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ABSTRACT In this paper, distributed time-varying formation (TVF) control problems for general linear
swarm systems with switching interaction topologies are investigated using an adaptive dynamic protocol.
First, a TVF control protocol for switching interaction topologies is constructed using the states of neigh-
boring agents. In the protocol, an adaptive controller that employs gain scheduling technique is provided
to estimate the coupling weights among agents. Compared with the previous studies on formation control,
the desired formation can be specified by piecewise continuously time-varying differentiable vectors, the
interaction topology can be switching, and the disadvantage of requiring global information of the interaction
topologies is removed in this paper. Then, an algorithm including a feasible formation condition is proposed
to determine the gain matrices of the distributed adaptive formation protocol by solving a linear matrix
inequality for swarm systemswith switching interaction topologies.Moreover, under the designed distributed
adaptive formation protocol, sufficient condition for general linear swarm systems with switching interaction
topologies to achieve the given TVF is derived using the Lyapunov theory. Finally, numerical simulations
are presented to demonstrate the obtained results.

INDEX TERMS Distributed adaptive protocol, time-varying formation, switching interaction topology,
swarm systems, general linear dynamics.

I. INTRODUCTION
In recent years, the formation problem of swarm systems has
been a significant research topic in the field of cooperative
control because of its broad range of application in wide
areas, such as satellite formation flying [1], [2], unmanned
aerial vehicles formation [3], [4], distributed sensor networks
[5], [6], mobile robots [7], [8] and so on. For a formation
problem of swarm systems, the crucial task is to design
distributed formation protocols based on local information,
i.e., local state information of each agent and its neighbors.
As a matter of fact, in robotics community, formation con-
trol problems have been studied a lot during the past years
using several approaches, which are virtual structure-based
approach [9], behavior-based approach [10], leader-follower
based approach [11] and so on.

The main challenge faced by many studies on formation
control of swarm systems is that each agent has to achieve the
desired formation using local information without relying on

centralized coordination [12]. A consensus-based approach
was proposed for second-order swarm systems in [13], and
it was proved that virtual structure, behavior, and leader-
follower based approaches could be unified in the framework
of consensus-based approaches. A distributed controller-
observer schema for formation tracking control of a
first-order swarm systems was presented in [14]. Necessary
and sufficient conditions were proved to show that first-order
swarm systems can achieve the rigid formation under undi-
rected and directed topologies using the complex Laplacian
approach in [15] and [16], respectively. In [17], the finite-time
formation was reached by second-order swarm systems using
a continuous consensus algorithm. Formation stabilization
problems for second-order swarm systems were considered
based on classic navigation function in [18]. It was proved
in [19] that the formation errors of second-order swarm
systems could converge to a small bounded region by a hybrid
consensus-based approach.
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It is worth emphasizing that the dynamics of each agent
in swarm systems can only be described by a high-order
model in some practical cases. Necessary and sufficient con-
ditions of reaching formation for a special swarm systems
were proposed in [20]. Formation stability problems for
general linear high-order swarm systems were considered
in [21]. Previous work [22] gave further consideration to
formation stability problems for general linear high-order
swarm systems with fixed and periodic switching undirected
interaction topologies. Necessary and sufficient conditions
for formation feasibility were presented in [23] for gen-
eral linear high-order swarm systems. However, only time-
invariant formation (TIF) is considered in [20]–[23], and
the interaction topology in [23] can hardly change. It is
more complicated and challenging to analyze and solve
the formation control problems for swarm systems with
switching topologies than those with fixed topologies [24].
Time-varying formation (TVF) control problems for general
linear high-order swarm systems with fixed and switching
interaction topologies were addressed in [25] and [26], where
the above-mentioned results in [25] and [26] are not fully
distributed, because the policies in [25] and [26] depend on
the smallest nonzero eigenvalue of the Laplacian matrix. It is
worthmentioning that the eigenvalues of the Laplacianmatrix
all rely on the entire interaction topology and are global
information. Therefore, to address TVF control problems
for high-order swarm systems, fully distributed formation
protocol requiring no global information about the interac-
tion topology precedes existing protocols. It is possible to
use the adaptive based approach to design fully distributed
formation protocols. The framework of fully distributed TVF
control problems for high-order swarm systems with fixed
interaction topology is the main focus in our existing results
in [27]–[30]. Due to communication channel disconnection
and reconnection among agents in practical applications, it
is meaningful to study TVF control problems in a fully dis-
tributed way for high-order swarm systems with switching
interaction topologies, or rather, the TVF can be achieved
using distributed adaptive formation protocol without global
information about the switching interaction topologies. As far
as we know, TVF control problems for high-order swarm sys-
tems with adaptive gain scheduling technique and switching
interaction topologies have not been comprehensively studied
together.

