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ABSTRACT Due to the large-scale and distributed characteristics of increasing renewable energy resources,
dynamic economic emission dispatch (DEED) of hybrid energy resource system becomes more and more
important in the power system operation. This paper proposes a distributed model predictive control (DMPC)
method for hybrid energy resources system of dynamic economic optimal dispatch with large-scale
decomposition coordination approach. First, the DEED model of hybrid energy resources is converted into
predictive control model, which can provide rolling optimization mechanism for dealing with intermittent
energy resources optimization. Second, predictive control model is decomposed into several subsystems with
Lagrangian multipliers for coordinating those subsystems, which can greatly decrease the computational
complexity. Third, due to the randomness or uncertainty of intermittent power generation, model predictive
control can dynamically optimize random or uncertainty problem with rolling optimization mechanism.
Furthermore, adaptive dynamic programming is utilized to solve those subsystem optimization problems,
which can optimize the random or uncertain problem in real-time condition. In the optimization process,
probability constraint is converted into deterministic constraint with its probability density function, and
system load balance can be properly handled with coupled coarse-fine constraint-handling technique.
According to the obtained results in the case studies, the proposed DMPC can optimize the DEED of hybrid
energy resources well combining with the large-scale decomposition-coordination approach, while greatly
decreasing the optimization complexity and computation time, which reveals that the proposed method can
provide an alternative way for solving the DEED problem of hybrid energy resources.

INDEX TERMS Renewable energy resources, dynamic economic emission dispatch, model predictive
control, large-scale decomposition-coordination.

I. INTRODUCTION
Dynamic economic dispatch (DED) plays an important role
in power system operation, which mainly optimizes the out-
puts of those generator units with satisfying the predicted
load demands in the incoming time periods. In comparison to
economic dispatch (ED), DED takes the ramp rate limits of
generator units between time intervals, which makes DED a
more accurate formulation of economic dispatch problem in
the face of more difficult optimization challenges [1]. Gen-
erally, DED takes the economic factor as its only objective
in the problem formulation, and many efficient methods are

proposed to properly solve the DED problem. Some intel-
ligent algorithms are proposed to solve those dynamic eco-
nomic problems, such as interior point method [2], quadratic
programming [3], neural network [4], genetic algorithm [5],
particle swarm optimization (PSO) [6], [7] and differential
evolution (DE) [8].

With the increase concern about environmental problem,
the clean air act amendments ordered the electricity util-
ity industry to modify their operational strategies to reduce
the emission pollutants by power generations [9]. Though
the installation for reducing clean equipment can reduce the
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emission pollutants, it is still a long-term option. In the short-
term view, an efficient way is that emission and cost are both
to be minimized, which also promotes the DED problem to
extend to the dynamic economic emission dispatch (DEED)
problem. Then, several weighted and constrained meth-
ods are proposed to solve this DEED problem, gener-
ally DEED is converted into single objective optimization
problem. In literature [10], only the economic objective is
optimized while treating the emission as a constraint. In liter-
ature [11]–[13], economic objective and emission objective
are weighted to convert the DEED into the single objective
optimization problem.

Actually, to reduce the emission pollutant of thermal units,
the wind and solar power have been taken into considerations
as potential renewable energy sources especially when eco-
nomic and environmental apprehensions are rapidly increas-
ing in those thermal power generations. However, numerous
challenges need to be overcome to integrate wind and solar
power into the thermal power systems, the power generation
process depend on the climate situations [14]–[20]. Further-
more, wind and solar energy source have small power gener-
ation capacity, large scale of wind and solar energy sources
are needed to meet the load demand requirements [21], [22].
Therefore, the uncertainty, dynamic and high-dimension
characteristics need to be considered in the whole optimal
model, which brings great challenge in the optimization
process [23], [24].

In the past few years, some methods have been proposed
to solve the economic emission problem with incorporating
renewable power generations [25]–[34]. In literature [26],
a model predictive control-basedMPPT andmodel predictive
control-based droop current regulator is proposed to interface
PV in smart dc distribution systems. Literature [30] presents
a dynamic discrete-time piecewise affine (PWA) model of a
wind turbine for the optimal active power control of a wind
farm. In literature [33], a market-oriented energy manage-
ment system (EMS) for a hybrid power system composed of a
wind energy conversion system and a battery energy storage
system is presented with a real-time MPC system.

This paper proposes a distributed model predictive con-
trol (DMPC)method to solve the dynamic economic emission
dispatch problem of hybrid energy resource system. The
proposed DMPC mainly has three main procedures: (1) It
converts DEEDmodel of hybrid energy resources into predic-
tive control model, which can deal with stochastic or uncer-
tain characteristics of intermittent energy resources with
real-time correction mechanism; (2) In comparison to con-
ventional DMPC, it decomposes above predictive control
model into several subsystems with large-scale decomposi-
tion coordination method, which coordinates each subsystem
with Lagrangian operator, this procedure can decrease the
computational complexity of total predictive control model;
(3) It utilizes ADP to solve each subsystem model prob-
lem with its real-time optimization mechanism, which can
satisfy its requirement of rolling optimization. Furthermore,
the obtained results of two test systems prove the efficiency of

proposed DMPC for solving DEED problem of hybrid energy
resources.

