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ABSTRACT Simultaneous acquisition of electrooculogram, jaw electromyogram, electroencephalogram,
and head movement via consumer-grade wearable devices has become possible. Such devices offer new
opportunities to deploy practical biosignal-based interfaces for assistive robots; however, they also pose chal-
lenges related to the available signals and their characteristics. In this proof-of-concept study, we demonstrate
the possibility of successful control of a 5+ 1 degrees-of-freedom robot arm based on a consumer wireless
headband in the form of four control modes predicated on distinct signal combinations. We propose a control
approach hybrid at two levels, which seeks a compromise between robot controllability and maintaining the
user goal rather than being process-focused. First, robot arm steering combines discrete and proportional
aspects. Second, after the robot has been steered toward the approximate target direction, a sparse approach is
followed and the user only needs to issue a single command, after which steering adjustment and grasping are
performed automatically under stereoscopic vision guidance. We present in detail the associated algorithms,
whose implementation is publicly available. Within this framework, we also demonstrate the control of
arm posture and grasping force based, respectively, on object visual features and user input. We regard the
interface proposed herein as a viable blueprint for future work on controlling wheelchair-mounted and meal-
assisting robot arms.

INDEX TERMS Accelerometer, assistive robotics, brain-computer interface (BCI), brain-machine inter-
face (BMI), electrooculogram (EOG), electroencephalogram (EEG), electromyogram (EMG), event-related
desynchronization/synchronization (ERD/ERS), grasping force, human-machine interface (HMI), meal-
assisting robot, stereoscopic vision, wheelchair-mounted robot arm.

I. INTRODUCTION
Assistive robotics aims to improve quality of life and
reduce caregiver dependence for patients whose motor func-
tions have been impaired, e.g., by traumatic, vascular and
neoplastic lesions, motor neuron and other neurological
diseases; it also aims to enhance rehabilitation when func-
tion may be at least partially regained. Applied research
has yielded, e.g., effective exoskeletons, wheelchair-mounted
robotic manipulators for grasping and performing basic
operations using everyday-life objects, and meal-assisting

tabletop robots [1], [2]. A substantial challenge in this
area is to develop effective human-machine interfaces and
paradigms for robot control, with the available technolo-
gies differing substantially in their residual motor function
requirements, command throughput, ease of use, techni-
cal complexity and cost. At the bottom end of the spec-
trum, joystick (or micro-switch) control is suitable mainly
for patients with at least partially preserved hand func-
tion (e.g., as after hemispheric stroke), being inexpensive and
highly effective for driving, e.g., motorized wheelchairs and
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assistive arms [3], [4]; gesture-based control via low-cost
camera systems is also emerging as a suitable alterna-
tive, posing less stringent requirements on upper limb and
head movement capability [5], [6]. Highly accurate con-
trol of assistive devices has repeatedly been demonstrated
based on superficially-recorded face-muscle electromyo-
graphic (EMG) and/or electrooculographic (EOG) signals;
although harvesting information from these signals is gen-
erally more expensive and technically-demanding compared
to micro-switch and camera-based interfaces, at a minimum,
it only requires integrity of the cranial nerves function, which
is generally preserved in patients with spinal lesions [7]–[12].
At the top end of the spectrum with respect to complexity
and cost, brain-computer interfaces (BCI) and brain-machine
interfaces (BMI) rely on electroencephalographic (EEG) sig-
nals, thus bypassing neuromuscular control entirely and being
viable even in the presence of profound or total motor impair-
ment, such as in the case of motor neuron diseases and
brainstem lesions [13]–[16].

Research on BCI/BMI systems has been propelled by the
achievement of ever-increasing raw bit rates, implementa-
tion of practically-usable speller and graphical-use interface
control applications, and reconstruction of detailed mus-
cle activity from surface EEG signals [17]–[20]. However,
to date the translation of such successes into commercially-
available products impacting clinical reality has been
considerably hindered by practical factors: channel count,
positioning and signal quality requirements, together with
technical complexity and computational load; multiple
reviews of this area therefore underline the need for greater
focus on usability outside research settings, cost and avail-
ability [14], [15], [21], [22]. It is generally agreed upon
that ongoing development of dry-electrode and ultrahigh-
impedance technology will eventually lower BCI/BMI
deployment barriers, stemming from the need for high-
density, high-quality EEG acquisition [23], [24]. However,
several experimental studies have concluded that at the
present time, adopting a multi-modal approach in practical
applications of assistive robot control has substantial benefits,
as command decoding can be simplified and accelerated by
considering EOG and EMG signals, when these are avail-
able [16], [25]–[27]. Following this trend, many low-cost,
small-size wearable devices suitable for acquiring EOG and
EMG, alongside a limited number of EEG channels, have
recently been developed [28]–[33].

Another challenge in assistive robotics is the frequent
requirement to control large numbers of degrees-of-freedom.
When bio-signal acquisition from multiple viable muscle
bundles, nerve stumps or even the motor cortex itself is fea-
sible, direct patient control of all individual robot axes offers
the highest grade of flexibility and is particularly applicable
to driving exoskeletons, prosthetic hands or anthropomorphic
robot arms [7], [34]. Moreover, high-precision and propor-
tional control of single axes have been consistently demon-
strated based on surface EMG and even EOG [8], [35]–[37].
Yet, many practical applications of assistive robotics would

benefit from control of complex mechanics based on a heav-
ily constrained set of bio-signals acquired non-invasively,
while allowing the user to focus on their goal rather than on
kinematics. This need has driven recourse to either degrees-
of-freedom reduction approaches, namely, linking axes via
pre-determined relationships or postures, or ‘‘sparse’’ con-
trol schemes, wherein the user selects and activates pre-
established motor sequences via ‘‘high-level’’ commands
with or without the support of a graphical user inter-
face [25], [33], [38]–[42]. Such approach has proven particu-
larly effective when combined with computer vision systems
implementing object recognition and partially-autonomous
guidance, which can drastically simplify and accelerate the
performance of object manipulation tasks using robotic arms
and even humanoid robots [5], [42]–[46].