In this paper, an adaptive based approach is applied
to study the distributed TVF control problems for
general linear high-order swarm systems with switch-
ing interaction topologies. Firstly, a distributed formation
control protocol with an adaptive gain scheduling tech-
nique adjusting the coupling weight for each edge is
constructed, where the desired formation is time-varying.
Then, an algorithm including a feasible TVF condi-
tion to design the adaptive formation protocol is pre-
sented. Moreover, through applying the Lyapunov theory,
it is proved that if the feasible TVF condition is satis-
fied, the proposed algorithm’s stability can be guaranteed.

Finally, numerical examples are provided to demonstrate the
effectiveness of the theoretical results.

Compared with the previous studies on formation control,
the novel features of this paper are threefold. Firstly, this
paper proposes a fully distributed TVF control protocol which
is independent of the global information about the interac-
tion topology. However, the disadvantages of the mentioned
methods in [25], [26], and [31] are that all agents share com-
mon constant formation control gains in protocols and the
protocols are calculated by the minimum nonzero eigenvalue
of the Laplacian matrix, which is global information. The
formation control protocols in [25], [26], and [31] cannot be
computed without using the global information of the inter-
action topology. Secondly, fully distributed formation control
problems are solved for swarm systems with switching inter-
action topologies whereas the topologies in previous results
[27]–[30] are fixed. Thirdly, the TVF problems for general
linear high-order swarm systems are discussed. In [12]–[19],
each agent is restricted to be low-order dynamics; and in
[20]–[23], the formation is limited to be time-invariant. To
address the TVF problems, the derivative of the formation
information may affect the design of the formation control
protocol. It is more complicated to study TVF control prob-
lems than TIF control problems. The methods in [20]–[23]
cannot be directly applied to solve the problems in this
paper.

The outline of this paper is shown as follows. In
Section 2, mathematical preliminaries required in this paper
are reviewed. The problem formulation is given in Section 3.
An algorithm to design the distributed formation protocol
with switching interaction topologies are investigated and
stability analysis of the algorithm is proposed in Section 4.
Simulation examples are presented for illustration in
Section 5. Finally, Section 6 concludes the whole work.
Notation: In this paper, In is the n×n identity matrix and⊗

denotes the Kronecker product. Let 0 denote zero matrices of
appropriate size with zero vectors and zero number as special
cases. Let 1 be a column vector of appropriate size with one
as its elements. The superscript T means transpose for real
matrices and In is the index set {1, 2, . . . , n}. The 2-norm of
a vector x is denoted by ‖x‖.

II. PRELIMINARIES
Aweighted graph is used to describe the interaction topology
between the N agents. A graph G is a 3-tuple (V, E,W),
where V = {vp : p ∈ IN } is the node set, E = {(vp, vq) :
vp, vq ∈ V} is the edge set and the nonnegative weighted
adjacency matrix is W = [wpq] ∈ RN×N . Let epq =
(vp, vq)(p 6= q) denote an edge in graph G. For the weighted
adjacency matrix W , if and only if epq ∈ E , wqp > 0; other-
wise, wqp = 0. Moreover, wpp = 0, ∀p ∈ V . The neighbor set
of node p is denoted asNp = {q ∈ V|eqp ∈ E}. An undirected
graph G is defined such that eqp ∈ E ⇔ epq ∈ E . Each edge
in the graph G is bidirectional and wqp = wpq. The graph G is
connected if there is a bidirectional path between each node
pair. Let L = [`pq] ∈ RN×N be the Laplacian matrix of the
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graph G, which is defined by

`pq =


N∑

k=1,k 6=p

wpk , p = q,

−wpq, p 6= q.