II. PROBLEM FORMULATION
The hybrid energy system is mainly consisted of three dif-
ferent energy resources: wind turbines, solar panels and ther-
mal units. To ensure the economic efficiency, environmental
conservation and cost of BESS in the hybrid energy resource
system, the power balance, output constraint, ramp rate limits
and BESS charging limits are taken into consideration, and
the joint optimal model of multiple energy resources can be
properly created [35].

A. OBJECTIVE FUNCTIONS
1) POWER GENERATION COST

f1 = min{
T∑
t=1

[
Nw∑
i=1

(awix2wit + bwixwit + cwi)

+

Np∑
j=1

(apjx2pjt + bpjxpjt + cpj)

+

Nc∑
m=1

(acmx2cmt + bcmxcmt + ccm)]} (1)

Where T is the length of whole time period, xwit , xpjt , xcmt
are the wind power output, photovoltaic power output and
thermal output at the t-th time period, Nw, Np, Nc are the
number of wind turbines, solar panels and thermal units, and
awi, bwi, cwi, apj, bpj, cpj, acm, bcm, ccm are the cost coefficients
of wind turbines, solar panels and thermal units.

2) POLLUTANT EMISSION
Since more and more concerns have been taken over the
environmental problem, society demand requires not only
adequate and secure electricity at cheapest price, but also at
minimum level of pollutant emission. The pollutant emission
is mainly discharged by thermal units, the major effect of pol-
lutant emission is composed of nitric oxide and sulfur oxide,
and only nitric oxide can be considered from the viewpoint
of environmental conservation. Generally, emission amount
can be formulated with function of thermal output, which is
expressed as the summation of a quadratic function and an
exponential function.

f2 =
T∑
t=1

Nc∑
m=1

[αcm + βcm ∗ xcmt + γcm ∗ x2cmt

+ηcm ∗ exp(δcm ∗ xcmt )] (2)

Where αcm, βcm, γcm, ηcm, δcm are the coefficients of emission
rate in each thermal unit.

3) OPERATION COST OF BATTERY ENERGY
STORAGE SYSTEM (BESS)
Since large-scale intermittent power generators are inte-
grated, BESS is needed to keep the stability of power system.
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The charging and discharging operation will bring operation
cost to power system, it can be generally described as follows:

f3 =
NB∑
d=1

T∑
t=1

(
∏
d,t

·

∣∣∣PBd,t ∣∣∣) (3)

WhereNB is the number of batteries,
∏

d,t is the coefficient
of operation cost at the d th battery at the t-th time period,
which also means operation cost ($) per each KWh,

∣∣∣PBd,t ∣∣∣ is
the discharging output or charging output at the d th battery at
the t-th time period.

B. CONSTRAINTS
(1) System load balance limits

System load balance is a crucial constraint limit in the DED
problem, it ensures that load demand can be properly satisfied
in each time period. In hybrid energy system, the output of
all power generators and BESS are provided to meet the
load demand, which also connects different power generators
together.

Nw∑
i=1

xwit+
Np∑
j=1

xpjt+
Nc∑
m=1

xcmt +
NB∑
d=1

PBd,t = Lt + Ploss,t (4)

Where Lt is the system load at the t-th time period, Ploss,t is
the transmission loss at the t-th time period. The transmission
loss is mainly related to the thermal units, and it can be
expressed in quadratic form of thermal output, which can be
formulated as:

PLoss,t=
Nc∑

m1=1

Nc∑
m2=1

xcm1tBm1m2xcm2t+

Nc∑
m1=1

B0m1xcm1t+B00

(5)

Where Bm1m2 , B0m1 , B00 are the coefficients of transmission
loss at each thermal unit.

1) THE OUTPUT LIMITS
Since power generation of renewable energy has strong ran-
dom characteristics, it is difficult to formulate the constraint
limits of intermittent power generation in the deterministic
way, constraint limits of wind and solar power output can be
described with probability characteristics. The output limits
of wind turbine, solar panel and thermal unit are described as
follows:
Pr ob(Pwimin ≤ xwit ≤ Pwimax) ≥ ρ, i = 1, 2, . . . ,Nw
Pr ob(Ppjmin ≤ xpjt ≤ Ppjmax) ≥ ρ, j = 1, 2, . . . ,Np
Pcmmin ≤ xcmt ≤ Pcmmax, m = 1, 2, . . . ,Nc

(6)

Where Pwimin, Ppjmin, Pcmmin represent the minimum output
of the i-th wind turbine, the j-th solar panel and the m-th
thermal unit. Pwimax, Ppjmax, Pcmmax represent the minimum
output of the i-th wind turbine, the j-th solar panel and
the m-th thermal unit, Pr ob(·) is the probability function,
ρ ∈ [0.5, 1).

