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ABSTRACT In this paper, we propose a multi-human detection algorithm based on impulse radio ultra-
wideband radar system. With our proposed algorithm, the multi-human detection can be performed by
repeatedly performing clustering and detecting processes. More specifically, the system detects an effective
peak of the first single cluster which is composed of peaks adjacent to each other and then repeat this
process until effective peaks of clusters caused by multiple people are successfully detected sequentially.
As our performance metrics, we take into account the performance analysis in terms of the error probability
based on the results of the statistical analysis. More specifically, we first cross-verify that the empirical
result theoretically follows the Log-normal distribution by comparing the theoretical and empirical results
obtained through laboratory experiments. Then, we statistically analyze the received signals under the Log-
normal distribution assumption. After that, this statistical result is adopted to the performance analysis of the
error probability in terms of the total error probability. Note that the performance of our proposed algorithm
is affected by the threshold value. Based on it, the optimal threshold is analyzed and we provide the sample
guidelines for optimally adjusting the threshold value under given various environment factors. Finally, some
selected experimental results are presented to show the validity of our proposed algorithm by comparing the
performance between the proposed algorithm and the conventional algorithm.

INDEX TERMS UWB, IR-UWB radar, multi-human detection, optimal threshold, CFAR, radar detection.

I. INTRODUCTION
Recently, the impulse radio ultra-wideband (IR-UWB) radar
system has attracted significant attention in both scien-
tific and commercial fields due to its remarkable advan-
tages resulting from its extremely wide bandwidth such
as good penetration, multipath immunity, and high-range
resolution. In this regard, several research works based
on IR-UWB system have been studied including indoor
positioning, vital sign monitoring, people counting, and
close range communications [1]–[8]. However, most stud-
ies related to human detection technologies are still limited
to whether or not a target (a person or multiple people)
is present or tracking the whereabouts of people, espe-
cially based on the given information about the number of
people [9]–[16].

In general, the most well-known detection algorithm in
radar systems including the IR-UWB radar is a constant
false alarm rate (CFAR) algorithm [17], [18]. With the
CFAR algorithm, a constant average false alarm rate can be
maintained through an adaptive threshold control while

maintaining an adequate target detection performance. How-
ever, it is difficult to directly apply a conventional CFAR
algorithm to the real environment because the typical assump-
tion of a homogeneous, Gaussian, and thermal noise-like
background is routinely violated due to the spatial variation
in clutter characteristics, and the effects of clutter edges
which can leads performance degradation, etc.1 Thus, modi-
fied CFAR algorithms have been proposed to effectively deal
with the various types of backgrounds that are encountered
(e.g., cell averaging CFAR (CA-CFAR) [17], order statistics
CFAR (OS-CFAR) [18], greatest of CFAR, smallest of CFAR
[20], [21], and selection and the estimation test [22]).

Although these algorithms can effectively deal with the
various types of backgrounds, they are still inadequate for a
multi-human detection scenario based on the IR-UWB radar
system, especially, tracing each distance from multi-human,
because these algorithms are valid in the variation detection

1The clutter is a term used for unwanted echoes mainly from non-human
object, furniture, wall, and so on [19].
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from the normal state to the active state of the signal (i.e., with
these algorithms, it is available to detect only the presence or
the absence of target regardless of the number of targets.).
For multi-human detection case based on the IR-UWB radar
system, many multipath signals caused by multi-human are
appeared simultaneously and they are eventually combined
into the form of multi-clusters with other clutter signals. As a
result, with the conventional detection algorithm, the number
of people can make it seem a lot more than it really is.
Here, to detect multi-human correctly, actual main clusters
caused by the actual people should be separated from received
signals by neglecting other unwanted signals caused by the
clutter and/or the multipath fading. However, unfortunately,
with above mentioned algorithms, the system will detect all
the multiple clusters and it eventually leads the difficulty of
tracing each human.

