost per GB does not follow the same trend in the
growth rate of arrival data. For instance, the total cost is
increased linearly for processing the data up to 90GB though
it becomes steady between 90GB to 100GB.

VIII. CONCLUSION
In this paper, a probabilistic data acquisition method is
designed for the cloud based healthcare system. Besides,
IaCE and IeCE algorithms are designed for the intra and
inter cluster correlation analysis of the healthcare big data.
An FHCP algorithm is designed to predict the future health
condition of the patients based on their current health status
with the accuracy of 98%. In addition, cloud-based MapRe-
duce model is used as the processing framework for our
big data analysis. It is observed that our protocol can be
used for various applications related to healthcare and patient
monitoring such as heart disease prediction or cancer sever-
ity classification. Our future work is to implement the pro-
posed data analytic model in the real healthcare domain to
analyze the data in real-time data analytic platform such
as SPARK.
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