We have the following lemma.
Lemma 1 [32]: The Laplacian matrix L of the graph G

is with the following properties: i) L has at least one zero
eigenvalues and 1N is the associated eigenvector, namely
L1N =0 ii) For a connected graph G, 0 is a simple eigenvalue
of L and all the other N −1 eigenvalues are real and positive.
The interaction topology of the general linear swarm sys-

tem is assumed to be switching. Let [tp, tp+1)(p ∈ N) be an
infinite sequence of uniformly bounded non-overlapping time
interval, where t1 = 0, 0 < 1t0 ≤ tp+1 − tp ≤ 1t1 and N is
the set of natural numbers. The interaction topology changes
at the switching sequence tp and remains fixed during the time
interval1t0 which is also known as the dwell time. A switch-
ing signal is denoted by δ(t) : R≥0 → IGn , where IGn ∈ N
is the graph index set associated with the element in Gn. It
means that Gp = Gn when p = δ(t). The possible interaction
topologies set Gn is finite. The interaction topology of the
general linear swarm system and the associated Laplacian
matrix at δ(t) are respectively denoted by Gδ(t) and Lδ(t). The
neighbor set of agent p at δ(t) is expressed as N δ(t)

p .

III. PROBLEM DESCRIPTION
Consider a general linear swarm system with N agents. The
dynamics of each agent is given by

ẋi(t) = Axi(t)+ Bui(t), (1)

where i = 1, 2, . . . ,N , xi(t) ∈ Rr are the states, ui(t) ∈ Rn

are the control inputs, A ∈ Rr×r and B ∈ Rr×n are system
matrices. The switching interaction topology of the swarm
system can be treated as a graph Gδ(t), where each node in
Gδ(t) represents an agent in the swarm system. Define wij(t)
as the (i, j)-th element of the nonnegative weighted adjacency
matrix associatedwithGδ(t). For i, j ∈ IN , the communication
channel between agent i and j is denoted by the edge eij
associated with the communication strength wij(t).
Definition 1: A TVF is described by

h(t) =
[
hT1 (t), h

T
2 (t), . . . , h

T
N (t)

]T
∈ RrN with hi(t) (i ∈ IN )

piecewise continuously differentiable. For any given bounded
initial states, the TVF specified by h(t) is said to be achieved
by swarm system (1) if

lim
t→∞

((xi(t)− xj(t))− (hi(t)− hj(t))) = 0 (i, j ∈ IN ). (2)

Remark 1: Definition 1 implies that the TVF problem
degenerates into the consensus problem when h(t) ≡ 0.
Swarm system (1) achieves TIF if h(t) equals to a con-
stant vector in (2). Therefore, consensus problems and TIF
problems for linear high-order swarm system with switching
interaction topologies can be solved by applying the results
in this paper.

Assumption 1: All possible communication graphs in Gn
are connected.

Let h(t) be a desired TVF. Consider the following dis-
tributed adaptive TVF control protocol to each agent in
switching interaction topologies as
ui(t) = F1xi(t)+ F2

N∑
j=N δ(t)

i

cij(t)wij(t)(xij(t)− hij(t)),

ċij(t) = εijwij(t)(xij(t)− hij(t))T8(xij(t)− hij(t)),
(3)

where xij(t) = xi(t) − xj(t), hij(t) = hi(t) − hj(t). The time-
varying coupling weight for the edge eij is denoted by cij(t)
with cij(0) = cji(0), εij = εji are given positive constants,
F1,F2 ∈ Rn×r and 8 ∈ Rr×r are feedback gain matrices.
Remark 2: Protocol (3) provides a general framework for

adaptive TVF protocols. The role of F1 in the adaptive for-
mation protocol (3) is to expand the set of feasible TVF
h(t). If F1 = 0, protocol (3) only uses neighboring relative
states. F2 and cij(t) are used to drive the swarm system to
achieve the desired formation under switching interaction
topologies. cij(t)(i ∈ IN , j = N δ(t)

i ) are adaptive gains
applied to adjust the interaction strength among agents. The
object of using adaptive scheme for cij(t) is to remove cal-
culating the minimum of the smallest nonzero eigenvalues of
Laplacian matrix Lδ(t), which is global information. Protocol
(3) has generality. If F1 = 0, ċij(t) = 0 and cij(0) = 1,
the protocol (3) in [23] becomes a special case of protocol
(3) in this section. Compared with the distributed adaptive
TVF control protocols in [28] and [29], protocol (3) in this
section can be applied to deal with the distributed adaptive
TVF control problems for swarm system with switching
interaction topologies. Protocols in [28] and [29] can be
considered as special cases of protocol (3) in this section.
The problem discussed in this paper has more generality than
those in [28] and [29].