Based on these motivations, we propose a new multi-
human detection algorithm based on IR-UWB radar systems.
With our proposed algorithm, the multi-human detection can
be performed by detecting the effective peaks of multiple-
clusters. More specifically, the system performs the detection
process to find an effective peak of the first single cluster
which is composed of peaks adjacent to each other and
then repeat clustering and detecting processes until effective
peaks of clusters caused by multiple people are successfully
detected sequentially. As our performance metrics, we take
into account the performance analysis in terms of the error
probability according to both the threshold value and the sig-
nal level of the clutter based on the statistical analysis. Note
that the performance of our proposed algorithm is affected by
the threshold value. Based on it, the optimal threshold is ana-
lyzed and the sample guidelines for adjusting the threshold
value at given various environment factors are provided. The
main contributions of the paper are summarized as follows:

A. MAIN CONTRIBUTIONS
1. We propose a multi-human detection algorithm based

on detecting an effective peak caused by actual people
among clustered peaks adjacent to each other. In typical
UWB channels, multipath components arrive at the
receiver as the form of multi-clusters with other clutter
signals [23]. With our proposed algorithm, the first step
to detect the effective peaks is to find candidate peaks
from signals in the form of multiple-clusters, and then
by adopting the threshold crossing (TC) method [24],
the system determines the effective peaks caused by
actual people among them.

2. We cross-verify that the empirical result, which is mea-
sured in real environments, theoretically follows the
Log-normal distribution by comparing the theoretical
and empirical results in Fig. 1. 2 Then, we statistically
analyze the received signals based on the IR-UWB

2Until now, various distributions, including the Rayleigh, Nakagami, Rice,
Log-normal, and Gamma distributions, have been suggested for statistical
analysis of the amplitude of the IR-UWB [23], [25]–[27].

FIGURE 1. Comparison of the empirical amplitude statistic data with the
theoretical fitting result.

radar system with our proposed algorithm under the
Log-normal distribution assumption.

3. As our performance metrics, we statistically analyze
the error probability of our proposed multi-human
detection algorithm in terms of the total error probabil-
ity based on the results of the statistical analysis. More
specifically, after dealing with two types of errors (i.e.
false alarm and miss detection), we analyze the total
error probability based on these two types of errors.
Note that for the former case, a false alarm occurs if
the system wrongly detects a target, while for the latter
case, a miss detection occurs if no target is detected but
the target(s) is(are) presented.

4. For practical consideration, the optimal threshold is
analyzed and the sample guidelines about how to adjust
the threshold value are presented for given various envi-
ronment factors (e.g. path loss, shadowing, filter gain,
and so on). Note that the performance of our proposed
algorithm is affected by the threshold value due to the
nature of the total error probability.3 More specifically,
to find only the effective peaks among several candi-
date peaks, the threshold needs to be increased to reject
the effect of multipath and clutter signals. However,
increasing the threshold level leads to increasing the
probability of miss detection. Therefore, to adjust the
threshold value optimally under given environments
and to theoretically verify the performance optimiza-
tion, we prove that there exists an optimal threshold
which can minimize the error at given each environ-
ments and then we provide a sample guidelines about
how to adjust the threshold value adequately under
given environments.

5. Finally, some selected experiment results are provided
to show the validity of our proposed algorithm by com-
paring the performance between the proposed algo-
rithm and a conventional algorithm.

3A false alarm occurs if the threshold is low enough to wrongly detects a
target while a miss detection occurs if the threshold is high enough to miss
the target when the target is presented.
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II. SYSTEM AND CHANNEL MODEL
A received signal of the IR-UWB radar system can be repre-
sented as [28]

rk (t) =
Npath∑
i=1

akis (t − τki)+ n(t), (1)

where the subscript k means a slow time index represent-
ing the k-th received signal, and t means a fast time index
representing the arrival time from the transmitting time. The
subscript i indicates the i-th path from the transmitter to the
receiver, s(t) is the transmitted signal, and n(t) represents
the observation noise of the channel. aki and τi represent
the scaling value and delay time of the k-th received signal
through the i-th path, respectively. The received signal is
composed of Npath scaled and delayed transmitted signals.