2) RAMP RATE LIMITS
Since adjustment ability of each power generator has a certain
limit, the deviation of output between current time period
and next time period is limited, which also means that the
allowed up-ramp rate and down-ramp rate must be controlled
in certain feasible domain. The allowed ramp rate of each
energy resource can be described as follows:
Zwimin ≤ xwi,t+1 − xwit ≤ Zwimax, i = 1, 2, . . . ,Nw
Zpjmin ≤ xpj,t+1 − xpjt ≤ Zpjmax, j = 1, 2, . . . ,Np
Zcmmin ≤ xcm,t+1 − xcmt ≤ Zcmmax, m = 1, 2, . . . ,Nc

(7)

Where Zwimin, Zpjmin, Zcmmin are the minimum ramp rate of
the i-th wind turbine, the j-th solar panel and them-th thermal
unit. Zwimax , Zpjmax, Zcmmax are the maximum ramp rate of
the i-th wind turbine, the j-th solar panel and them-th thermal
unit.

3) CONSTRAINT LIMITS OF (BESS)
Due to the fixed storage of batteries, the discharging and
charging output must satisfy storage limits, which is pre-
sented as follows [27]:

V B
i,t+1 = V B

i,t + ηiP
B
i,t ∗1t

V B
i,min ≤ V

B
i,t ≤ V

B
i,max

PBi,t = Pdisi,t , if PBi,t ≥ 0
PBi,t = −P

cha
i,t , if PBi,t < 0

0 ≤ Pdisi,t ≤ P
dis
i,max

0 ≤ Pchai,t ≤ P
cha
i,max

(8)

Where Pdisi,t , P
cha
i,t are the output of discharging and charg-

ing state, Pdisi,max, P
cha
i,max are the maximum discharging and

charging output in the ith battery at tth time period. The state
of charge (SOC) is also taken into consideration, V B

i,t is the
storage of the ith battery at tth time period, V B

i,min, V
B
i,max

are the minimum and maximum storage of the ith battery,
ηi ∈ (0, 1] represents the efficiency of SOC.

III. THE PRINCIPLES OF MODEL PREDICTIVE
CONTROL METHOD
Themodel predictive control (MPC) is a popular optimization
approach for those constrained systems by its optimizing the
future plant behavior with explicit predictionmodel, it mainly
contains the discrete-time system and continuous-time sys-
tem. In the practical application, the discrete-time system is
often used for rolling optimization, the linear discrete model
for model predictive control can be generally described as
follows [36]:

J (y(k)) =
N∑
j=1

(1yT (k + q|k)Q1u1y(k + q|k)

+ yT (k + q|k)Quy(k + q|k))
x(k + 1) = Ax(k)+ Bu(k)
y(k) = Du(k)+ G
Cu(k)+ E ≥ 0

(9)
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And J (·) is the performance index function, which con-
trols the optimal process in a stable way, y(k), u(k) are pre-
sented as:

y(k) = [yT (k + 1|k), yT (k + 2|k), · · · , yT

× (k + 1+ q|k), · · · , yT (k + N |k)]T

u(k) = [uT (k|k), uT (k + 1|k), · · · , uT

× (k + q+ 1, k), · · · , uT (k + N |k)]T

(10)

Where N is the prediction length, y(q|k), u(q|k) are the
predictive value of output variable and controlled variable at
k-th step in the q+ 1-th control period, A, B, C , D, E , G are
the parametric matrixes and vectors.

Generally, the control variable needs to satisfy the follow-
ing constraints:

umin ≤ u(q|k) ≤ umax

1umin ≤ 1u(q|k) ≤ 1umax

1u(q|k) = u(q|k)− u(q− 1|k)

(11)

Where umin, umax are the minimum and maximum limits
of control variables, 1umin,1umax are the minimum and
maximum limits of the deviations between two time periods.

In the real-time optimization process, the predictions
depend on the system model x (k + 1) = F(x(k), u(k)), and
the performance index measures the difference between the
predictive behavior and desirable behavior of discrete system.
The variables x(k+q|k) and u(k+q|k) represent the predictive
state and predictive control at the k + q-th time period based
on the information at the k-th time period, u(k + q|k) = u(k)
especially when q = 0, then the next control action needs to
be found by repeating the above process.

IV. THE IMPLEMENTATION OF THE PROPOSED
DISTRIBUTED MODEL PREDICTIVE CONTROL
BASED VIRTUAL POWER PLANT ECONOMIC
OPTIMAL METHOD
On the basis of MPC presented in section III, the proposed
DMPC includes three procedures: (1) Converting economic
optimal model of hybrid energy resource into predictive
control model; (2) Decomposing the predictive model into
several subsystem models with Large-scale decomposition
coordination method; (3) Solving the subsystem problems
with adaptive dynamic programming. The details of each
procedure has been presented in following sections.