Under protocol (3), swarm system (1) can be rewritten as
follows
ẋi(t)= (A+BF1)xi(t)+BF2

N∑
j=N δ(t)

i

cij(t)wij(t)(xij(t)−hij(t)),

ċij(t) = εijwij(t)(xij(t)− hij(t))T8(xij(t)− hij(t)),

(4)

where i = 1, 2, . . . ,N . The main focus of this paper is how
to determine the parameters in distributed adaptive formation
control protocol (3) such that the general linear high-order
swarm system (1) with switching interaction topologies can
achieve the desired TVF.

IV. MAIN RESULTS
In this section, firstly an algorithm is presented to design
distributed adaptive TVF control protocol (3). Sufficient
condition for swarm system (1) with switching interaction
topologies using the proposed algorithm to achieve the TVF
is derived.
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The following procedure determines the control parame-
ters of protocol (3) with two steps.
Algorithm 1: The control parameters of the distributed

adaptive formation control protocol (3) applied in the swarm
system (1) can be determined in the following procedure.

Step 1): In an attempt to design F1, test the following
feasible TVF condition (5) for all i, j ∈ IN . If there exists F1
satisfying condition (5), continue; else the TVF specified by
h(t) is not feasible for the swarm system (1) under protocol (3)
and the algorithm stops.

lim
t→∞

((A+ BF1)hij(t)− ḣij(t)) = 0. (5)

Step 2): Calculate a symmetric positive definite matrix Q
using the following linear matrix inequality (LMI).

Q(A+ BF1)T + (A+ BF1)Q− 2BBT < 0. (6)

Then F2 and 8 can be given by F2 = −BTQ−1 and 8 =
Q−1BBTQ−1. It is verified in [33] that there is a Q if (A,B)
is stabilizable.
Remark 3: The feasible formation condition (5) shows

that not all possible formations can be realized by swarm
system (1). Formation feasible condition is also considered in
[23], [25], and [27]. In condition (5), the performance of F1
is to expand the time-varying feasible formation set. Noting
that F1 has no effects on swarm system (1) achieving TVF.
If F1 = 0, the feasible formation set is restricted to
limt→∞(Ahij(t) − ḣij(t)) = 0. TVF control problems for
heterogeneous linear swarm systems with switching interac-
tion topologies have been studied in [36] and [37]. The given
TVF in [36] and [37] is subjected to ḣi(t) = A0hi(t)(i =
1, 2, . . . ,N ). Since identical dynamics are considered in this
paper, the feasible TVF condition (5) is general. The feasible
formation condition (5) degenerates into the feasible condi-
tion for TIF in [23] if F1 = 0 and ḣi(t) ≡ 0.

Based on Algorithm 1, we can obtain the main results of
this section.
Theorem 1: Suppose that Assumption 1 holds. For any

arbitrary switching interaction topology Gδ(t) in Gn, if (A,B)
is stabilizable and the feasible formation condition (5) holds,
swarm system (1) can achieve the TVF under the distributed
adaptive control protocol (3) designed in Algorithm 1without
global information about the interaction topologies.

Proof: Let φi(t) = xi(t) − hi(t)(i = 1, 2, . . . ,N ). It
follows from swarm system (4) that

φ̇i(t) = (A+ BF1)φi(t)+ (A+ BF1)hi(t)− ḣi(t)

+ BF2
N∑

j=N δ(t)
i

cij(t)wij(t)(φi(t)− φj(t)),

ċij(t) = εijwij(t)(φi(t)− φj(t))T8(φi(t)− φj(t)).