In this proof-of-concept study, we provide a blueprint
for control of a 5 + 1 degrees-of-freedom robot based on
an inexpensive, consumer-grade wearable device capable of
recording a combination of head movement, EOG, EMG
and EEG signals. We propose a hybrid control approach,
wherein steering of the robot arm is proportionally controlled
directly by the participant and guidance by a stereoscopic
vision system control implements automated reaching toward
and grasping of a target in response to a single trigger
command. We demonstrate and preliminarily compare four
control modes attainable with data from this device.
We exemplify grasping force control based on participant
input and arm posture selection based on object visual prop-
erties. All ongoing signal analysis and control algorithms
are described in detail, and the corresponding source code is
publicly available.

II. METHODS
A. EXPERIMENTAL TASK
To demonstrate the viability of the control architecture and
signal analysis algorithms described below, an experimental
task was devised, requiring the participant to sort colored
pawns into two cups depending on color: red and green to
the left and right cup, respectively. The cylindrical pawns,
having a diameter of 12 mm and height of 20 mm, were
laid out in front of the robot and presented separately in 3
pre-established groups of 6 each (Fig. 1a). Half of the
pawns per color were made of steel (weight: 18 g) and
thus required application of a strong force for successful
grasping; the other half needed to be grasped with very
light force, as they were made of felt (weight <1 g) and
contained a roll of double-sided tape, which would otherwise
collapse and stick, revealing the application of excessive
force (Fig. 1b). Additionally, the requirement was imposed
that the red pawns should be picked-up with sideways pos-
ture, while the green ones, with straight posture (Fig. 1c). This
task was similar to that utilized in a previous study on robot
arm control via fMRI; however, it posed additional require-
ments on force and posture; as such, although elementary
in concept, it necessitated fine control of all robot axes for
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FIGURE 1. Experimental setup. a) Robot arm having 5 + 1 degrees-of-freedom (base rotation, shoulder, elbow, wrist, wrist rotation
plus gripper), equipped with stereoscopic vision and gripper force sensors. The participant controlled it aiming to move the red and
green pawns into the cups located respectively on the left and right sides. The solid (steel) and hollow (felt) pawns required,
respectively, application of high and low grasping force. b) For demonstrating grasping force control by the participant, the felt pawns
contained a circle of double-sided tape collapsing upon application of excessive force. c) Arm posture was selected automatically
depending on pawn color. d) Frame-series depicting a representative grasping sequence.

successful performance and embodied the bases necessary
for driving an assistive arm able to manipulate heterogeneous
targets [45].

B. DATA ACQUISITION AND CONTROL MODES
All signals were digitized through a wearable device mar-
keted primarily as a meditation aid (muse 2014; InteraXon
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Inc., Toronto, Canada), which streamed polygraphic and head
movement data via a Bluetooth ‘‘RFCOMM’’ link; its end-
user price was approximately 1-2% of typical high-end EEG
systems prevalent in current BCI/BMI research, rendering
it, in principle, well-suitable for low-cost machine control
interfaces. The device consisted of a headband encapsulating
silver electrodes at the Fpz (recoding reference), AF7 and
AF8 sites and supra-auricular conductive rubber electrodes at
A1 and A2 (approximate corresponding 10/20 system loca-
tions); it also included an active reference system, inputs
for two additional cup electrodes, located at the Pz and
Fz sites (only used in mode 4, as detailed below), and a
3-axis accelerometer (Fig. 2). Electrical bio-signals and
accelerations were streamed, respectively, at 16-bit 500 Hz
and 10-bit 50 Hz, with the corresponding signals parsed for
command recognition at 10 Hz and 5 Hz. No part of the
system described below is specifically dependent on usage
of the ‘‘muse’’ device for data acquisition.

FIGURE 2. Electrode positioning on the ‘‘muse’’ wearable biosignal
acquisition device. The Fpz site served as recording reference; adjacent to
it, active reference electrodes were located (not labeled). The AF7 and
AF8 sites were used for digitizing horizontal electrooculogram (hEOG)
and rapid repeated eye-blinks (modes 2-4). The A1 and A2 sites were
used for digitizing jaw electromyogram (EMG, mode 2) and vertical EOG
(vEOG, mode 3) in combination with AF7/AF8, and to detect single
eye-blinks. Alpha-band electroencephalogram activity was recorded
between the Pz and Fz sites (mode 4).

We compared four control modes predicated on different
combinations of actions, one involving acceleration time-
series only and three electrical bio-signals only (Table 1).
In all modes, a standby/resume command was provided and
the participant was required to disable and re-enable the
robot between pawn groups; reflecting the requirement that
assistive devices should not enable accidentally during daily
activities, highly infrequent and effortful actions needed to be
repeated rapidly to enact the command: head tilting (mode 1)
or rapid eye blinking (modes 2-4).

As detailed below, the base rotation axis was proportionally
controlled directly by the participant when steering the arm
towards the intended pawn or cup, based on sideways head

FIGURE 3. Control state machine. The robot transitioned between
standby mode (all motion commands ignored) and still state upon
detection of an effortful action (s), namely either head tilting (mode
1) or repeated eye blinking (modes 2-4). Arm base steering was set
according to three discrete states (blue; turning left, still, turning right),
transitions between which were driven by brief horizontal
movements (l,r) of the head (mode 1) or eye-gaze (modes 2-4); entering
either rotation state, movement intensity determined arm base rotation
rate according to a sigmoid scaling function. Following detection of a
grasping command (g), namely nodding (mode 1), jaw clenching (mode
2) or eye blinking (modes 3-4), the system transitioned to a state (green)
wherein arm steering adjustment and grasping were performed
automatically; upon entering this state, nodding sharpness (mode 1),
clenching intensity (mode 2), vertical eye-gaze displacement (mode
3) or hand grasping force (mode 4) determined the grasping force applied
by the robot according to a sigmoid scaling function. When the arm was
steered to face a cup while holding a pawn (x), the system transitioned to
a state (red) wherein a dropping sequence was performed automatically.
The automated control states (red, green) could also be entered from the
turning states (transitions not shown).

rotation (mode 1) or horizontal eye movement (modes 2-4).
Left and right movements allowed for a transition between
three discrete states for base steering control: ‘‘still’’, ‘‘rotat-
ing towards left’’ and ‘‘rotating towards right’’. In the ‘‘still’’
state, movement initiates rotation in the corresponding direc-
tion at a proportionally-controlled rate; in the other two states,
movement in the opposite direction of the ongoing rotation
leads to transition back to the ‘‘still’’ state (Fig. 3).