A. THE PREDICTIVE MODEL OF DYNAMIC
ECONOMIC EMISSION DISPATCH MODEL
For properly tackling with stochastic or uncertain charac-
teristics of intermittent energy resources, predictive control
model can be a good choice for its rolling optimization and
real-time correction mechanism. Therefore, it is necessary
to convert DEED model into predictive control model, and
this section mainly takes the measurement of increment cost
method. According to objective functions introduced in the
section II-A, the emission pollutant merely depends on the

thermal units, it can be controlled well by properly allocating
the output of thermal units. Here, the incremental cost of
power generation cost at energy resource is utilized to convert
the DEED model into the predictive control model.
It is assumed that f = f1 + f2, the increment cost of power

generation can be calculated (δcm = 0) as follows:

∂f
∂xwit

= 2awixwit + bwi = uwit
∂f
∂xpjt

= 2apjxpjt + bpj = upjt
∂f
∂xcmt

= 2a′cmxcmt + b
′
cm = ucmt

u(q|k) = [uwik , upjk , ucmk ], k ≤ q ≤ k + N
a′cm = acm + γcm
b′cm = βcm + bcm

(12)

The optimal incremental cost of each energy resource
needs to be obtained, it can be labeled as u∗k = [u∗wk , u

∗
pk , u

∗
ck ].

The predictive model can be created according to the predic-
tive control model introduced in section III.

With the incremental cost criterion, it needs to follow [37]:
uk = u∗k , uk ∈ �
uk ≤ u∗k , uk = �̄
uk ≥ u∗k , uk = �

(13)

The limits of control rate can be obtained with the output
limits:

2awP′wimin + bw ≤ uwik ≤ 2awP′wimax + bw
2apP′pjmin + bp ≤ upjk ≤ 2apP′pjmax + bp
2a′cPcmmin + b′c ≤ ucmk ≤ 2a′cPcmmax + b′c

(14)

Since generation process of wind power and solar power
has strong randomness, those uncertainty constraints in
formula (6) need to be converted into certainty con-
straints, the details of converting process is presented in
section IV-D3, P′wimin, P

′
wimax, P

′

pjmin, P
′
pjmax are those

obtained maximum, minimum output.
The change of control variable needs to satisfy the

corresponding limits:
2awZwimin ≤ 1uwik ≤ 2awZwimax

2apZpjmin ≤ 1upjk ≤ 2apZpjmax

2a′cZcmmin ≤ 1ucmk ≤ 2a′cZcmmax

(15)

The power balance limits in formula (4) can be con-
verted as:

1
2aw

Nw∑
i=1

uwik+
1
2ap

Np∑
j=1

upjk+
1
2a′c

Nc∑
m=1

ucmk+
NB∑
d=1

PBd,t

= Lt + Ploss,t +M

M =
bw
2aw

Nw +
bp
2ap

Np +
b′c
2a′c

Nc

(16)
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B. THE DECOMPOSITION OF MPC
According to the above analysis, the key to solve the dynamic
optimal dispatch problem is to discover the common optimal
incremental cost, which means that the differences of the
incremental cost between these generator units need to be
minimized.

The performance index function can be deduced with the
Lagrangian operator as follows:

JL(u(k)) = J (y(k))+ λk (
1

2aw

Nw∑
i=1

uwik +
1
2ap

Np∑
j=1

upjk

+
1
2a′c

Nc∑
m=1

ucmk +
NB∑
d=1

PBd,t − Lt −M ) (17)

According to the large system decomposition-coordination
theory, the main performance index function can be presented
as the summation of several functions as follows:

min(JL(u(k))) = min(JL,w(uwk ))+min(JL,p(upk ))

+ min(JL,c(uck )) (18)

Where JL,w(·), JL,p(·), JL,c(·) are the performance index
functions of the subsystems of wind power generation, photo-
voltaic power generation and thermal power generation, these
subsystems can be described as follows:

1) THE SUBSYSTEM OF WIND POWER GENERATION

min JL,w(uwik )
ywi(k) = Dwiuwik + Gwi
xwi,k+1 = Awixwi,k + uwik
2awiP′wimin + bwi ≤ uwik ≤ 2awiP′wimax + bwi
2awiZwimin ≤ 1uwik ≤ 2awiZwimax

(19)

2) THE SUBSYSTEM OF PHOTOVOLTAIC POWER
GENERATION

min JL,w(upjk )
ypj(k) = Dpjupjk + Gpj
xpj,k+1 = Apjxpjk + upjk
2apjP′pjmin + bpj ≤ upjk ≤ 2apjP′pjmax + bpj
2apZpjmin ≤ 1upjk ≤ 2apjZpjmax

(20)

3) THE SUBSYSTEM OF THERMAL POWER GENERATION

min JL,w(ucmk )
ycm(k) = Dcmucmk + Gcm
xcm,k+1 = Acmxcm,k + ucmk
2a′cmPcmmin + b′cm ≤ ucmk ≤ 2a′cmPcmmax + b′cm
2a′cmZcmmin ≤ 1ucmk ≤ 2a′cmZcmmax

(21)

The economic optimal dispatch problem is converted into
several predictive control problem, where the robust charac-
teristics can also be guaranteed in the optimization process.

