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ABSTRACT 1t is of significant importance for any classification and recognition system, which claims near
or better than human performance to be immune to small perturbations in the dataset. Researchers found
out that neural networks are not very robust to small perturbations and can easily be fooled to persistently
misclassify by adding a particular class of noise in the test data. This, so-called adversarial noise severely
deteriorates the performance of neural networks, which otherwise perform really well on unperturbed dataset.
It has been recently proposed that neural networks can be made robust against adversarial noise by training
them using the data corrupted with adversarial noise itself. Following this approach, in this paper, we
propose a new mechanism to generate a powerful adversarial noise model based on K-support norm to
train neural networks. We tested our approach on two benchmark datasets, namely the MNIST and STL-10,
using muti-layer perceptron and convolutional neural networks. Experimental results demonstrate that neural
networks trained with the proposed technique show significant improvement in robustness as compared to
state-of-the-art techniques.

INDEX TERMS K-Support norm, robutness, generalization, convolutional neural networks, adversarial.

I. INTRODUCTION

Deep neural networks have attracted a lot of interest since
their inception in 2006 by Hinton and co-workers in their
seminal paper [1]. They have remarkable capability of learn-
ing rich, high level features which results in better classifi-
cation and low generalization error. Over the last ten years
deep neural networks have outperformed other classifiers on
many benchmark datasets related to images, speech, and text
based applications. However, Szegedy et al. [2] demonstrated
that even the neural networks that have very good gener-
alization properties and near human performance in classi-
fication tasks, are not robust to perturbation in the dataset.
They utilized images corrupted with an adversarial noise
based on min-max optimization algorithm which maximizes
the misclassification loss yet keeps the magnitude small and
constrains it to be within a norm ball. Visually, the difference
between the original and corresponding perturbed image is
indiscernible for any human observer. Thus humans cannot
not possibly be fooled by such examples. However,the tech-
nique can easily fool deep neural networks to fail consistently.

Szegedy et al. [2] argued that in general small perturbations
do not change class label because of an underlying smooth-
ness of the data space in the near vicinity of input examples.
This local generalization is a characteristic of many kernel
based methods. For deep neural networks this smoothness
assumption does not hold because of the presence of so called
blind spots that are low probability (high dimensional) pock-
ets in the manifold which are otherwise hard to find by just
randomly perturbing the input data. This peculiar behavior of
adversarial examples has intrigued a lot of researchers.

Naturally, questions were raised as to why blind spots exist
or, indeed, whether they exist at all? Are they just randomly
dispersed over the data space or follow some pattern? Why
do neural networks misclassify adversarial examples? Why
do adversarial examples have properties such as being cross
model (changing hyper-parameters such as number of layers,
regularization, initial weights etc do not change or improve
misclassification) and cross training set-generalization (train-
ing on disjoint sets does not change or improve misclassi-
fication). This intrigued a lot of researchers and motivated
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them to study and improve robustness of neural networks in
the presence of adversarial perturbations. However this was
not the emergence of an entirely new avenue of research as
there have been previous research efforts in the domain of
robustness of classifiers. Xu et.al [20] introduced the term
“algorithmic robustness™ to refer to a performance charac-
teristic of classifiers, such that, if a testing sample is similar
to training sample then testing error should also be close
to training error. The authors have derived generalization
bounds of learning algorithms based on their robustness and
claimed that improvement in robustness should also benefit
generalization in a positive way. Other researchers [21]—[23]
have studied robustness as an optimization problem in
Support Vector Machines (SVM), linear regression and logis-
tic regression respectively. Biggio et al. [24] studied SVM
under adversarial label flip noise, where a specified number
of labels are allowed to be flipped in sign. Results showed
improvement in robustness and generalization as compared
to vanilla SVM.