The received signal includes not only the desired sig-
nals reflected by the human, but also the unwanted signals
reflected by the clutter. To remove these clutter signals, a
background subtraction process need to be applied. The pur-
pose of the background subtraction is to attenuate the clutter
signals based on the degree of the signal’s variation at each
distance. If the variance of the signal is small, the probability
that the signal is reflected by the clutter increases, and the
signal is attenuated more than a signal that has large variance.
There are several algorithms for the background subtrac-
tion, such as the algorithms using singular value decompo-
sition (SVD), temporal median filter, and running average
[29], [30]. Here, we apply the running average algorithm to
evaluate the mean value as a clutter signal. This algorithm
that subtracts the mean value as a clutter signal from an
instantaneous received signal is frequently used because of
the high performance and the relatively low computational
complexity. The clutter-eliminated signal can be achieved by
subtracting the clutter signal from the received signal as

ck (t) = αck−1(t)+ (1− α)rk (t),

yk (t) = rk (t)− ck (t), (2)

where ck (t) means the clutter signal, which can be esti-
mated by applying the running average algorithm, yk (t) rep-
resents the background-subtracted signal, which mainly has
the information for the samples with a large variance, and α
is a parameter to adjust the application ratio of the received
signal to the clutter signal.

If we set the value of α to be small, the clutter signal can
be estimated quickly over a given new environment while
the clutter signal is vulnerable to impulse noise because the
instantaneous received signal has strong weight on estimat-
ing the clutter signal. However, for the larger value of α, a
relatively longer time is needed to estimate the clutter signal
but the clutter signal is subjected to relatively less impact on
the impulse noise.

In (2), yk (t) includes clusters of multi-human. In the case of
UWB, the channel measurements showed multipath arrivals
in clusters rather than in a continuum, as is customary for

narrowband channels [23]. This is caused by the fine reso-
lution that UWB waveforms provide. Successive reflective
paths can be individually resolved at the receiver, and that
could result in a cluster of paths arriving at the receiver
corresponding to reflections at a time, followed by a cluster
of paths corresponding to other reflections. Even if there is a
human, chest, head, and legs can make separate clusters.

III. MULTI-HUMAN DETECTION ALGORITHM
The main concerns of our proposed algorithm is how to
separate the signal into multiple clusters, and how to find the
effective peaks from the major clusters which are expected
as being reflected by multi-human, not by the multipath or
clutter from the background-subtracted signal which con-
tains both multipath faded signals and clutter signals. In our
proposed algorithm, candidate peaks are found from signals
in the form of multiple-clusters, and then by adopting the
threshold crossing (TC) method [24], the system determines
the effective peaks which indicate the targets (i.e., human)
among them. Here, the main (or important) issue in the multi-
human detection algorithm is how to find these effective
peaks while clustering the dense peaks in the form of sub-
cluster. In our proposed algorithm, the received signal is
divided into a number of coherent clusters in such a way
that there is one representative local maximum peak in each
coherent cluster. Here, this coherent cluster is determined
by comparing each local peak with its adjacent local peaks
in a recursive fashion. Then, this local maximum peak in
each coherent cluster is considered as the candidate peak.
Among these found candidate peaks, a number of peaks are
determined as effective peaks of human using TC method.
The detailed logic flow of our proposed new multi-human
detection algorithm is summarized in Algorithm 1.

In Algorithm 1, tleft and tright determine the spatial resolu-
tion of the clustering algorithm as the minimum distinguish-
able distance of two clusters. For small values of tleft and
tright , the signal is divided as more detail clusters, and we are
able to distinguish two arbitrary human who are located more
closely. However, it could raise the probability of finding
much more number of effective peaks than the real number
of people. As a result, it could make a confusion for the
recognition of the number of target, and make it difficult to
find distance traces of multi-human. In contrast, if we set
the tleft and tright as large values, multiple peaks within the
parameters are regarded as being reflected by same body, and
are clustered. Thus, only the maximum peak is considered as
an effective peak. The clustering size is different from each
cluster because of the condition of line 12 in Algorithm 1.
The found peak between the descending or ascending peaks
is not regarded as an effective peak based on the condition of
line 12. The condition helps to keep the values of tleft and
tright small preventing the number of effective peaks from
increasing meaninglessly. Instead of just finding the peak
after the zero padding process, the condition of line 12 checks
to see if the found peak is truly the local maximum in the
initial ongoing signal, d0(t). To regard the found peak as
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Algorithm 1Multi-Human Detection Algorithm
1: procedure (y(t))
2: T ← threshold level
3: tleft ← left marginal time
4: tright ← right marginal time
5: d0(t)← y(t) F d0(t) is initial ongoing signal
6: Atoa(1 : end)← 0 F Atoa is ToA array
7: k ← 0 F k is peak counter
8: n← 0 F n is iteration counter
9: do