The control modes further differed with respect to the
commands triggering a grasping action and setting the cor-
responding force level. In mode 1, grasping was triggered
by nodding and the force level was specified by nod steep-
ness (rapidity). In mode 2, grasping was triggered by jaw
clenching and the force level was specified by duration and
intensity of clenching. In both modes 3 and 4, grasping was
triggered by eye blinking and the force level was specified
by a separate action performed between blinking and hearing
an audible click, issued 2 s afterwards. In mode 3, the action
consisted of vertical eye-gaze displacement, the bottom
corresponding to a higher force level. In mode 4 the action
consisted of performing near-isometric squeezing of a hard
cylindrical object with the right hand: to specify light
force level, the object was grasped and released with brisk
movements and a very light squeeze (<1 kg), whereas to
specify strong force level, the squeeze was substantially
stronger (>10 kg), being applied and releasedmore gradually.

All commands except resume were ignored during standby
mode; moreover, to reduce unwanted actions and provide
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TABLE 1. Summary of the four implemented control modes.

windows of unconstrainedmovement for the participant, each
decoded command was followed by a short refractory time
duringwhich no further actions were considered. The specific
methods used for detecting these actions and processing the
underlying signals are detailed in the following subsections.
The corresponding algorithms were implemented in MatLab
2012b (MathWorks Inc., NatickMA, USA); their preliminary
implementation code is publicly available [47]. The present
experiment was run in a dedicated thread and communicated
via TCP/IP to the robot control thread.

As the focus here is on feasibility demonstration,
we acquired multiple-session data to evaluate controllabil-
ity consistency in a setting inherently representative of the
ceiling-level performance attainable with the interface: each
of the 4 control modes was tested 7 times, in arbitrary order,
by a healthy subject (participant ‘‘A’’, 32 year-old, male,
23 years of formal education) who was directly involved in
developing the interface and therefore already extensively
trained to operate it. Each session required the manipula-
tion of 18 pawns, for a total of 126 actions per mode.
We underline that all internal control variables were entirely
inaccessible during task performance; hence, detailed knowl-
edge could not have provided any kind of unfair advantage
beyond the proficiency attainable in principle by any arbitrary
participant after sufficient training. We also confirmed con-
trollability with an additional subject (participant ‘‘B’’,
30 year-old, female, 20 years of formal education) who was
entirely naive to the experiment and without any previous
BCI/BMI experience and who practiced for approx. 2 hours
prior to performance measurement. All raw time-series and
associated logs are publicly available [47]. Written informed
consent was provided and all procedures were in accordance
with protocols approved by the local institutional review
board (approval n. A15072, date: 10.10.2014, principal inves-
tigator: Y.K.).

C. ROBOT ARM HARDWARE AND CONTROL
The mechanics were adapted from a commercially-available
kit (AL5D; Lynxmotion Inc., Pekin IL, USA), providing a
forearm and arm length, respectively, of 23 and 15 cm and

a gripper with a maximum aperture of 2.5 cm (Fig. 1a).
The arm axes and gripper were modified and actuated using
digital servomotors (Hitec RCD Inc., Chungcheongbuk-
do, Korea), models HS-5805MG (shoulder and elbow),
HS-6545MG (base rotation and wrist) and HS-5485HB
(wrist rotation and gripper). Two color cameras with
embedded processing (CMUcam5 ‘‘pixy’’; Carnegie Mellon
University, Pittsburgh PA, USA) were installed 5 cm
above the gripper, oriented 30◦ downward and inward;
these open-source hardware devices provided a resolution
of 640x400 and real-time color signature-based recognition
at a rate of 50 Hz (Fig. 1b) [48]. Two 0.2’’ force-sensitive
resistors (FSR400; Interlink Electronics Inc., Camarillo CA,
USA) were mounted on opposite sides in the gripper.
Time-of-flight infrared distance sensors (VL6180X; ST
Microelectronics, Geneve, Switzerland) and an inertial
motion unit (UM7; CHRobotics Inc., Payson UT, USA) were
also present but not utilized in this experiment.

The robot arm was connected to a custom-designed control
box, for which detailed fabrication materials are freely avail-
able from the authors upon request. The system was based on
an embedded PC (EBC545; Nexcom Inc., Taipei, Taiwan).
The digital servomotors were interfaced through individual
serial ports (PCM-3643; Advantech Inc., Taipei, Taiwan) and
custom electronics enabling single-wire bidirectional com-
munication using a proprietary protocol and providing gal-
vanic isolation. The force sensors were interfaced through
a dedicated analog-to-digital converter (PCM-3718) with a
custom front-end amplifier and filter.

The robot arm was controlled by code written in MatLab
2012b and C language for hardware interfacing, running
on the embedded PC and publicly available [47]. The code
operated as a TCP/IP server and accepted commands from the
previously-mentioned thread implementing real-time signal
analysis.