Goodfellow et al. [3] have argued that the reason for neu-
ral network to misclassify is the linearity of model in high
dimensional space. Neural networks try their best to keep
the output of individual neurons to operate in linear region.
This simplifies matters in terms of optimization of hyper-
parameters but at the same time imparts the problem that
neural networks make a very high confidence prediction even
in unfamiliar situations. Fawzi et al. [4] seem to disagree.
They claim that misclassification of adversarial examples is
not restricted to neural networks only, rather it is an inherent
problem in every classifier. Whether a particular classifier is
robust to adversarial examples or not lies in the distinguisha-
bility measure which is defined as the distance between the
mean of two classes for linear classifiers while for quadratic
classifiers it is defined as the distance between the matrices of
second order moments of two classes. The authors also prove
that linear classifiers are more robust to uniform random noise
as compared to adversarial noise by a factor of v/d (where d is
the dimension of the input signal).

Our contribution in this paper is to improve the robust-
ness of neural networks against different adversarial noise
models that can remarkably deteriorate the performance of
a neural network which otherwise perform really well on
normal (unperturbed) test data. In this work, we have pro-
posed a new adversarial noise model based on K-support
norm [7]. We show that neural networks trained using data
corrupted with our K-Support norm based adversarial noise
become more robust against many other powerful noise
models. We further study the effect of uniform random
noise on robustness and show that that training a neural
network with data augmented with K-support noise achieves
greater robustness as compared to training with data cor-
rupted with uniform random noise, thus establishing the
significance of adversarial noise over uniform random noise.
Finally we empirically demonstrate that improvement in
robustness may not necessarily also improve generalization
error.
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The remainder of the paper is organized as follows:
in section 2 we mention some of recent work that analyze
the problem of robustness of neural networks in the pres-
ence of adversarial examples thus providing local stability.
In section 3, we briefly discuss K-Support norm and propose a
framework for generating K-Support norm based adversarial
examples and training neural networks with it. In section 4,
we discuss experimental results and in section 5 we give some
concluding remarks to our paper.

A. NOTATIONS

We denote the labeled training dataset by (x;, y;)i"; where x;
is a d dimensional feature vector and y; is its corresponding
label. Suppose K to be the number of classes in a classifica-
tion task. The loss function of a network with parameters 6
on (x, y) is denoted by L(6, x, y). Ls y)(x) represents the loss
function with respect to x with 8 with y fixed. A, € R rep-
resents a small perturbation of dimension d in data sample x.
X = x 4+ A, represents an adversarial/perturbed example.
(a,b) = a'b = >, xiy; represents the inner product of a
and b vectors. Given a norm ||.||, its dual norm is represented
by ||.ll« such that ||a|l. = maxyp|<i{a, b). Given a function
p(x,y), Vip(x, y) denotes its gradient with respect to vector x.

Il. RELATED WORK

Szegedy et al. [2] first discovered that deep neural networks
learn input output mappings that are discontinuous to a large
extent. Thus, it is possible to cause a network to misclassify
an image by adding a perturbation in the image that is hardly
perceptible and distinguishable by the human eye. Such a
perturbation was obtained by solving the following box con-
strained optimization problem using L-BFGS.

minac|l.|l2 + L@, x + Ax,y/) subject tox + Ay € [0, 1]

ey
where y, # y. The solution finds perturbations A, that are
small yet force the network to misclassify the example x with
label yl. Goodfellow et al. [3] proposed a very fast and easy
way to generate adversarial examples. Their method is fast
because it does not have to solve for an auxiliary optimization
problem as in [2] and involves computing gradient of loss
function L, using backpropagation. It linearly approximates
the loss function around an original training example with a
small perturbation Ay.

Lgy(x + Ay) = Lo y(x) + (VLg,y(x), Ax) @)

To maximize the loss function in case of perturbed examples
(x + Ay), the right side of equation (2) is maximized with
respect to A, contained with in a £, ball of radius €. The A,
that maximizes the right hand side equation is given by

Ay = sign(VL(0, x, y)) 3

Miyato et al. [8] proposed an adversarial training method
based on local distributional smoothing. Local distributional
smoothing is the negative of Kullback-Leibler divergence
(KL-divergence) between the predicted distribution of labels
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p(y | x) and p(y | x + Ay). The adversarial example was
computed as the perturbation that gives the maximum KL
divergence such that the ¢, norm of the perturbation is less
than equal to €. Nokland [9] proposed a modified backprop-
agation algorithm to improve generalization by adding an
adversarial gradient to the learning objective function. This
adversarial gradient was defined to be the difference between
adversarial and standard backpropagation. Experiments were
performed using different activation functions such as
logistic, tanh and rectified linear units (RELU).