10: τ̂n = argmax
t

(dn(t))

11: ân = dn(τ̂n)
12: if ân > max y(τ̂n − tleft : τ̂n + tright ) then
13: k = k + 1
14: Atoa(k) = τ̂n
15: end if
16: dn(τ̂n − tleft : τ̂n + tright ) = 0
17: dn+1(t) = dn(t)
18: n = n+ 1
19: while ân > T
20: return Atoa(1),Atoa(2), . . .Atoa(k)
21: end procedure

an effective peak, the found peak should meet the following
two conditions as i) the amplitude must be greater than the
threshold, T and ii) the peaks should be maximum value near
the position of the peak in the initial ongoing signal, d0(t).

IV. STATISTICAL ANALYSIS
In this section, we statistically analyze the received signals
which are measured in real environment that can be applied
to the IR-UWB radar system with our proposed algorithm.
While, in an IR-UWB radar systemwith wide bandwidth over
500MHz, it is well-known that the amplitude statistic of the
received signal, aki in (1), follows the Rayleigh, Nakagami,
Rice, log-normal, or Gamma distributions in literatures
[23], [25]–[27], Fig. 1 shows that empirical result follows the
log-normal distribution very well. Based on this observation,
we cross-verify that the statistic of empirical results is the-
oretically equivalent to the log-normal distribution by com-
paring the theoretical and empirical results obtained through
laboratory experiments. Note that in the following sections,
we adopt the log-normal distribution for the performance
analysis.

From the log-normal statistic of the amplitude data, we
will drive other statistical parameters. yk (t) in (2), can be
rearranged as

yk (t) =
Npath∑
i=1

a′kis (t − τki)+ n
′(t), (3)

where a′ki and n
′(t) represent the modified amplitude of the

k-th received signal through i-th path and the observation
noise, respectively, after performing the background subtrac-
tion. The background-subtracted signal yk (t) is represented

as a linear combination of successive received signals rk (t),
rk−1(t), rk−2(t), . . . and so on. Thus, the amplitude a′ki is
also a linear combination of aki, a(k−1)i, a(k−2)i, . . .. Then,
the statistic of a′ki can be assumed as a log-normal random
variable, because aki is the log-normal random variables, and
the linear combination of log-normal random variables is
assumed to be a log-normal random variable.

We regard the background subtraction as a kind of filter,
and then we define the gain of the background subtraction
filter as the ratio between the amplitudes of the received raw
signal and the background subtracted signal. The filter gain
Gki can be written as

Gki = a′ki/aki, (4)

where Gki is a function of the parameter i, which means
the i-th path of the received signal. This means that the
gain Gki is different from each path of the received signal.
If the variance of the signal is large, the amplitude after
the background subtraction also has large value because the
background subtraction process passes a signal with large
variance more intactly. Thus the filter gainGki has large value
when a moving target, mainly human, exists. However, if
there is little variation of the received signal, for the case in
which only clutter exists, the filter gain Gki has small value.
For the analytic convenience, we separate the signals

in (1) and (3) into two parts as

rk (t) =
NH∑
n=1

akns (t − τkn)+
NC∑
m=1

akms (t − τkn)+ n(t),

yk (t) =
NH∑
n=1

a′kns (t − τkn)+
NC∑
m=1

a′kms (t − τkn)+ n
′(t), (5)

where NH and NC represent the number of paths from the
human and the clutter, respectively. The first and second parts
of (5) represent the signal paths which are reflected by the
human and clutter, respectively. If we define the filter gains
for filtering the human signal and the clutter signal asGH and
GC , respectively, then GC and GH can be written as

GH = a′kn/akn,

GC = a′km/akm. (6)

We assume that GC and GH are stationary random variables
over both time and path because these filter gains, GC and
GH , are not functions of the time and the path (these values
depends on the type of target for filtering). Here, based on the
property of a log-normal random variable,GC andGH , which
is represented as division with the two log-normal random
variables, also have a log-normal characteristic. Therefore,
the filter gains,GC andGH , follows a log-normal distribution.