As previously indicated, the control system operated in
hybrid mode, allowing direct control of a robot axis by the
user and also being capable of autonomous, vision-guided
execution of high-level commands. After activation (resume
command), the participant directly drove the arm base
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FIGURE 4. Conceptual diagram of the control system. Colors represent sections active at different times during interaction as per Fig. 3.
After system activation, the participant directly controlled arm base rotation direction and rate, which was scaled via a sigmoid function
and subsequently integrated (blue). Upon detection of the grasping command, control of this axis was transferred to an algorithm
performing precise steering towards the nearest pawn under vision guidance (purple). Afterwards, an implicit model of the cameras and
arm was used to interpolate a grasping posture, which was selected depending on pawn color; after execution of the corresponding
sequence, the gripper was closed up to a force level set by the participant and also weighted by a sigmoid function (green). With the
gripper thus holding an object, the participant again directly controlled base rotation, until the arm faced either of the two cups, at which
point a dropping sequence was initiated (red).

rotation direction and rate, which was scaled via a sigmoid
function of the form y = (1 + e−k(x−x0))−1, where x rep-
resents the raw rotation rate setting as measured according
to the decoding procedures described below (for sideways
head rotation, and horizontal eye movement) and y represents
the rotation rate actually executed, which was subsequently
integrated to yield the base rotation angle. Sigmoid scaling
was motivated to enhance responsiveness in the intermediate
range of the rate setting, improving controllability; analogous
uses of sigmoid functions in other scenarios have been exten-
sively described [49].

In this experimental task, as in practical applications
of assistive robots, precise alignment toward intended tar-
gets is challenging. Addressing this issue, upon detec-
tion of the grasping command, control of this axis
was transferred to an algorithm performing fine align-
ment towards the nearest pawn under vision guid-
ance (Fig. 3, Fig. 4). An autonomously-executed grasping
sequence was thereafter initiated (Fig. 1d). Object detection
was performed based on hue, area and size ratio, after which
distance and, subsequently, angles for the shoulder, elbow,
wrist and wrist rotation axes were estimated via polynomials
representing compact, implicit models of the cameras and
arm kinematics. In particular, predicated on the fact that

observation was performed from a fixed vantage point (vision
system origin) the relationship between object distance and
co-ordinates on the camera planes could be represented as
follows 

xL(d) = p1,1d2 + p1,2d + p1,3
yL(d) = p2,1d2 + p2,2d + p2,3
xR(d) = p3,1d2 + p3,2d + p3,3
yR(d) = p4,1d2 + p4,2d + p4,3

where xL , yL , xR, yR represent the co-ordinates of the centre-
of-mass on the acquired images in pixels, d the object dis-
tance in mm, and pi,j are pre-determined, fixed calibration
coefficients. After estimation of d , the target joint angles for
object pick-up were determined with

θshoulder (d) = q1,1(d + δ)3 + q1,2(d + δ)2

+ q1,3(d + δ)+ q1,4
θelbow(d) = q2,1(d + δ)3 + q2,2(d + δ)2

+ q2,3(d + δ)+ q2,4
θwrist (d) = q3,1(d + δ)3 + q3,2(d + δ)2

+ q3,3(d + δ)+ q3,4
θwrist_rotation(d) = q4,4
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where θ represent the joint angles scaled to the servomotor
range in [0, 1], d is the object distance in mm estimated
as above, δ is a correction constant determining where the
object is centered in the gripper, and qi,j are pre-determined
calibration coefficients.

The polynomial coefficients qi,j and the correction constant
δ were automatically selected between two sets to imple-
ment a different posture depending on object features (in this
experiment, pawn color; Fig. 1c). After the arm reached the
target pawn by means of following an interpolated trajectory
to the target position determined as indicated above, the pawn
was grasped with the force level set by the participant, also
weighted by a sigmoid function. The force-sensitive resistor
readings were approximately linearized via a predetermined
function and summed, accounting for respective sensitivity;
however, because reading accuracy and reproducibility were
limited, a steep sigmoid function was chosen to effectively
implement binary choice between weak and strong force.
Detection of insufficient mechanical resistance always led to
complete squeezing when high force was requested (Fig. 1b);
moreover, for safety reasons, the control parameters were
set so that the steel pieces would not be dropped even
when requesting weak force, without affecting the command
decoding accuracy measurements described below. When the
gripper was holding a pawn, direct control of base steering
was relinquished to the user until the arm was directed to
either cup, at which point a pre-set dropping sequence was
executed.

D. COMMAND RECOGNITION FROM HEAD
MOVEMENTS (ACCELEROMETER)
1) REPEATED HEAD TILTING (STANDBY/RESUME)
For ongoing detection of repeated head tilting (mode 1),
the acceleration vectors were extracted for the [−4, 0] s
window and filtered at 0.25-5 Hz through an order 25 finite
impulse-response (FIR) filter. The signals were epoched
according to the zero-crossing points of component Z , after
which its peak magnitude was located within each epoch, and
corresponding times and acceleration vectors were extracted.
If at least 3 zero crossings occurred, the epochs were sorted
according to the Z component magnitude peaks, and sep-
arately for each component, the difference was calculated
between the average of the two top and bottom ones. For
this command to be detected, the difference needed to be
larger for the Z than the XY components and between
600-2400 mg, with the corresponding time interval being
between 1.5-2.5 s. After detection, further commands were
inhibited for 4.5 s. In practice, issuing this command required
quickly swinging the head sideways by approximately
30 degrees.

2) SIDEWAYS HEAD ROTATION (ARM BASE STEERING)
For ongoing detection of sideways head rotation (mode 1),
the acceleration vectors were extracted for the [−2, 0] s
window. The average standard deviation of their components

in the [−1.6,−0.8] s window was calculated. If it exceeded
30 mg, the analysis did not proceed further (spurious activ-
ity). Otherwise, the X and Z signals were averaged and the
difference between sample pairs separated by 200 ms was
calculated via a filter having coefficients [1, 0, . . . , 0,−1]
and smoothed using a 100 ms-span moving average filter; an
analogous set of operations was performed for the Y signal
separately. The maximum and minimum in the [−0.8, 0] s
window were found for the XZ signal, and the corresponding
amplitude difference was calculated for this signal and for
the Y signal. A head rotation event occurred if the difference
for the XZ signal exceeded 30 mg and that of the Y signal;
however, the corresponding command was not issued until
after 330ms to allow detection of a potentially strongermove-
ment within this time interval. The base rotation rate was
determined by the XZ signal maximum-minimum difference,
rescaled according to a sigmoid function having x0 = 150mg
and k = 0.07 mg−1, and its direction was inferred from
the magnitude of the maximum and minimum. After detec-
tion, further commands were inhibited for 1.2 s. Moreover,
to reduce the probability of misrecognition of nodding as
sideways head rotation, the rotation command was not issued
if the maximum of the X signal in the [−1, 0] s window
minus the mean of the same signal in the [−2,−1] s win-
dow plus twice the difference between the mean Y signal in
[−2,−1] s and the minimum of the same in [−1, 0] exceeded
250 mg. In practice, this command allowed for steering
the robot arm base with small, brisk head movements that
did not interfere with maintaining uninterrupted sight of the
robot.