C. ADAPTIVE DYNAMIC PROGRAMMING
FOR OPTIMIZING SUBSYSTEM
The ADP is taken as an optimization tool in this manuscript,
each divided subsystem is optimized with ADP under the
MPC mechanism. The MPC can provide possible states of
power generators especially intermittent power generations
in next few periods, and ADP is utilized to optimize the
DEED in these periods. Since MPC has a typical rolling
optimization mechanism, this rolling mechanism requires
optimization method optimize in real-time way. Hence, ADP
can be a good choice as a real-time optimization method.
The adaptive dynamic programming proposed byWerbos can
adaptively find the optimal solution for forward-in-time due
to its strong ability of self-learning mechanism. On the basis
of dynamic programming (DP), ADP has three networks:
control network, model network and critic network. Here,
the heuristic dynamic programming is utilized to solve the
above subsystem obtained in section IV-B, its working prin-
ciple is shown in Fig. 1 as follows [38]:

The value of cost function J (x(k)) is produced from
the critic network, action network reflects the relationship
between the state variable x(k) and control input u(k), and
model network estimates the state of system x(k + 1)
in the next time period. In the discrete nonlinear system,
the cost function of interacted system can be presented as
follows:

min
u

J = θ [x(T ),T ]+
T−1∑
k=1

8[x(k), u(k), k]

s.t. x(k + 1) = f (x(k), u(k), k)

x(k) = xk , x(T ) = xT (22)

It can be concluded that the minimum cost function value
in system state x(k) is obtained in formula (23).

J∗[x(k), k] = min
u(k),u(k+1),··· ,u(T−1)

{θ [x(T ),T ]

+

T−1∑
k=1

8[x(k), u(k), k]} (23)

With consideration of the discount factor, the Bellman
recurrence equation can be also presented:

J∗[x(k), k] = min
u(k)
{8[x(k), u(k), k]+ γ J∗[x(k+1), k+1]}

(24)

Where 8[•] is the utility function, γ is the discount
factor. The optimization process takes the iteration in for-
mula (24) to approximate the optimal value from the state
variable x(T ) to x(0). According to above ADP approach,
each dynamic subsystem model can be established as
follows:
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1) WIND POWER SUBSYSTEM

min
T∑
k=1

JL,w(uwk ) = min
T−1∑
k=1

JL,w(uwk )+ JL,w(uwT )

ywi(k) = Dwiuwik + Gwi
xwi,k+1 = Awixwi,k + uwk
1

2aw

Nw∑
i=1

uwik+
1
2ap

Np∑
j=1

upjk +
1
2a′c

Nc∑
m=1

ucmk+
NB∑
d=1

PBd,t

= Lt + Ploss,t +M

2awP′wimin + bw ≤ uwik ≤ 2awP′wimax + bw
2awZwimin ≤ 1uwik ≤ 2awZwimax

(25)

2) PHOTOVOLATIC POWER SUBSYSTEM

min
T∑
k=1

JL,p(upk ) = min
T−1∑
k=1

JL,p(upk )+ JL,p(upT )

ypj(k) = Dpjupjk + Gpj
xpj,k+1 = Apjxpj,k + upjk
1

2aw

Nw∑
i=1

uwik+
1
2ap

Np∑
j=1

upjk+
1
2a′c

Nc∑
m=1

ucmk+
NB∑
d=1

PBd,t

= Lt + Ploss,t +M

2apjP′pjmin + bpj ≤ upjk ≤ 2apjP′pjmax + bpj
2apjZpjmin ≤ 1upjk ≤ 2apjZpjmax

(26)

3) THERMAL POWER SUBSYSTEM

min
T∑
k=1

JL,c(ucmk ) = min
T−1∑
k=1

JL,c(ucm)+ JL,c(ucT )

ycm(k) = Dcmucmk + Gcm
xcm,k+1 = Acmxcm,k + ucmk
1

2aw

Nw∑
i=1

uwik+
1
2ap

Np∑
j=1

upjk+
1
2a′c

Nc∑
m=1

ucmk+
NB∑
d=1

PBd,t

= Lt + Ploss,t +M

2acmP′cmmin + bcm ≤ ucmk ≤ 2acmP′cmmax + bcm
2acmZcmmin ≤ 1ucmk ≤ 2acmZcmmax

(27)

During the real-time optimization process, initial state of
each subsystem is known, terminate state is in the range
of feasible region, which is also known. In above sub-
system models, optimal scheme can be calculated accord-
ing to Bellman recurrence equation on the objective
function.

D. CONSTRAINT HANDLING METHOD
Since dynamic economic optimal dispatch is often pre-
sented as a nonlinear, complex-constrained problem, the con-
straint handling efficiency can affect the optimization results
directly.

FIGURE 1. The framework of heuristic dynamic programming.