V. PERFORMANCE ANALYSIS
In this section, as our performance metrics, we present per-
formance analysis for our proposed multi-human detection
algorithm. More specifically, the error probability is derived
in terms of the total error probability based on the log-normal
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statistics. Here, the total error probability can be determined
after dealing with both types of errors: a false alarm and miss
detection. After dealing with two type of errors (false alarm
and miss detection), we analyze the total error probability
based on these two type of errors according to the amplitude
of the clutter and the threshold value.

Before dealing with the error probability, for a tractable
numerical analysis, we suggest one approximation. Although
there could be several clutters in the signal of interest, ana-
lyzing the false alarm probability for the all of the clutters is
inefficient. Most of the false alarm probability is determined
by onemajor clutter, which has the largest amplitude, because
we find multiple candidate peaks and determine which one
is from human or clutter based on TC method. Then, there
would be boundary between the peaks of the last human and
the clutter. The clutter after the last human is a main concerns
for analyzing the false alarm probability. Thus, analyzing
the false alarm probability for the clutter that which has
the largest amplitude is enough to consider the false alarm
probability.

A. FALSE ALARM PROBABILITY
A false alarm occurs if the amplitude of the unwanted signal
is greater than the threshold that is set for detecting a human
when we use the proposed detection algorithm method. The
unwanted signal is mainly constructed as a summation of the
clutter and multipath signals of a human. Generally, if there
is nothing except a non-moving clutter, the signal is very
static, and the GC has a very small value. However, if there
is a human in the environment, many multipath signals are
superpositioned with the clutter signals at the back side of
a human, and that causes the filter gain of the clutter, GC ,
to increase, because the multipath signal makes variations.
Thus, to analyze the false alarm probability, we need to
analyze the amplitude and filter gain of the clutter behind the
human.

For convenience, we use the normalized amplitude of the
clutter signal with the amplitude of the human instead of
using the amplitude of the clutter and the human signal sepa-
rately. The normalized amplitude of the human signal always
equals 1, because the amplitude is normalized by itself. The
normalized amplitude of the clutter signal can be written as

A =
AC
AH

, (7)

whereAC andAH are the amplitudes of the clutter and human,
respectively. With this normalized parameter, the false alarm
probability can be written as

PF (T ) = P (AGC > T ) , (8)

where AGC means the background subtracted amplitude of
the clutter and the false alarm occurs when AGC is greater
than the threshold T . Here, GC follows a log-normal distri-
bution where the mean and variance of the filter gain GC are
defined as mGC and vGC , respectively, and AGC also follows
a log-normal distribution where the mean and variance of

AGC are AmGC and A2vGC , respectively. Then, the false alarm
probability can be evaluated as

PF (T ) =
∫
∞

T

1

xσGC
√
2π

e
−

(
ln x−uGC

−lnA
)
2

2σGC
2

dx,

= 1−
∫ T

0

1

xσGC
√
2π

e
−

(
ln x−uGC

−lnA
)
2

2σGC
2

dx,

=
1
2
−

1
2
erf

(
lnT − uGC − lnA√

2σGC 2

)
, (9)

where

uGC = ln

(
(AmGC )

2√
A2vGC + (AmGC )2

)
, σGC =

√
ln
(
1+

vGC
mGC 2

)
.

If the threshold T increases, the value of (9) decreases due
to the nature of the error function which is a monotonically
increasing function. Increasing the threshold T means that it
is more difficult for the filtered clutter signal to exceed the
threshold. Thus, the false alarm probability should decrease.
The false alarm probability has a negative correlation with the
threshold T .