Shaham et al. [10] adopted a similar approach to
Goodfellow et al. [3] to generate adversarial noise by linearly
approximating the loss function around the original training
data, then adding this noise to training data to get perturbed
images and then doing an additional forward backward pass
with this perturbed data to update the weights. Adversarial
noise was constraint to be with in the £, £, or £, norm ball.
They showed that adversarial noise constrained with £, norm
proved to be better than the other two in terms of robustness
and generalization against adversarial examples.

Gu and Rigazio [11] proposed to improve model smooth-
ing and thus robustness by using deep contractive autoen-
coders in which the loss function was penalized by adding
Frobenius norm of the Jacobian of the neural network output y
with respect to input x. However, instead of computing a
full Jacobian which is computationaly very expensive, they
approximated it with the sum of the Frobenius norm of the
Jacobian over every adjacent pair of hidden layers.

Tabacof and Valle [5] have studied the space of adversarial
examples and observed that adversarial examples do not just
exist sporadically in the input space, rather there are large
adversarial pockets which can be found in the vicinity of input
samples and are continuous in structure.

Sabour et al. [12], studied the feature representation of hid-
den layers of deep neural network in an effort to understand
the misclassification of adversarial examples and most inter-
estingly discovered that although the adversarial example of
an image may be indiscernible to the original, the hidden
features of these image learnt by neural network look entirely
different.

1Il. PROPOSED TRAINING FRAMEWORK

A. ADVERSARIAL EXAMPLE GENERATION

Adversarial examples can be found by solving the following
maximization-minimization problem [2].

m
mingL(0, x, y) = ming Y _ maxzep,L(0, %, yi)  (4)

i=1

Equation (4) represents a method to learn network parame-
ters 6 with respect to the worst case data instead of original
data, where the worst case example X; belongs to a certain
set B. B can be a unit norm ball. This optimization problem
can be solved iteratively, first by fixing parameters 6 and
finding the worst case data x;,. This involves finding Ay, for
every training example x; such that x + Ax € B and Ax; is
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given by
AX,' = argmaxAtxi+A€BiL0,yi(xi + A) (5)

This maximization step is referred to as adversarial exam-
ple generation. Parameter 6 is then updated with respect to
the worst case data x;. Finding the exact solution of A, is
intractable. Therefore we approximate equation (5) with first
order Taylor approximation

Ax,- ~ argmaxA:x,—+AeB;L0,y,-(xi) + (VLO,y(x)’ A)  (6)

To maximize this equation, we need to maximize the second
term on the right hand side

argmax:x;+AeB;{VLs y(x), A) @)

We know by the definition of a dual norm that |al, =
max|p|<1{a, b) or cllalls = maxypj<c{a, b) where c is the
scaling factor. Thus, it is evident that equation (7) is equal
to the dual norm of VLg (x), i.e

argmax .+ aes; (VLo y(x), A) = c[|[VLo y(x)llx  (8)

Remark 1: The dual of £> norm is ¢, norm itself. We can use
it in equation(8) to get an £, constrained noise model given
by the following equation

N IVLg y(xi)ll2
Remark 2: The dual of £+, norm is £; norm. We can use it in

equation (8) to get an £, constrained noise model given by
the following equation.

®

A}, = cx sign(VLg y(x;)) (10)

B. K-SUPPORT NORM BASED ADVERSARIAL EXAMPLES
We now propose to use the K-support norm in equation(8)
to compute an adversarial perturbation.The K-support norm
was introduced by Argyriou et al. [7] as a better alternative to
£1, £> and elastic net norm. It provides a tighter convex lower
bound than elastic net [13] and has been shown to achieve
better predictive performance than £, £; and elastic net norm
in numerous classification and regression applications [28],
[29], [30].This motivated us to study K-Support norm as
the basis of an adversarial noise model, in order to improve
robustness of neural networks. The reader is referred to [7]
for a detailed discussion on the K-support norm. K-support
norm is computed using the following formula [7] For every
6 € R

k—r—1 1 d %
oy = ( daent+ el due |>2> a1
i=1

i=k—r

where letting | 6 |é denote +oo, r is the unique integer in
{0,....k-1} satisfying

d
1
! ' '
[0 1_,_1> E [0 17=106 7, (12)
(r+1) 4~

1 r
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and k represents the cardinality i.e number of non-zero entries
in weight vector.