(7)

Let ςi(t) = φi(t)− 1
N

∑N
j=1 φj(t), ς (t) = [ςT1 (t), ς

T
2 (t), . . . ,

ςTN (t)]
T and φ(t) = [φT1 (t), φ

T
2 (t), . . . , φ

T
N (t)]

T . Then

ς (t) = (5 ⊗ Ir )φ(t), where 5 = IN − 1
N 11

T .

5 has a simple eigenvalue 0 associated with the right eigen-
vector 1. Since εij = εji and cij(0) = cji(0), it fol-
lows from protocol (3) that cij(t) = cji(t) for ∀t ≥ 0.
According to the definition of ς (t), it can be obtained
that

ς̇i(t) = φ̇i(t)− 1
N

N∑
j=1

φ̇j(t),

ċij(t) = εijwij(t)(ςi(t)− ςj(t))T8(ςi(t)− ςj(t)).

(8)

Substituting (7) into (8), one has

ς̇i(t) = (A+ BF1)ςi(t)

+
1
N

N∑
j=1

[(A+ BF1)hij(t)− ḣij(t)]

+BF2
N∑
j=1

cij(t)wij(t)(ςi(t)− ςj(t)),

ċij(t) = εijwij(t)(ςi(t)− ςj(t))T8(ςi(t)− ςj(t)).

(9)

Choose the following Lyapunov functional candidate

V (t) =
1
2

N∑
i=1

ςTi (t)Q
−1ςi(t)+

N∑
i=1

N∑
j=1,j 6=i

(cij(t)− β)2

4εij
,

(10)

where β is a positive constant to be determined later. The time
derivative of V (t) is given by

V̇ (t) =
N∑
i=1

ςTi (t)Q
−1ς̇i(t)+

N∑
i=1

N∑
j=1,j 6=i

(cij(t)− β)
2εij

ċij(t).

(11)

Substituting (9) into (11) yields

V̇ (t) = V̇1(t)+ V̇2(t)+ V̇3(t)+ V̇4(t), (12)

where

V̇1(t) =
N∑
i=1

ςTi (t)Q
−1(A+ BF1)ςi(t),

V̇2(t) =
N∑
i=1

N∑
j=1

ςTi (t)Q
−1BF2cij(t)wij(t)(ςi(t)− ςj(t)),

V̇3(t) =
N∑
i=1

N∑
j=1

ςTi (t)Q
−1 1
N
[(A+ BF1)hij(t)− ḣij(t)],

V̇4(t) =
1
2

N∑
i=1

N∑
j=1,j6=i

× (cij(t)− β)wij(t)(ςi(t)− ςj(t))T8(ςi(t)− ςj(t)).

Then, it can be derived that

V̇4(t) =
N∑
i=1

N∑
j=1

(
cij(t)− β

)
wij(t)ςTi (t)8(ςi(t)− ςj(t)).

(13)
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According to Algorithm 1, substitute F2 and8 into V̇2(t) and
V̇4(t) respectively, one has

V̇2(t)= −
N∑
i=1

N∑
j=1

cij(t)wij(t)ςTi (t)Q
−1BBTQ−1(ςi(t)−ςj(t)),

(14)

and

V̇4(t)

=

N∑
i=1

N∑
j=1

(
cij(t)−β

)
wij(t)ςTi (t)Q

−1BBTQ−1(ςi(t)−ςj(t)).

(15)

V̇ (t) can be written as

V̇ (t) = V̇1(t)+ V̇3(t)− V̇5(t), (16)

where V̇5(t) = β
∑N

i=1
∑N

j=1 wij(t)ς
T
i (t)Q

−1BBTQ−1(ςi(t)
− ςj(t)). Let ς̃i(t) = Q−1ςi(t), then one gets

V̇1(t) =
1
2

N∑
i=1

ς̃Ti (t)((A+ BF1)Q+ Q(A+ BF1)
T )ς̃i(t),

(17)

V̇3(t) =
N∑
i=1

N∑
j=1

ς̃Ti (t)
1
N
[(A+ BF1)hij(t)− ḣij(t)], (18)

and

V̇5(t) = β
N∑
i=1

N∑
j=1

wij(t)ς̃Ti (t)BB
T ς̃i(t). (19)

Let ς̃ (t) = [ς̃T1 (t), ς̃
T
2 (t), . . . , ς̃

T
N (t)]