B. MISS DETECTION PROBABILITY
Amiss detection occurs when the amplitude of the human sig-
nal is smaller than the threshold T . Thus, the miss detection
probability PM can be written as

PM (T ) = P (1× GH < T ) , (10)

where 1×GH represents the filtered amplitude of the human
signal, because the amplitude of the human is normalized
by itself as 1. Here, GH follows a log-normal distribution
where the mean and variance are defined as mGH and vGH ,
respectively. Similar to (9), the miss detection probability can
be solved as

PM (T ) =
∫ T

0

1

xσGH
√
2π

e
−

(
ln x−uGH

)
2

2σGH
2

dx

=
1
2
+

1
2
erf

(
lnT − uGH√

2σGH 2

)
, (11)

where uGH = ln

(
mGH

2√
vGC+mGC

2

)
, σGH =

√
ln
(
1+

vGH
mGH

2

)
.

Note that increasing the threshold T makes it difficult for the
filtered human signal to exceed the threshold.

C. TOTAL ERROR PROBABILITY
The total error probability can be obtained based on the
derived results of the two error cases: false alarm and miss
detection. The two error cases can be assumed to be indepen-
dent events, because a false alarm is related to the amplitude
of the clutter signal, and the miss detection is related to the
amplitude of the human signal. Here, the total error proba-
bility considers three cases: when one, a false alarm occurs,
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when a miss detection occurs, or when the two errors occur
simultaneously. As results, the total error probability can be
formulated as

PE (T ) = 1− (1− PF (T )) (1− PM (T )) , (12)

where (1− PF (T )) and (1− PM (T )) represent the probabil-
ity of the complementary events of the false alarm and the
miss detection, respectively. Then, the total error probability
can be obtained based on the log-normal distribution as

PE (T ) = 1−

(
1
2
+

1
2
erf

(
lnT − uGC − lnA√

2σGC 2

))

×

(
1
2
−

1
2
erf

(
lnT − uGH√

2σGH 2

))
. (13)

VI. PROOF OF OPTIMALITY
The total error probability curve in (13) always has an optimal
value for a specific threshold value, TOpimal, regardless of
the parameters mGC , vGC , mGH , vGH and A. Especially, (13)
has the shape of a quasiconvex function as shown in Fig. 2.
To prove the quasiconvexity, we simplify (13), and we
prove that the simplified equation satisfies the quasiconvex-
ity. Then, we extend this result to prove the quasiconvexity
of (13).

FIGURE 2. 3D plot of total error probability, PE (T ) (uGH
= −0.3656,

uGC
= −1.4311, σGH

= 0.2779, σGC
= 0.3682).

In (13), if we let a = 1√
2σGH

2
, b =

uGH√
2σGH

2
, c = 1√

2σGC
2
,

d =
uGC+ln(A)√

2σGC
2
, fa,b(x) = (−1+erf(a ln x)−b), and gc,d (x) =

(1+ erf(c ln x − d)), then (13) can be simplified as

fa,b(x)gc,d (x) = (−1+ erf(a ln x − b))

×(1+ erf(c ln x − d)) for (a, c > 0), (14)

where x > 0. (14) is a simply scaled and translated function
of (13).

Here, without loss of generality, proving the quasiconvex-
ity of (14) has the same meaning of proving the quasicon-
vexity of (13). In (13), these horizontal scaling multipliers
(a and b) affect the domain but leave the range unchanged.
More specifically, for a ≥ 1 or b ≤ 1, this horizontal scaling

leads to a horizontal shrinking based on the value of a or b.
Otherwise, a horizontal stretching occurs. Similarly, for c and
d , c and d produce a horizontal scaling. As a result, these
values change the shape/size (stretching and shrinking) of the
graph of the function, but the overall trend of the graph is
left unchanged. Therefore, in this sections, we consider the
proof of the quasiconvexity of the simplified formula in (13),
instead of the original formula in (14). More specifically, for
analytical convenience, we prove the quasiconvexity of (13)
with the specific case (e.g. a = c = 1 and b = d = 0) as

E(x) = f1,0(x)g1,0(x),

= (1− erf(ln x))× (1+ erf(ln x)). (15)