Now, let us briefly explain the K-Support norm. We know
from [6] that when £; norm is used as a regularizer in learning
tasks, it induces sparsity in weight variables. £; norm applies
fixed shrinkage equal to t to all weights, so weights smaller
than the threshold T become zero, while larger weights are
reduced by a fixed amount 6 — 7. Whereas £, norm penalizes
weights proportional to their size, i.e larger weights are penal-
ized more and smaller weights are penalized less. But unlike
£1 norm, weights are not reduced to zero. Both norms are used
as regularizers to improve generalization error. However,
£1 norm has been observed to shrink too many weight vari-
ables to zero. This might be problematic if a group of vari-
ables is highly correlated, because making some of them zero
may reduce predictive accuracy. K-Support norm provides
a solution for this problem. It enacts a trade-off between
£1 and ¢ norm in a way that it combines the weight 6
proportional shrinkage of £, norm on the (k—r) largest weight
variables and sparse shrinkage of £ norm on the (d — k + r)
smallest variables. Thus, it imparts sparsity as well as avoids
highly correlated variables to become zero. Authors in [7]
show that the dual of K-Support norm is equal to the £, norm
of k largest elements of 0 represented as

161" = 1116 Iy 12 13)

Using Cauchy-Schwarz inequality, the solution of equa-
tion (8) becomes
VL y(xi)

I VL) [Fy ll2

, if VLg (x;) is in largest k
Af =

X

entries of VLg y(x).
0, otherwise.
(14)
Note that noise matrix A* is k-sparse. This perturbation or
noise is then added to the original sample to create adversar-
ially perturbed examples.

5= xi+ AL (1)

C. PROPOSED TRAINING ALGORITHM

We now propose the learning algorithm based on adversarial
perturbation generated using K-support norm as explained
in section 3.1. Given we have approximate solution of
equation (6), we can use SGD to find local solution of
equation (4) iteratively until convergence is achieved.The
pseudo-code for this is shown below as Algorithm 1.

IV. EXPERIMENTAL EVALUATION

In this section we experiment with our proposed train-
ing algorithm on two benchmark datasets:MNIST [14] and
STL-10 [15]. We compare the performance of Algorithm 1
based on K-support norm based adversarial noise against
methods which have shown state of the art results in terms
of making neural networks more robust in the presence of
adversarial noise.
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Algorithm 1 Training Based on Adversarial Examples
Input:(x;, y;) for 1 <i < N; Initialize 0
Output: 6
1: foriter=1,2,..,T do
2 for every batch b; of training data do
3: for every input (x;, y;) in batch b; do
4 Perform one forward-backward pass to
compute g—i
5: Compute perturbation A* using method pro-
posed in equation (14)
6: Compute perturbed input sample (x;, y;) using
equation (15)

7: end for
8: Update parameter 6 using forward-backward
pass on perturbed samples (X;, y;) of current batch
9: end for
10: end for
11: return 0

A. DATASETS AND PREPROCESSING

The MNIST dataset [14] contains 28 x28 grey scale images
of handwritten digits. It contains 50,000 samples for training
and 10,000 samples for testing. We normalized pixel value of
samples to be in range 0 to 1. STL-10 dataset [15] contains
96x96 pixel RGB (color) images of 10 different objects
classes. We cropped each image to be of size 48 x48 pixels,
converted them to grey-scale and normalized it to be in range
of —1 to 1. In this dataset too, we have 5000 samples for
training and 8000 for testing. MXNET [16] was used to train
all models. Some random samples from MNIST and STL-10
datasets are shown in figure 1.