1) FEASIBLE DOMAIN OF DECISION VARIABLE
Since the decision variables can not avoid violating those con-
straint limits during the optimization process, these variables
are forced into the feasible domain by formulation (28) as
follows:

x ′i =


mini, if xi < mini
xi, if mini ≤ xi ≤ maxi
maxi, if xi > maxi

(28)

2) INITIALIZATION OF DECISION VARIABLES
Since the ramp rate constraint of each energy resource is
considered, the maximum and minimum output of each time
period can’t be easily described by formula (7). For each time
period, the feasible interval can be modified as follows:

[xi,t,min, xi,t,max] = [xi,min, xi,max]

∩ [xi,t−1 − DRi, xi,t−1 + URi] (29)

Where xi,t,min, xi,t,max are the minimum and maximum
bounds of output of i-th energy resource at t-th time period,
DRi, URi are the up-ramp and down-ramp limits of those
different energy resources.

3) THE PROBABILITY CONSTRAINT HANDLING TECHNIQUE
Since the wind power generation process is random, dynamic
economic optimal dispatchmodel can be taken as the stochas-
tic model, which brings great challenge for solving this prob-
lem. Thus, dynamic economic optimal model needs to be
converted to the deterministic model with the probability
density function, the probability constraint can be properly
handled as follows:

Firstly, the value of wind output needs to be normalized
with ηit = xwit/xwimax, it assumes that ηit follows the
Beta distribution [39], and its probability density function is
described as:

f (ηit ) =
1

B(αt , βt )
η
αt−1
it (1− ηit )βt−1, 0 ≤ ηit ≤ 1 (30)

Then its distribution function can be obtained:

F(ξit ) =

∫ ξit
0 $

αt−1
it (1−$it )βt−1d$it

B(αt , βt )
, 0 ≤ ξit < 1 (31)

It equals 0 when ξit ≤ 0, and equals 1 when ξit ≥ 1.
The B(·) represents the beta function with its two param-
eters αt , βt . Secondly, combined with method in litera-
ture [39], it can obtain that minimum output is smaller than
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xwimax ∗ F−1(1 − ρ) and maximum output is larger than
xwimax ∗ F−1(ρ), then the following probability constraint of
output limits can ensure the feasibility.:{

xwimax ∗ F−1(1− ρ) ≤ xwit ≤ xwimax ∗ F−1(ρ)
xpjmax ∗ F−1(1− ρ) ≤ xpjt ≤ xpjmax ∗ F−1(ρ)

(32)

4) THE CONSTRAINT HANDLING FOR NONLINEAR
POWER BALANCE CONSTRAINT
The power balance constraint plays an important role in the
dynamic economic dispatch due to its nonlinear and complex
characteristics, and the transmission loss is also taken into
consideration, the constraint handling technique for this non-
linear equality constraint has great influence on the efficiency
for solving this problem. For reducing BESS cost, BESS is
started merely when power balance is not properly satisfied,
BESS cost can be controlled into a limited area, in which lim-
ited value is very small. Here, let those thermal units equally
bear the power balance violation, some measurements are
taken in consideration of its nonlinear characteristics:

� =

Nw∑
i=1

xwit+
Np∑
j=1

xpjt+
Nc∑
m=1

xcmt+
NB∑
d=1

PBd,t−Lt−Ploss,t

(33)

Replace Ploss,t with formula (4), the balance violation can
be described as follows:

1� =

Nc∑
i=1

(1−B0i)
∂xcit
∂xcit

1xcit−2
Nc∑
i=1

Nc∑
j=1

∂xcit
∂xcit

Bijxcjt1xcit

(34)

Equally adjust the thermal output, which means 1xcit =
1xcjt (i 6= j), let m = 1xcit , it obtains:

m =
1�

Nc∑
i=1

(1− B0i)− 2
Nc∑
i=1

Nc∑
j=1

Bijxcjt

(35)

Therefore, the nonlinear equality constraint can be adjusted
coarsely with the formula (33), and it can be properly handled
combined with fine tuning technique in literature [40]. In the
assignment of output violation, wind power and photovoltaic
power are prior to thermal power, which can cause the fuel
cost and emission pollutant, the priority strategy can take
full advantages of renewable energy resource, and reduce the
emission pollutant and fuel cost of thermal units.

E. THE FLOWCHART OF THE PROPOSED DISTRIBUTED
MODEL PREDICTIVE CONTROL METHOD FOR VIRTUAL
POWER PLANT DYNAMIC ECONOMIC
OPTIMAL DISPATCH
After the dynamic economic optimal dispatch model is cre-
ated, the model can be converted into the predictive control
model with the incremental cost technique. Due to the large
scale and nonlinear characteristics of the optimization sys-
tem, the obtained predictive control model can be divided

into several subsystems with each agent for each subsys-
tem by the large scale decomposition-coordination method.
Each subsystem is managed in each agent, control command
of each subsystem is mainly made in each agent, and all
those agents coordinate each other with coordination fac-
tors. Then, the adaptive dynamic programming is utilized to
solve those subsystem optimization problem, and obtains the
final results for the whole dynamic economic optimal dis-
patch. In addition, stability and convergence of the proposed
DMPC can also be properly analyzed. For stability, since
performance index function is positive definite quadratic
and feasible region is convex, the proposed DMPC satisfies
lemma 1 and lemma 2 in literature [41], which can establish
the exponential closed-loop stability result. For convergence,
Bellman recurrence equation mainly promotes the optimiza-
tion process, convergence ability has been proved in liter-
ature [42], [43]. The whole procedures can be summarized
in Figure.2.