3) NODDING (GRASPING TRIGGER AND FORCE SETTING)
For ongoing detection of nodding (mode 1), the accelera-
tion vectors were extracted for the [−6, 0] s window and
filtered at 0.25-5 Hz through an order 25 FIR filter. The
maximum and minimum of the X component in the [−4, 0]
s window were determined. Nodding was detected if the
corresponding difference was between 300-1800 mg and all
the following conditions were met: the standard deviation of
the same component in the same time window was between
15-300 when divided by the average standard deviation of
the three components in the [−5,−4] s window, between 1-
5 when divided by the standard deviation of the Y component
in the [−4, 0] s window and between 3-20 when divided by
the standard deviation of the Z component in the [−4, 0]
s window. Nodding intensity was determined based on the
peak-to-peak amplitude of the X component during [−4, 0]
s, then rescaled according to a sigmoid function having x0 =
1250 mg and k = 0.1 mg−1. The corresponding command
was not issued until after 500 ms to allow detection of a
potentially stronger movement within this time interval. After
detection, further commands were inhibited for 5 s. In prac-
tice, a brief period of head immobility in straight posture was
required, followed by a sharp nod, the amplitude and speed
of which together determined the measured strength.
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FIGURE 5. Raw (blue) and processed (red) bio-signals from representative trials, and corresponding scaling functions. See text for
description of the associated algorithms. a) Raw and b) processed signals from rapid repeated eye-blink; dashed line denotes detection
threshold. c) Raw and d) processed signals from horizontal eye movements (hEOG); dashed lines denote detection thresholds and
time-window for identification of minimum and maximum (black crosses). e) Scaling function yielding base rotation rate (y ) given
horizontal eye movement amplitude (x , green), and associated cumulative distribution of issued commands (y , black crosses). f) Raw
and g) processed signals from jaw clenching; dashed line denotes detection threshold. h) Scaling function yielding grasping force (y )
given jaw clench intensity (x , green), and associated cumulative distribution of issued commands (y , black crosses). i) Raw and j)
alpha-band processed fronto-parietal electroencephalogram (EEG), see also Fig. 6. k) Scaling functions (differing parameters between
sessions) yielding grasping force (y ) given alpha-band activity intensity (x , green), and associated cumulative distribution of measured
values (y , black crosses).

E. COMMAND RECOGNITION FROM
ELECTRICAL BIO-SIGNALS
1) RAPID REPEATED EYE-BLINK (STANDBY/RESUME)
For ongoing detection of rapid repeated eye-blink
(modes 2-4), signals from the AF7 and AF8 sites (Fig. 5a)
were extracted for the [−3, 0] s window, summed, demeaned
and filtered at 2-5 Hz through an order 50 FIR filter. The
difference between sample pairs separated by 200 ms was
calculated via a filter having coefficients [1, 0, . . . , 0,−1];
the resulting signal was rectified and cropped to the [−2, 0] s
window (Fig. 5b). The number of crossings with respect to a
first threshold set to 50 µV and the signal average during the
supra-threshold intervals were calculated. If these exceeded,
respectively, 6 and 75 µV, a rapid repeated eye-blink was
deemed to have occurred and a corresponding command
transitioning the system between the stand-by and active
states was issued. After detection, further commands were
inhibited for 3 s. This command was extracted from the sum
of the potentials at the AF7 and AF8 sites, instead of the
sites indicated below for single blinks and vertical EOG,
to minimize the risk of spuriously recognizing it during task-
unrelated activity (e.g., swallowing and speaking), which lead

to considerably larger fluctuations at the A1 and A2 sites.
Furthermore, the optimal thresholds depended on headband
positioning and tightness; the thresholds were lowered to
15 µV and 25 µV throughout the course of the experimen-
tal sessions, and the post-detection inhibition interval was
elevated to 5 s. In practice, issuing this command required
blinking in a pattern unlikely to occur unintentionally for both
rapidity and intensity.

2) HORIZONTAL EYE MOVEMENT (ARM BASE STEERING)
For ongoing detection of horizontal eye movements (hEOG;
modes 2-4), the difference signal between the AF7 and AF8
sites was calculated for the [−1.75, 0] s window (Fig. 5c),
demeaned and filtered at 2-10 Hz through an order 50 FIR
filter, then smoothed using a 100 ms-span moving average
filter. The difference between sample pairs separated by
20 ms was then calculated via a filter having coefficients
[1, 0, . . . , 0,−1], cropped to the [−0.75, 0] s window and
detrended. Maxima and minima were determined: if both
exceeded ±5 µV (Fig. 5d), the detrended average of the
signal before the above difference calculationwas determined
over a window ±200 ms centered around the maximum of
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its modulus. If the modulus of this average exceeded 3 µV,
a horizontal eye movement was deemed to have occurred in
the direction given by the sign; however, the corresponding
command was not issued until after 250 ms to allow detection
of a potentially larger movement within this time interval.
The base rotation rate was determined based on the average
amplitude specified above, rescaled according to a sigmoid
function having x0 = 5 µV and k = 3 µV−1 (Fig. 5e).
After detection, further commands were inhibited for 1 s.
In practice, this command allowed for steering the robot arm
base with small, brisk eye movements that did not interfere
with maintaining uninterrupted sight of the robot.