B. EXPERIMENTAL SETUP

The Experimental evaluation consisted of three main parts
1) Generation of adversarial samples. 2)Training of the net-
work using perturbed samples. 3)Testing of the network using
a normal and perturbed test set. We tested our technique
against three different training methods:

1) Normal (no noise in training data)

2) Dropout (dropout noise in training data [18])

3) Goodfellow’s method (adversarial noise in the
training data based on Fast gradient sign method by
Goodfellow et al. [3])

We compared the above mentioned methods with the
K-Support algorithm (Algorithm 1) and a modified version
of K-support method, in which we randomly drop a fixed
percentage of inputs in one or more fully connected layers
before the output layer.Similarly, for testing purpose, we used
a normal as well as a perturbed test set. Perturbed test sets
were generated using three methods:

1) Perturbation based on a loss function with £, norm
constraint (equation(10))
2) Perturbation based on a loss function with £, norm
constraint (equation (9))
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FIGURE 1. Datasets Used in Experiments. (a) Examples of the MNIST
dataset. (b) Examples of the STL-10 dataset.

3) Proposed perturbation based on loss function with
K-support norm (K-Sup Adv) (equation (14)

C. VISUALIZATION OF PERTURBED SAMPLE

IMAGES OF MNIST AND STL-10 DATASET

In the figure 2 and 3, we have randomly taken some samples
of MNIST and STL-10 datasets repectively and perturbed
them using different adversarial noise models (£, £2 and
K-sup) and uniform random noise (URN). We can see that
adversarial noise perturbed images are quite similar to normal
samples. A human observer cannot possibly be confused in
recognizing them, yet we show in next few sections that these
adversarial noised samples can easily fool neural network and
significantly deteriorate their prediction performance. We can
also see uniform random noise (URN) has corrupted images
so much that they are not even recognizable for a human
observer, even though the magnitude of perturbation in both
adversarial noise and uniform random noise was kept same.
However, we have shown in later section that URN perturbed
training still imparts robustness but not quite as much as
adversarial training.

D. EXPERIMENTS ON THE MNIST DATABASE

1) USING CONVOLUTIONAL NEURAL NETWORK

We trained a convolutional neural network [17] having two
convolution and two pooling layers. A convolution layer ker-
nel of size (5,5) was used and for pooling layer, max polling
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FIGURE 2. Randomly taken samples of MNIST dataset perturbed with
various noise models.
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FIGURE 3. Randomly taken samples of STL-10 dataset perturbed with
various noise models. Classes Shown in the images are deer, car, bird,
horse, bird, dog, airplane, cat, truck, ship (from left to right).

with kernel size (2,2) was used. One fully connected layer
with 400x400 units was employed. Finally we have a fully
connected output layer with 10 output units. In all methods,
rectified linear unit (RELU) was used as activation function.
The results obtained are given in Table 1.

Our proposed method has outperformed all other meth-
ods on the normal and perturbed test sets. Compared to
Goodfellow’s method, training with proposed K-Support
method achieved an improvement from 99.2% to 99.3% on
normal test set, 98.1% to 98.6% on test set perturbed with
£~ norm based noise, 93.6% to 96.9% on test set perturbed
with £> norm based noise and 93.7% to 96.8% on test set
perturbed with K-Support norm based noise.

9505



IEEE Access

S. W. Akhtar et al.: Improving the Robustness of Neural Networks Using K-Support Norm Based Adversarial Training

TABLE 1. Classification accuracies for the LeNet trained on the MNIST database: the best performance on each adversarial

sets are shown in bold. The magnitude of perturbation is 1.5.

Test set accuracy (%) of normal and perturbed data
Training Methods Normal | {w norm | ¢, norm Ksup-adv
Normal 99.0 85.7 68.8 69.5
Dropout[18] 98.8 88.3 70.8 72.2
Goodfellow[3] 99.2 98.1 93.6 93.7
Ksup 99.3 98.3 96.0 96.0
Ksup+Dropout25% 99.1 98.6 96.7 96.8
Ksup+Dropout50% 99.1 98.5 96.9 96.8

TABLE 2. Classification accuracies for the 2-hidden-layers neural network on the MNIST database: the best performance
on each adversarial sets are shown in bold. The magnitude of perturbation is 1.5.