V. CASE STUDY
In real world, energy resources mainly include wind power,
solar power, hydro power and thermal power, wind power
and solar power are typical intermittent energy resources,
thermal units have the most stable power generation ability.
In this section, the test system mainly consists of several
numbers of above three energy resources, test system 1
is consisted of three wind generator, three solar panels
and four thermal units, test system 2 is consisted of nine
wind generators, nine solar panels and twelve thermal
units.

Two test systems are taken to verify the efficiency of the
proposed DMPC, the analysis on convergence process and
optimization results can be taken in comparison to centralized
dynamic programming (CDP), the obtained results of two
test systems can reveal that the proposed DMPC can have
excellent results while decreasing the computational com-
plexity especially in the large-scale hybrid energy resource
system.

A. TEST SYSTEM 1
In this test system, three wind farms, three photovoltaic
groups, four thermal units and single BESS compose the
hybrid energy resource system, the BESS mainly contains
single battery with storage capacity 100MW, and all the data
details about different power generators are shown in Table. 1.
Since emission pollutant is mainly caused by the thermal
units, it needs to take full advantages of these clean energy
resources, thermal power is mainly utilized to ensure the
system load balance in the hybrid energy resource systems.
According to the problem formulation in section II, power
generation cost, emission pollutant and transmission loss
can be taken as the criterions for verifying the final results,
the comparison results are shown in Table. 2. Transmission
loss is the summation of transmission loss in the 24 time
period, and BESS cost represents total cost of BESS in
the whole time period. The obtained results reveal that the
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FIGURE 2. The framework of the proposed distributed model predictive control for dynamic economic
emission dispatch problem.

TABLE 1. The output limits of hybrid energy resource system.

proposed DMPC can minimize the power generation cost,
emission pollutant and transmission loss simultaneously in
shorter period of time.

Further analysis is taken on the convergence process of
the proposed DMPC, final results are obtained after 200 iter-
ations, the convergence process of the proposed DMPC on
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TABLE 2. The comparison between CDP and the proposed DMPC in test system 1.

FIGURE 3. The convergence on cost and emission by the proposed DMPC.

FIGURE 4. The comparison of solar power #1 and solar power #2 by
proposed DMPC and CDP.

the power generation cost and emission pollutant are shown
in Figure.3, it can be seen that cost converges after about
70 generations while emission converges after about 100 gen-
erations. The convergence process of cost and emission is
relative stable and converges well near to the optimal scheme.
In the obtained optimal scheme, the comparisons between
CDP and the proposed DMPC are taken in those hybrid
energy resources. In the Figure.4, the output process obtained
by CDP and the proposed DMPC have the similar shape,
there is not large deviation of solar power output in the solar
power#2, while the proposed DMPC has larger output than
that of CDP in solar power#1 during the whole time period,
which also reveals that solar power #1 can be fully used in
the obtained optimal scheme by the proposed DMPC. In the
Figure.5, the comparison of output process between CDP
and the proposed DMPC are taken in solar power#3, it can
be seen that the output obtained by the proposed DMPC

FIGURE 5. The comparison of solar power #3 by proposed DMPC and CDP.

FIGURE 6. The comparison of wind power #1 and wind power #2 by
proposed DMPC and CDP.

is larger than that of CDP in the most time period, solar
power#3 has been fully used in the hybrid energy resource
system. The wind power plays the similar role with the solar
power in the hybrid energy resource system, full use of them
can decrease the emission pollutant caused by thermal power.
In the Figure.6 and Figure.7, the output process of wind
power are shown in the whole time period, it can be seen
that the wind power#1 and wind power#2 by the proposed
DMPC can be fully used in comparison to that obtained by
CDP in the Figure.6. In the Figure.7, it can be seen that the
output process of wind power#3 by the proposed DMPC is
not obviously larger than that of CDP, the result by DMPC is
larger than that of CDP merely in several time periods, which
reveals that they both can’t play full use of the wind power#3.

Thermal power is different from solar power and wind
power, since the emission pollutant is mainly caused by ther-
mal power, satisfactory result needs to maximize the solar
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FIGURE 7. The comparison of solar power #3 by proposed DMPC and CDP.

FIGURE 8. The comparison of thermal power #1 and thermal power
#2 by proposed DMPC and CDP.

power and wind power while minimizing the thermal output
during thewhole time period. According to the above analysis
on results of wind power and solar power, the output of wind
power and solar power by the proposed DMPC is larger than
that of CDP, those renewable energy resources can be fully
used in comparison to CDP. The obtained results are shown
in Figure.8 and Figure.9, the results of thermal power#1 and
thermal power#2 are presented in Figure.8, and the results
of thermal power#3 and thermal power#4 are presented in
Figure.9. In the Figure.8, the output of thermal power#1 and
thermal power#2 by the proposed DMPC is smaller than that
obtained by CDP in most time periods, which can promote
to decrease the emission pollutant. In the Figure.9, it can’t be
clearly seen that the obtained output of thermal power#3 and
thermal power#4 by the proposedDMPC are smaller than that
of CDP.