To prove the quasiconvexity of (15), we apply the basic
necessary and sufficient condition which a quasiconvex func-
tion has [31]. Consider any p, q ∈ R and any λ ∈ (0, 1).
Assume, without loss of generality, that p > q. Then we
need to prove that E(λp + (1 − λ)q) ≤ max{E(p),E(q)}
for quasiconvexity. Suppose that E(p) ≥ E(q), which means
that (erf(ln p))2 ≥ (erf(ln q))2, so that, given that the error
function is a monotonically increasing function, it is obvious
that (erf(ln p))2 ≥ (erf(ln(λp+ (1− λ)q)))2. Similarly, if we
suppose that E(q) ≥ E(p), then (erf(ln q))2 ≥ (erf(ln p))2,
proving that (erf(ln q))2 ≥ (erf(ln(λp + (1 − λ)q)))2. As
results, both inequalities show that (15) is a quasiconvex
function, which directly means that the total error probability
is a quasiconvex function based on the properties of the
parameters a, b, c, and d .

VII. OPTIMAL THRESHOLD
In this section, the optimal threshold is evaluated by applying
the bisection method [32] numerically for given environment
factors. The optimization problem is equivalent with the fol-
lowing problem:

minimize PE (T ),

subject to T > 0.

In Table I, the optimal threshold values based on the typical
indoor channel conditions are given as a sample example
where the parameter A means the amplitude of the most
critical clutter normalized by the amplitude of a human in the
signal of interest. This sample example in Table I shows the
sample guidelines for the optimal threshold value for detect-
ing multi-human with our proposed algorithm based on given
environmental factors if the normalized amplitude A of the
clutter is given. 4 The statistical parameters mGH , vGH , mGC
and vGC are calculated based on our laboratory experiments
(we obtain experimental data based on the IR-UWB radar
system with our proposed algorithm implemented using an
NVA-R661 evaluation board.).

The statistical parameters, such as σGH , uGH , σGC , and uGC
in (9) and (11), varywith the channel conditions. σGH and σGC
are relevant to the shadowing effect of the channel [33]. If the

4The normalized amplitude of the clutter can be estimated or measured
empirically in the environment.
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TABLE 1. The optimal threshold and related error probability for given environment factors.

shadowing effect is severe due to the many reflection paths,
the parameter values σGH and σGC increase. The increase in
σGH causes the parameter values a and b to decrease, and
it eventually leads the performance degradation. This means
that if the shadowing effect on the human’s signal is more
severe, the signal of the human is more scattered and the
detection probability decreases which leads the performance
degradation.

Moreover, uGH and uGC are relevant to the degree of path
loss of the channel [33]. The severe path loss effect causes
these parameters to increase. An increase in uGH lowers the
error probability and an increase in uGC makes the error
probability increase.

In addition to the effect of the channel conditions, the
optimal threshold is also affected by the filter gains, GH
and GC , respectively. These filter gains could vary with the
degree of movement of the target, although the target has
the same radar cross-section (RCS). If a human is moving
with a large motion, the filter gain can be slightly increased,
because the filter attenuates only the static signal, and then,
an increase of the filter gain of the human improves the
performance.

Note that the above insight of properties of the optimal
threshold with the different channel conditions can provide
the guidelines or potential solutions about how to set the
optimal threshold to achieve the desired error probability at a
given environment.

VIII. EXPERIMENT RESULTS
To show the validity of our proposed algorithm, we con-
ducted experiments using the IR-UWB radar system made
by NOVELDA in Norway. The name of the board is
NVA-R661. Center frequency and -10dB bandwidth are
6.8GHz and 2.3GHz respectively. Fig. 3 shows experiment
environment with the used radar module. In that environment,
we gathered experiment data about a selected number of
human, and using the measured data, we compared the per-
formances between the conventional OS-CFAR and proposed
detection algorithms. Information about the number of human
is not given for evaluating algorithms, and the parameters are
same for all the test cases.

FIGURE 3. Experiment Environment.

FIGURE 4. Experiment results of the proposed (upper) and conventional
CFAR (lower) detection algorithms in case of one moving human target.