Test set accuracy (%) of normal and perturbed data
Training Methods Normal | /s norm | ¢, norm Ksup-adv
Normal 98.1 28.9 20.5 214
Dropout[18] 98.3 39.3 23.1 23.8
Goodfellow[3] 98.9 92.5 71.7 71.7
Ksup 98.7 93.6 85.7 85.8
Ksup+Dropout 50% 98.4 95.6 90.0 90.0

2) USING MULTI-LAYER PERCEPTRON

We trained a multi-layer perceptron (MLP) with two fully
connected layers of 400x400 units and an output layer of
10 unit, using the different training methods mentioned in 4.2.
We experimented with two variants of the proposed method.
1) K-Support noise with (K=50%). This means that in the
noise matrix we selected 50% of the largest values and
rest of values are zero and 2) Modified K-Support Method
with (K=50%) and dropout percentage 50% in second fully-
connected layer. Rectified linear unit (RELU) has been used
as activation function in all methods.

We summarize the results of the tests in table 2. Training
with the normal dataset results in good accuracy on normal
test set but it is quite poor on perturbed datasets. Dropout
improves both accuracy on the normal test set as well as on
perturbed test set but there is still lot of room for improve-
ment. Goodfellow’s method provide a big leap in improving
accuracy on the perturbed test set as compared to dropout.
Our proposed K-Support method shows better performance
than all other methods. The margin of improvement gets even
bigger when we augment K-Sup method with dropout regu-
larization. A comparison with state of the art Goodfellow’s
method shows an improvement from 92.5% to 95.6% on test
set perturbed with £, norm based noise; 71.7% to 90.0%

on test set perturbed with £, norm based noise and from
71.7%to 90.0% on test set perturbed with K-Support noise.
For the normal test set, only Goodfellow’s method shows
better results than the proposed method, giving an accuracy
of 98.9% as compared to our method with 98.7% accuracy.

3) EFFECT OF UNIFORM RANDOM NOISE ON ROBUSTNESS
We now study the question whether the use of adversar-
ial training is absolutely necessary? Do we really need an
engineered noise model such as adversarial noise to improve
robustness of neural network or we can achieve the same
or better robustness using uniform random noise (URN)?
To answer this, we generated uniform random noise of
mean 0 and standard deviation 1 and trained 2-layer MLP
(400x400 units) with this noise. We compared its perfor-
mance on test sets perturbed with different noise models. The
results of these tests are shown in table 3.

Results show that training with URN perturbed data does
indeed improve robustness significantly as compared to train-
ing with normal data. However training with the proposed
K-support perturbed data imparts even greater robustness and
generalization than URN. Compared to URN, we achieved an
improvement from 94.2% to 98.6% on normal test set, 80.6%
to 93.1% on test set perturbed with £, norm based noise,

TABLE 3. Comparison of classification accuracies for the 2-layer MLP on the MNIST database trained with normal(unperturbed)

data and data perturbed with uniform random noise and K-Sup noise.
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Test set accuracy (%) of normal and perturbed data
Training Methods | Normal | /. norm | ¢, norm | Ksup-adv | URN
Normal 98.1 28.9 20.5 21.0 25.6
URN 94.2 80.6 66.6 66.7 63.1
Ksup 98.6 93.1 85.2 84.5 35.0
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66.6% to 85.2% on test set perturbed with £, norm based
noise and 66.7% to 84.5% on test set perturbed with
K-Support norm based noise. However, our method achieved
only 35% accuracy on test set perturbed with uniform random
noise, whereas for the same test set URN trained network
achieved 63.1%. This revealed a shortcoming that K-Support
method is not very robust against uniform random noise.