T . From (17),
(18) and (19), it holds that

V̇ (t) =
1
2
ς̃T (t)[IN ⊗ (Q(A+ BF1)T

+ (A+ BF1)Q− 2βLδ(t) ⊗ BBT )]ς̃ (t)

+ ς̃T (t)[5⊗ (A+ BF1)]h(t)− ς̃T (t)[5⊗ Ir ]ḣ(t),

(20)

where Lδ(t) is the Laplacian matrix associated with topol-
ogy Gδ(t). Since Gδ(t) is connected and 51 = 0, (1T ⊗ I )
ς̃ (t) = 0, ς̃T (t)(Lδ(t) ⊗ I )ς̃ (t) ≥ λmin

2 ς̃T (t)ς̃ (t) is obtained,
where λmin

2 denotes the minimum of the smallest nonzero
eigenvalues of Lδ(t) for all Gδ(t) ∈ Gn.
Therefore, one has

V̇ (t) ≤
1
2
ς̃T (t)[IN ⊗ (Q(A+ BF1)T

+ (A+ BF1)Q− 2βλmin
2 BBT )]ς̃ (t)

+ ς̃T (t)[5⊗ (A+ BF1)]h(t)− ς̃T (t)[5⊗ Ir ]ḣ(t).

(21)

Choose sufficiently large β such that βλmin
2 ≥ 1 and we have

Q(A+ BF1)T + (A+ BF1)Q− 2βλmin
2 BBT

≤ Q(A+ BF1)T + (A+ BF1)Q− 2BBT

< 0. (22)

Let

ζ (t) =
1
2
ς̃T (t)[IN ⊗ (Q(A+ BF1)T

+ (A+ BF1)Q− 2βλmin
2 BBT )]ς̃ (t),

and

ξ (t) = ς̃T (t)[5⊗ (A+ BF1)]h(t)− ς̃T (t)[5⊗ Ir ]ḣ(t).

It is obtained that ζ (t) ≤ 0. Since appropriate F1 is
chosen and h(t) satisfies the feasible formation condi-
tion (5), we have limt→∞ξ (t) = 0; so there exists
a finite time t ′, which satisfies ζ (t ′) + ξ (t ′) ≤ 0.
Then we can obtain limt∈[t ′,∞]V̇ (t) ≤ 0. By LaSalle-
Yoshizawa theorem [38], we have limt∈[t ′,∞]ς̃ (t) = 0,
implying that limt∈[t ′,∞]ς (t) = 0, which means that
limt∈[t ′,∞]((xi(t) − xj(t)) − (hi(t) − hj(t))) = 0(i, j ∈ IN ).
Accordingly, using distributed adaptive formation control
protocol (3), swarm system (1) can achieve the TVF specified
by h(t); that is, the fully distributed TVF control problem for
high-order linear swarm system with switching interaction
topologies is solved.
Remark 4: Compared with previous results for swarm sys-

tem with switching interaction topologies achieving TVF,
Theorem 1 in this paper indicates that protocol (3) can
be designed without requiring global information about the
interaction topologies. However, existing results in [25],
[27], [34], and [35] all suffer from the same limitation that
TVF control protocols in [25], [27], [34], and [35] rely on
the minimum nonzero eigenvalue of the Laplacian matrix.
The minimum nonzero eigenvalue of the Laplacian matrix
is global information because it is calculated by the entire
interaction topology. Those approaches for achieving TVF in
[25], [27], [34], and [35] by swarm system with switching
interaction topologies are not fully distributed only according
to the local information of each agent and its neighbors.
Remark 5: Noting that directed interaction topology [39]

should be considered in many practical cases. It is of interest
to further study adaptive TVF control problems for the case
with directed interaction topology. Interesting future topics
will also focus on extending the results to the case with time
delay and output feedback.

V. NUMERICAL SIMULATIONS
In this section, two numerical examples are presented to
validate the theoretical result obtained in the previous section.
Firstly, a three-order swarm system consists of ten agents
with switching interaction topologies is considered in the
first example to achieve the TVF using distributed adaptive
formation control protocol (3). In the second example, the
theoretical result is applied to solve multi-vehicle systems
cooperative reconnaissance and detection problems.
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FIGURE 1. Switched interaction topologies set for the third-order swarm
system. (a) G1. (b) G2. (c) G3. (d) G4.