Fig. 4 and Fig. 5 show experiment results about a
selected number of moving human. x-axis and y-axis
represent iteration number and distances of the detected
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FIGURE 5. Experiment results of the proposed (upper) and conventional
CFAR (lower) detection algorithms in case of three moving human targets.

FIGURE 6. Experiment results of the proposed (upper) and conventional
CFAR (lower) detection algorithms in case of two near human targets
(Distance between human ≈ 70cm).

peaks, respectively. For the first case, a human moved back
and forth. The lower sub-figure in the Fig. 4 represents
detected peaks by the conventional OS-CFAR detection algo-
rithm. The OS-CFAR algorithm find all the spiky peaks
which are reflected by same body, without any clustering
scheme. That results in multiple detected traces. When the
distance between a human and the radar system decreases,
more number of peaks are detected, because the number of
different paths from body increases. However, in the upper
sub-figure in the Fig. 4, our proposed detection algorithm
finds only effective peaks from multiple peaks of a human.
Although, we set parameters of tleft and tright regarding clus-
tering size as fixed value, the clustering size is spontaneously
adjusted according to the size of cluster. It is because that the
found peak is regarded as an effective peak only if the peak is
local maximum within the clustering size based on proposed
detection algorithm. Multiple peaks are clustered by the pro-
posed algorithms, and the noisy peaks by multipath or clutter

FIGURE 7. Experiment results of the proposed (upper) and conventional
CFAR (lower) detection algorithms in case of two near human targets
(Distance between human ≈ 50cm).

are rejected by TC method using predetermined threshold
value in that environment. The threshold is measured using
the environmental parameters in the Table I. In Fig. 5, three
human moved. Multiple detected peaks by the conventional
OS-CFAR algorithm in the lower sub-figure in the Fig. 5
make a confusion for the recognition of the number of tar-
get, and make it difficult to find distance traces of three
human. The far human sometimes fail to be detected, because
the dense multipath signals of multi-human. It could raise
the threshold value of the OS-CFAR algorithm. However,
in the upper sub-figure in the Fig. 5, the proper effective
peaks of three human are detected. Although we cannot
identify the human for each distance, the trace of each
human is almost clearly recognized along with the number of
human.

To compare distance resolution for the close human, we
tested for two and four closely standing human as Fig. 6,
Fig. 7, and Fig. 8. In Fig. 6, two human are standing with the
distance of about 70cm during this experiment. The traces,
which are detected by the OS-CFAR algorithm, of two human
are hardly recognized.With our proposed algorithm, the clus-
ters of multi-human are separated, and traces of multi-human
are clearly recognized. When there are two human who are
standing with the distance of about 50cm as Fig. 7, the
OS-CFAR algorithm fail to resolve two close human while
our proposed algorithm successively separates two human.
Even, in Fig. 8, there are four human and distance between the
adjacent human is about 30cm. The four traces of four human
are relatively well recognized by the proposed algorithm than
the OS-CFAR algorithm. To show more details about the
multi-human detection process based on our proposed algo-
rithm behind some selected figures presented here, we have
included supplementary multimedia files. These files show
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FIGURE 8. Experiment results of the proposed (upper) and conventional
CFAR (lower) detection algorithms in case of four near human targets
(Distance between human ≈ 30cm).

the process of how to find multiple effective peaks caused
by actual people under different scenarios, while comparing
the performance with the conventional OS-CFAR detection
algorithm. This will be available at http://ieeexplore.ieee.org.

IX. CONCLUSION
We proposed the multi-human detection algorithm based on
IR-UWB radar system, especially, by repeatedly performing
clustering and detecting processes. With our proposed algo-
rithm, the clusters for multi-human can be separated and the
traces of multi-human can be finely recognized. It could be
used for indoor positioning system for multi-human based on
IR-UWB radar system. In addition, the proposed detection
algorithm could be applied to the people counting scenario
based on clustering scheme in the preprocessing step for
improving performance. Our feature works is to realize peo-
ple counting and positioning system for multi-human based
on the IR-UWB radar sensors.
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