However, since the output of solar power and wind power
by the proposed DMPC can be more fully used in the whole
time period in comparison to that of CDP, and system load
at each time period is a certain value, the output of thermal
power by DMPC is obviously smaller than that of CDP,
which can prove that the proposed DMPC can optimize
the dynamic economic emission dispatch problem of hybrid
energy resource system well.

FIGURE 9. The comparison of thermal power #3 and thermal power #4.

FIGURE 10. The output of all the solar power resources by the proposed
DMPC.

B. TEST SYSTEM 2
To verify the decreasing computational complexity of large-
scale system in the proposed DMPC, this test system extends
to the triple scales of test system 1, the number of each wind
power, solar power, thermal power and capacity of BESS
enlarges to three times in test system 1, and the data details
are the same as it is shown in Table.1. The CDP is also used
to take comparison with the proposed DMPC, the obtained
results are shown in Table.3. It can be seen that the proposed
DMPC can optimize the power generation cost, emission
pollutant and BESS cost better with less transmission loss
in shorter period of time. In comparison with the obtained
results in test system 1, the proposed DMPC has obvious
advantages in power generation cost, emission pollutant,
transmission loss and time consumption, which can become
remarkable as the scale of hybrid energy resources becomes
large.

Further analysis is taken on the obtained optimal scheme
by the proposed DMPC. The output of all the solar power
resources is presented in Figure.10, it can be seen that most
solar power resources has maximum output during the whole
time period, only the solar power#9 has relative low output
at several time periods, the solar power can be fully used in
the dynamic economic emission dispatch of hybrid energy
resources. The output of all the wind power resources is
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TABLE 3. The comparison between CDP and the proposed DMPC in test system 2.

FIGURE 11. The output of all the wind power resources by the proposed
DMPC.

FIGURE 12. The output of the thermal power #1-6 by the proposed DMPC.

presented in Figure.11, it can be seen that the output limits
of each wind power at each time period is properly handled,
and most of the wind power resources have maximum load
operation during the whole time period, which also reveals
that wind power has been fully used by the proposed DMPC
method. In comparison to solar power and wind power, ther-
mal power is mainly utilized to adjust system load balance
while trying to maximize the output of the solar power and
wind power. The output of thermal power #1-6 is shown
in Figure.12. It is seen that the output of thermal power #1-6
is evenly distributed at each time period, which reveals that
the consensus in formula (12) is properly obtained, and they
evenly bear the system load at each time period. The output of
thermal power #7-12 is similar to that of thermal power #1-6,
the system load at each time period is evenly bear by those
thermal power resources, as it is shown in Figure.13. It can be
seen that the limit of each thermal power at each time period

FIGURE 13. The output of the thermal power #7-12 by the proposed
DMPC.

is properly satisfied, and the constraint of system load balance
has been properly handled at each time period.

According to the above obtained results, it proves that
the proposed DMPC can optimize the test system 1 and
test system 2 well while satisfying all the constraint lim-
its at each time period. In the test system 1, the proposed
DMPC can divide the hybrid energy resource system into
three subsystems, and optimizes each subsystem well with
properly handling those output limits and system load bal-
ance constraints. To verify the optimization efficiency on
those large-scale hybrid energy resource system, the scale
of test system 2 is extended to triple scale of test system 1,
the obtained results have obvious advantages in comparison
to CDP both on the results and computational time, compu-
tational complexity is obviously decreased especially when
hybrid energy resource system has large scale, which reveals
that the proposed DMPC can optimize the dynamic economic
emission dispatch of hybrid energy resource system well and
have remarkable advantages especially when the scale of
hybrid energy resource system is large.

VI. CONCLUSION
Due to large-scale and intermittent characteristics of increas-
ing renewable energy resources, the dynamic economic emis-
sion dispatch of hybrid energy resources system brings great
challenge for energy optimal management. This paper pro-
poses a distributed model predictive control method to opti-
mize hybrid energy resource system with considering BESS.
In order to tackle with stochastic or uncertain characteristics
of intermittent energy resources, DEED model of hybrid
energy resources is converted into predictive control model
with incremental cost method. In comparison to conventional
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DMPC, the predictive control model is decomposed into
three subsystems with large-scale decomposition coordina-
tion approach, which decreases the optimization computa-
tional complexity. Simultaneously, ADP is utilized to solve
each subsystem model problem with its real-time optimiza-
tion mechanism due to rolling optimization requirement of
MPC, and probability constraint handling technique properly
handles stochastic constraints in the optimization process.
The efficiency of proposed DMPC is also proved by those
obtained satisfactory results in two test systems, which also
reveals that the proposed DMPC can be a viable way for
solving DEED problem of hybrid energy resources.
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