3) JAW CLENCHING (GRASPING TRIGGER AND
FORCE SETTING)
For ongoing detection and measurement of the intensity of
jaw clenching (EMG; mode 2), signals from the A1, AF7,
AF8 and A2 sites (Fig. 5f) were extracted for the [−5, 0] s
window, demeaned and filtered at 75-250 Hz through an
order 25 FIR filter. The amplitude envelopes were separately
calculated from the analytic signal via Hilbert’s transform,
smoothed using a 500ms-spanmoving average filter, cropped
to the [−3, 0] s window and averaged across these 4 sites.
The resulting signal was then thresholded at 4 µV (Fig. 5g).
Clenching was detected if the signal rose above and subse-
quently fell below this threshold during a time interval at
least 250 ms long; clenching intensity was measured as the
discrete-time integral calculated during the supra-threshold
interval, then rescaled according to a sigmoid function having
x0 = 3250µV and k = 0.01µV−1 (Fig. 5h). After detection,
further commands were inhibited for 3 s. In situations of
poor signal stability, the processed signal mean during the
[−5,−3] s window may be subtracted as the baseline, but
this was not done for the present experiment; moreover, when
deemed computationally too onerous, computation of the
analytic signal may be replaced by simpler, sliding window-
based amplitude measures.

4) SINGLE EYE-BLINK (GRASPING TRIGGER)
For ongoing detection of single eye-blink events
(modes 3-4), signals from the A1 and A2 sites were extracted
for the [−2.4, 0] s window, summed and demeaned, and the
difference between sample pairs separated by 200 ms was
calculated via a filter having coefficients [1, 0, . . . , 0,−1].
The resulting signal was filtered using a 100 ms sliding
window, rectified and cropped to the [−2, 0] s window.
The sub-segments having a negative first time-derivative and
amplitude greater than 70 µV were subsequently extracted,
and a single eye-blink was deemed to have occurred if at
least one such segment was identified and the peak amplitude
during it was greater than 75µV. To increase timing accuracy,
the occurrence time of the eye-blink was refined a-posteriori,
setting it to the mid-point between minimum and maximum
of the smoothed (100ms) difference signalmeasured between
the A1/A2 and AF7/AF8 sites. Single eye-blink detection was
performed primarily based on the A1/A2 sites, as the signal

at these sites appeared less susceptible to spurious detection
due to eyebrow movements; it was resorted to in modes 3-
4 because reliable triggering could not be attained based on
the same signals considered for force level setting (described
in the next sub-sections).

5) VERTICAL EYE-GAZE DISPLACEMENT (GRASPING
FORCE SETTING)
For measuring vertical eye-gaze displacement (vEOG;
mode 3) following a single eye-blink event, the difference sig-
nal between the average voltages at the A1/A2 and AF7/AF8
sites was considered. Assuming t = 0 s as the blink occur-
rence time, the average voltage in the [−2,−0.5] s window
was calculated and subtracted from that of the [1, 4] s win-
dow; these time-windows are not critical and may likely be
optimized for faster response. The voltage thus measured
was then rescaled according to a sigmoid function having
x0 = 0 µV and k = 50 µV−1.

6) ALPHA-BAND BRAIN ACTIVITY (GRASPING
FORCE SETTING)
For measuring alpha-band brain activity (ERD/ERS; mode 4)
following a single eye-blink event, the difference signal
between the Pz and Fz sites was considered. Assuming t= 0 s
as the blink occurrence time, it was epoched between [0, 7.5] s
(Fig. 5i) and filtered at 8-12 Hz through an order 250 FIR
filter. The amplitude envelope was thereafter calculated from
the analytic signal obtained using Hilbert’s transform and
cropped to the [0.1, 7.1] s window (Fig. 5j), within which
average amplitude was calculated for the [1, 2.5] s and
[3.5, 7] s sub-windows, which were chosen in preliminary
experiments. The resulting values were summed by applying
factors f and (1−f ) respectively, where f varied between ses-
sions and was 0.72±0.21 (mean±standard deviation); their
negative sum was rescaled according to a sigmoid function
having x0 = −2.13±0.26 µV and k = 75 µV−1 (Fig. 5k).
The negative sign implemented weak force for stronger
alpha-band activity. To maximize accuracy, it was chosen to
determine the values of x0 and f empirically based on trials
performed immediately prior to each session.

III. RESULTS
Task performance accuracy was quantified as the fraction of
trials wherein the target pawn was picked up with the correct
force level (for this purpose, binarized as ≥0.5 for steel,
<0.5 for felt), then dropped in the correct cup. For brevity,
failures due to occasional malfunctions of the robot vision
system are not described.

As detailed in Table 2, for participant ‘‘A’’ (ceiling-
level), average accuracy across sessions was near-perfect,
being approximately 95%, for modes 1-3 but substantially
lower, namely, 73%, for mode 4. The variability (standard
deviation), approximately 5%, was similar across modes.
The average time taken to complete an action (locate,
pick-up then drop a pawn) was approximately 43 s for
modes 1-3 but 58 s for mode 4; longer time in the latter mode
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TABLE 2. Performance summary for participant ‘‘A’’.

was due to the participant seeking greater concentration prior
to issuing the grasping command. Out of these times, on aver-
age, 15.8±4.0 s and 5.5±0.2 s were required by the robot
arm to execute, under autonomous control, pawn grasping
and dropping, respectively. The total number of commands
issued was, on average, 158 in mode 1, 216 in modes 2 and 3,
and 253 in mode 4; the smaller value for mode 1 appeared
to reflect superior proportional control of the base rotation
rate, whereas the large value for mode 4 compared to 2 and 3
was plausibly due to generally lower participant confidence
in this mode. For participant ‘‘B’’ (naive), the accuracy was
equally 89% in modes 1 and 2; the average times/action
were, respectively, 63 and 89 s, with the corresponding total
number of commands being 161 and 355; for this participant,
modes 3 and 4 had to be aborted due to inability to control eye
blinking, leading to a prohibitively high number of undesired
grasping actions.