FIGURE 2. State trajectory snapshots of the ten agents. (a) t = 0s.
(b) t = 20s. (c) t = 35s. (d) t = 50s.

Example 1: Consider a general linear third-order swarm
system comprising ten agents. Each agent has the dynamics
as

A =

 1 −1 −2
5 0 2
−2 −0.1 0

, B =

 0
1
0

0
0
1

.
The state of each agent is with xi(t) = [x1i (t), x

2
i (t), x

3
i (t)]

T

(i = 1, 2, . . . , 10). As shown in Fig. 1, let Gδ(t) switch
every 5s among G1, G2, G3 and G4 randomly. The swarm
system is asked to reach and keep a periodic time-varying
decagon formation which is specified by

hi(t) =


r sin(ωt +

(i− 1)π
5

)+ r cos(ωt +
(i− 1)π

5
)

r sin(ωt +
(i− 1)π

5
)− r cos(ωt +

(i− 1)π
5

)

r sin(ωt +
(i− 1)π

5
)

,
where i = 1, 2, . . . , 10, r = 10m and ω = 2rad/s.
Choose cij(0) = cji(0) = 0 and initialize each agents state
as xki (0) = i(κ − 0.5) (i = 1, 2, . . . , 10; k = 1, 2, 3),

FIGURE 3. (a) The switching signal of the three-order swarm system;
(b) The formation error of the three-order swarm system; (c) The coupling
weights of the three-order swarm system.

where κ is a random value between 0 and 1. Let εij =
εji = 0.01 (i, j = 1, 2, . . . , 10) in protocol (3). The gain
matrices in protocol (3) can be computed in accordance with
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FIGURE 4. Switched interaction topologies set of multi-vehicle system.
(a) G1. (b) G2. (c) G3. (d) G4.

Algorithm 1 as

F1 =
[
−6
3
−3
−0.9

4
0

]
,

F2 =
[
−3.1321
7.9246

−4.2783
7.8239

7.8239
−18.3374

]
,

8 =

 72.6103 75.4020 −169.8230
75.4020 79.5176 −176.9433
−169.8230 −176.9433 397.4737

.
It should be pointed out that F1, F2, and8 are designed with-
out using the global information of the interaction topologies.

The state snapshots of the ten agents at t = 0s, t = 20s,
t = 35s and t = 50s are illustrated in Fig. 2. Figs. 2(a) and (b)
show that the TVF is reached. It can be seen from Figs. 2(b),
(c) and (d) that the formation keeps rotation. The switch-
ing signal of the swarm system is depicted in Fig. 3(a).
Let ẽi(t) = xi1(t) − hi1(t)(i = 2, 3, . . . ,N ) and ẽ(t) =

[ẽT2 (t), ẽ
T
3 (t), . . . , ẽ

T
N (t)]

T . Define ê(t) = ẽT (t)ẽ(t) as the
formation error of the swarm system. Fig. 3(b) shows that
the formation error converges to zero. From Fig. 3(c), the
coupling weights cij(t) are clearly bounded. Therefore, using
distributed protocol (3), the desired TVF is achieved by the
swarm system (1) with switching interaction topologies.
Example 2: Consider using a multi-vehicle system, which

is equipped with different specific sensors, to maximally
explore an unknown region. Firstly, the multi-vehicle system
should reach a formation. Secondly, the formation should be
kept rotation to guarantee that each direction can be detected
by different specific sensors. Due to communication con-
straints and link variations, the interaction topology of the
multi-vehicle system may change. Without loss of generality,
the switching interaction topologies are considered in this
application.