Consideration of the cumulative distributions of base rota-
tion rate in mode 1 (data not shown) and modes 2-3 (Fig. 5e)
and of grasping force in mode 2 (Fig. 5h), mode 3 (data
not shown) and mode 4 (Fig. 5k) confirmed that based on
the methods specified above, it was possible not only to
decode discrete commands with high accuracy but also to
specify continuous parameters associated with them. For the
case of base steering, the majority of commands had asso-
ciated intensity close to the steepest region of the sigmoidal
transfer function, representing the fact that participant ‘‘A’’
had become experienced with the system response and could
exploit it to obtain the desired compromise between steering
speed and positioning accuracy. Contrariwise, for grasping
force, particularly in mode 2, awareness that the transfer
function effectively embodied a threshold led to preferential
choice of either very high or very low settings.

The average alpha-band responses recorded in mode 4 are
shown in Fig. 6. Performing light squeezing to select low
force was associated with a clearly biphasic ERD/ERS pat-
tern: squeeze application lead to initial desynchronization
peaking at ≈0.7 s, followed by synchronization peaking
at ≈2.3 s, and squeeze release in response to the audible
click (issued at 2 s) led to a further desynchronization peaking
at ≈3.4 s, followed by a larger, more persistent synchroniza-
tion having a plateau between≈6.5-8.2 s. By contrast, appli-
cation of a strong squeeze led to a mono-phasic ERD/ERS

FIGURE 6. Event-related desynchronization/synchronization (ERD/ERS)
effect measured for alpha-band activity of the electroencephalogram
recorded between the Pz and Fz sites. Solid lines denote average over all
pooled high- and low-force trials (blue and red, respectively), and shaded
areas indicate 1 standard deviation. Dashed lines at 2 s and 7.5 s mark,
respectively, approximate onsets of audible click (prompting release) and
robot movement initiation; dotted lines denote averaging windows (see
text). A biphasic pattern was well evident for low-force trials (red),
whereas the average response was mono-phasic and post-movement
synchronization was weaker for high-force trials (blue). See text for
description of corresponding actions. Smoothing with 500 ms span
applied for visualization.

pattern, wherein the first (de)synchronization wave was abol-
ished; instead, desynchronization peaked at ≈1.6 s, followed
by shallower synchronization peaking at≈7.2 s. A-posteriori
re-analysis of the data revealed that an accuracy of 81%might
theoretically have been attainable by setting the averaging
windows to [1, 2.5] s and [6.5, 8.5] s, with f = 0.68 and
x0 = −2.39µV; however, substantial inter-session variability
remained evident.

IV. DISCUSSION
Previous research in this area has demonstrated com-
puter and robot control leveraging upon diverse bio-signal
sets including EEG only, EOG only, combined EEG and
EOG, and EMG. Only a fraction of the existing studies
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have been conducted with consumer-grade wearable devices
rather than research-grade high channel-count systems, and
there is considerable heterogeneity in the control approach,
with some reports focusing on proportional and others on
state-based (discrete, sparse) techniques and few integrat-
ing the two [7]–[9], [11], [12], [25]–[27], [37], [50]–[52].
In the present proof-of-concept study, we demonstrated
a system-level concept, drawing upon current trends in
assistive robotics, biosignal-based human-machine interfaces
and wearable technology, and proposed a hybrid control
approach intended for eventually controlling wheelchair-
mounted robotic manipulators and meal-assisting robots;
here, the focus was on demonstrating in-principle practical
usability of a representative low-cost wearable interface for
robotic arm control.

The control approach that we advocate is hybrid at two
levels. We deem this approach as an effective compromise
between robot controllability and maintaining the user goal-
focused rather than process-focused. First, robot arm steer-
ing combines a discrete and a proportional component: it is
controlled by a state machine driven by discrete commands,
but the rotation rate is proportionally set by the user via the
sharpness of head or eye movement. Second, after the robot
has been steered to the approximate target direction, a sparse
approach is followed, wherein the user only needs to issue a
single command, after which fine steering and grasping with
an object-dependent posture are completed automatically;
however, also for the grasping command, the intensity of
the corresponding action (nodding, clenching, vertical eye
movement or hand grasping) proportionally controls the force
level applied by the robot. Consideration of hybrid control
for practical interfaces has been advocated in several recent
studies [39], [42], [46], [52].

While high-precision eye-gaze direction reconstruction
using EOG and optical tracking has been previously demon-
strated, here, rather than steering robot direction directly,
we opted for differential control, allowing the user to set
the direction and rate of arm base rotation instead. This
is because in preliminary experiments, we had determined
that this differential approach is less demanding on EOG
signal quality and therefore better suited for use with a con-
sumer wearable device, which imposes EOG recoding from
sub-optimal electrode locations. We also avoided providing
feedback via a graphical user interface to maintain the user
goal-focused because the small eye or head movements
required for differential control integrate to zero over small
time-scales, thus allowingmaintenance of uninterrupted sight
of the robot and target [8], [25], [53]. Our results under-
line that successful proportional control based on EOG, eye
blinking, jaw EMG and EEG is, in principle, feasible even
given the considerable electrode location and signal qual-
ity constraints associated with a consumer-grade headband
marketed for a different purpose, namely, as a relaxation
aid; moreover, the ongoing analysis algorithms we described
are relatively undemanding and thus suitable for porting on
embedded microcontrollers.