Suppose that a team of four vehicles forms the
multi-vehicle system. Each vehicle has dynamics with

Ṗxi (t) = Vi(t) cos(θi(t)),
Ṗyi (t) = Vi(t) sin(θi(t)),
θ̇i(t) = ωi(t),

where i = 1, 2, 3, 4, Pxi (t) ∈ R and Pyi (t) ∈ R denote the
position onto the X-Y plane for the ith vehicle. ωi(t) ∈ R,
Vi(t) ∈ R and θi(t) ∈ R denote the angular velocity,
linear velocity and heading angle of the ith vehicle respec-
tively. The multi-vehicle system can be transformed as a lin-
earized system described by (1) using the method in [40] with

FIGURE 5. (a) Position trajectories of the multi-vehicle system;
(b) Velocity trajectories of the multi-vehicle system.

xi(t) = [Pxi (t),V
x
i (t),P

y
i (t),V

y
i (t)]

T , ui(t) = [uxi (t), u
y
i (t)]

T ,
where V x

i (t) ∈ R (resp. uxi (t) ∈ R) and V y
i (t) ∈ R (resp.

uyi (t) ∈ R) are the linear velocity (resp. control input) along
the X and Y axes, respectively. The system matrices A and B
are obtained as

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

, B =


0
1
0
0

0
0
0
1

.
The desired TVF is presented by

hi(t) =



r cos(ωt +
(i− 1)π

2
)

−rω sin(ωt + (i−1)π
2 )

r sin(ωt +
(i− 1)π

2
)

rω cos(ωt +
(i− 1)π

2
)


(i = 1, 2, 3, 4),
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FIGURE 6. (a) The switching signal of the multi-vehicle system; (b) The
formation error of the multi-vehicle system; (c) The coupling weights of
the multi-vehicle system.

where r = 10m and ω = 0.5rad/s. Choose cij(0) =
cji(0) = 0 and initialize the multi-vehicle system
by 5(κ − 0.5). Let εij = εji = 1(i, j = 1, 2, 3, 4). The
switching interaction topologies set is depicted in Fig. 4.

Satisfying the feasible formation condition (5) and using
Algorithm 1, all gain matrices are obtained as

F1 =
[

0
0.01

0.02
0.2

0.01
−0.15

−0.5
−0.02

]
,

F2 =
[
−0.5636
0.1636

−1.7363
−0.0862

−0.1948
−0.4466

−0.0862
−1.550

]
,

8 =


0.3444 0.9644 0.0367 −0.2053
0.9644 3.0221 0.3767 0.2833
0.0367 0.3767 0.2374 0.7099
−0.2053 0.2833 0.7099 2.4161

.

Solid blue lines in Figs. 5(a) and (b) respectively show the
velocity and position trajectories of the multi-vehicle system
from t = 0s to t = 40s. Using the star, asterisk, square and
diamond to represent the states of each vehicle, the TVF of the
multi-vehicle system under switching interaction topologies
is illustrated at t = 10s using bold dash-dotted lines, at
t = 25s using bold dashed lines and at t = 40s using
bold dotted lines. From Fig. 5, we can observe that both
the velocities and positions of the multi-vehicle system reach
parallel rectangle formations and the parallel rectangles keep
rotation. In Fig. 6, the switching signal, formation error, and
coupling weights are displayed respectively. Fig. 6(a) shows
that the interaction topology Gδ(t) of the multi-vehicle system
switch every 1s among G1, G2, G3 and G4 randomly. From
Fig. 6(b), the formation error of the multi-vehicle system
converges to zero which means that the TVF is achieved.
In Fig. 6(c), the coupling weights is bounded when the TVF is
achieved. Therefore themulti-vehicle system under switching
interaction topologies achieves the given TVF based on an
adaptive based approach.

VI. CONCLUSIONS
Distributed TVF control problems for general linear swarm
systems with switching interaction topologies were inves-
tigated using an adaptive based approach in this paper.
A fully distributed formation protocol was proposed based
on the local states of neighboring agents. An algorithm was
presented to determine the gain matrices of the protocol. The
solvability of the algorithm can be guaranteed if the dynamics
of each agent is stabilizable. A feasible TVF condition was
given in the algorithm, and the stability of the proposed
algorithmwas proved by constructing the Lyapunov function.
It was shown that general linear swarm systems with switch-
ing interaction topologies could achieve the TVF under the
distributed adaptive formation control protocol if the feasible
TVF condition were satisfied. The limitation of using global
information about the interaction topologies was removed.
On the basis of this result, it is of interest to further study
adaptive TVF control problems for the case with directed
interaction topology. Interesting future topics will also focus
on extending the results to the case with time delay and output
feedback.
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