We provide preliminary data on ceiling-level performance
attainable with 4 control modes by implementing the above-
described hybrid approach based on different bio-signal
combinations. Overall, modes 1-3 yielded comparable
and reproducible performance, while mode 1, based on
accelerometer signals, required a smaller number of com-
mands to complete the task, suggesting better proportional
control of robot base rotation with respect to horizontal
EOG, even though the time needed to complete the task
was similar (Tables 1 and 2). This control mode, however,
requires effortful head movements to issue the grasping and
standby/resume commands, which may be problematic for
some patients; depending on the specific situation, one could
opt for mode 1, mode 2 or a combination of them, e.g.,
driving base rotation with accelerometer signals and choos-
ing jaw clenching and repeated eye blinking for controlling
grasping and standby/resume. For these two modes, the naive
participant also attained a high degree of accuracy, even
though the time required for task completion was predictably
longer. For the experienced participant, control mode 3, based
exclusively on EOG and eye blinking, also provided similar
performance; however, the naive participant was unable to
use this mode due to excessive eye-blinking, underlining that
even though it was the most parsimonious one in terms of
neurological integrity requirements, it is unlikely to be the
most viable one. Because the ongoing analysis algorithms
were computationally undemanding, response latency was
determined primarily by the additional lag imposed after
decoding each command to allow for confirming its intensity:
for the case of base steering, this was ≈330 and ≈250 ms
for control modes 1 and 2-4, respectively. Overall, the task
performance accuracy attained in modes 1-2 was high and
reproducible across sessions and for both the experienced and
naive participant, and the accuracy level was in line with rep-
resentative studies in this area, some of which had involved
considerably more complex acquisition setups [7], [9]–[11],
[16], [27], [34], [50], [54]. Plausibly owing to leveraging on
multiple bio-signals and the tailored detection algorithms that
were developed, our evaluation thus yielded a more positive
outlook compared to a recent analysis of two other consumer-
grade EEG devices [55]. It is important to underline that
here, independent annotation of all individual actions was not
performed; thus, accuracy for the task as a whole was the only
performance metric considered and recognition accuracy at
the single-command level was not measured.

In mode 4, task duration was elongated and grasping force
decodingwas substantially less accurate, being 73%. This fig-
ure overlaps the variability, namely, 60-80%, observed across
previous studies on gesture or force level recognition using
ERD/ERS [56]–[58]. More generally, higher accuracy, in line
with modes 1-3, has been previously attained with purely
EEG-based control, particularly with recourse to P300-based
paradigms: here, such approach was deemed unsuitable due
to event synchronization difficulty on a consumer wearable
platform streaming continuous data and due to additional
user interface elements requirements; furthermore, we were
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constrained with respect to the number of electrodes and data
acquisition hardware [16], [46], [59]. Higher hand grasping
force recognition accuracy has been previously attained based
on ERD/ERS computed from high-density EEG, underlin-
ing the importance of topographical information, which was
inaccessible here; moreover, the relationship of ERD/ERS
with grasping force and duration remains incompletely under-
stood, with evidence that it more closely indexes motor plan-
ning than downstream execution [59]–[62]. In the present
experiment, a two-phase grasping paradigm was adopted,
with initiation marked by an eye blink and release trig-
gered by an audible click 2 s afterwards. It was developed
to maximize the ERD/ERS difference between weak and
strong grasping conditions and yielded the highest accuracy
we could obtain using the wearable device under considera-
tion. For weak grasping, a biphasic ERD/ERS response was
observed, the first half of which was abolished for strong
grasping; the amplitude of the second ERS was larger for
weak rather than strong grasping: such pattern is suggestive of
more protracted cortical activation when maintaining strong
grasping (Fig. 6). To the authors’ knowledge, this paradigm
is novel and worthy in itself of general consideration in
ERD/ERS-based force level estimation. Because the partici-
pant had extensive practice, the observed difference plausibly
included volitional control elements; in this regard, we note
that higher control accuracies have been reported based on
volitional modulation of occipital alpha rhythm, and while
here we focused on central alpha activity because the aimwas
direct grasping force decoding, alternative EEG electrodes
positioning should be considered [16], [63], [64].

We aimed at delivering a compromise between ease of
control and flexibility for assistive applications: according to
the proposed hybrid approach, the user retains unconstrained
control in steering the robot toward the target object, and
engaging autonomous guidance afterwards relieves the user
from the burden of fine adjustment of the joints to attain
intended postures, maintaining the goal focus. We demon-
strated this approach using a desktop robotic arm whose
5+1 degree-of-freedom kinematics are analogous to existing
assistive robotic manipulators, aiding clinical translation of
the results [3], [5], [7], [38], [50], [65]. This experiment relied
on elementary object detection via hue and geometric fea-
tures, but the approach is viable with arbitrary vision systems,
e.g., capable of recognizing objects belonging to specific
classes through deep learning techniques; furthermore, it is,
in principle, applicable to both image-based and position-
based vision servoing [5], [44], [46], [66]–[68]. Existing
literature on assistive arms poses limited emphasis on control
of force and posture, two elements important for practical
usability. Here, we sought a means of controlling them with-
out overwhelming the user and demonstrated it via colored
pawns requiring a certain pick-up posture (straight vs. side-
ways) and grasping force (steel vs. felt). We propose that arm
posture is automatically chosen from a repertoire based on
visual features because in practical applications, a finite num-
ber of object categories are encountered and each requires a

specific posture, e.g., operating a door handle vs. retrieving
a plastic bottle for a wheelchair-mounted arm, or picking
up rice vs. meat for a meal-assistance robot. Contrariwise,
we propose that grasping force, or where appropriate, joint
torque, is proportionally set by the user without discretization
constraints, as the level required is highly situation-dependent
and may be subjective, e.g., the user may have pre-existing
knowledge regarding the force required to operate a door han-
dle or to spear a certain food item using a fork [36], [69]–[71].
Future research on the present problem should also be con-
ducted adopting a more control theory-centric approach, aim-
ing to optimize system performance and enhance robustness
for example by devising practical control laws for tracking,
and by explicitly taking into account actuator dynamics and
parameter uncertainties [72]–[74].

We demonstrated the possibility of successful control of a
5 + 1 degrees-of-freedom robot arm based on a consumer
wireless headband combined with tailored detection algo-
rithms and a hybrid control approach, which were described
in precise detail. Future research will focus on extending this
preliminary work to adaptive choice of detection parameters,
evaluating the control accuracy in larger and representative
cohorts of healthy participants, integrating the system with
pre-existing wheelchair-mounted and meal-assistance robots,
and assessing its ecological performance for a representative
population of patients with diverse neurological diseases per-
forming routine tasks.
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