4) EFFECT OF MAGNITUDE OF PERTURBATION

ON ROBUSTNESS

We now study the effect of a tunable parameter ¢ in equa-
tion (10, and 14) which represents the magnitude of per-
turbation. We used two-layer MLP with 100x 100 hidden
units and trained the network using normal data. For test-
ing, we generated perturbed data by different methods out-
lined in section 4.2. The magnitude of perturbation is varied
from O to 3.8. Results in figure 4 show that testing accu-
racy decreases with increase in magnitude of perturbation.
Testing accuracy of K-Support noise perturbed data falls
relatively sharply as compared to £, perturbed test data. This
shows that £, noise is a weaker noise model that causes less
performance degradation on increasing magnitude of noise,
as compared to K-support noise.

o

m

Test Accuracy
in

w

a

0.2 0.6 1 14 18 22 26 3

w
I

w

m

Magnitude of Perturbation

—a— Test data with L-infinity noise Test data with Ksup noise

FIGURE 4. Test Accuracy of various noise models plotted against
magnitude of perturbation.

5) SOME MORE RESULTS

To further establish the significance of our proposed tech-
nique, we compare the micro-averaged precision-recall
curves of competing techniques with Ksup adversarial train-
ing. We used 2 hidden layered MLP with 100x100 units in
each layer. RELU was used as activation function. Results
are shown in figure 5 to figure 11.

Observing figures 6 to figure 11, it is evident the perfor-
mance of K-support norm based training method is better
than all other training methods, when test data is perturbed
with €5, £, K-support and Uniform random noise. The large
margin of improvement in area under the curve of K-support
technique establishes its significance in imparting robustness
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— KSUP Training (area = 0.72)
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FIGURE 5. Precision recall curves using normal test data.

Precision-Recall curves using L2 noised Test Data

1.0 Normal Training (area = 0.27)
Dropout Training (area = 0.28)
Goodfellow's Training (area = 0.13)
0.8 — KSUP Training (area = 0.52)

0.6 -
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FIGURE 6. Precision recall curves using ¢, noised test data.

Precision-Recall curves using L noised Test Data

10 Normal Training (area = 0.40)
Dropout Training (area = 0.33)
Goodfellow's Training (area = 0.16)
0.8} — KSUP Training (area = 0.61)

0.6

Precision

0.4 1

0.2

0.0 0.2 0.4 0.6 0.8 1.0
Recall

FIGURE 7. Precision recall curves using ¢, noised test data.

against different noise models. However, as shown in figure 5,
Ksup did not perform better than normal training when test
data was also normal. The reason for this anomalous behav-
ior can be described as an inherent limitation of not just
K-support method but all regularization methods that involve
adding noise in either data samples or weights.
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Precision-Recall curves using Ksup noised (with K=25%) Test Data

10 Normal Training (area = 0.32)
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FIGURE 8. Precision-recall curved using Ksup noised data (with K=25%).

Precision-Recall curves using Ksup noised (with K=50%) Test Data

Lo Normal Training (area = 0.28)
Dropout Training (area = 0.29)
Goodfellow's Training (area = 0.14)
08} — KSUP Training (area = 0.52)

Precision
=4
o

=
S

0.2 1

0.0 0.2 0.4 0.6 0.8 1.0
Recall

FIGURE 9. Precision-recall curved using Ksup noised data (with K=50%).

Precision-Recall curves using Ksup noised (with K=75%) Test Data

10 Normal Training (area = 0.27)
Dropout Training (area = 0.28)
Goodfellow's Training (area = 0.13)
0.8 — KSUP Training (area = 0.52)

0.6 |

Precision

04t

0.2

0.0 0.2 0.4 0.6 0.8 1.0
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FIGURE 10. Precision-recall curved using Ksup noised data (with K=75%).

This problem can be depicted pictorially in figure 12.
We represent a high dimensional image dataset in
3-dimensional space for ease of understanding. When we
perturb the original data manifold (‘a’ in Fig.12) with some
noise, images no longer remain at original position in space
and move to another position, thus effectively relocating the
manifold to another location (‘c’ in Fig.12). When we train
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Precision-Recall curves using Uniform random noised Test Data

10 Normal Training (area = 0.36)
Dropout Training (area = 0.22)
Goodfellow's Training (area = 0.13)
0.8} — KSUP Training (area = 0.45)
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FIGURE 11. Precision-recall curved using URN noised data.

Y-axis

£

X-axis

Z-axis

(a) Original data manifold (blue colored manifold)

(b) Vicinity around original manifold in which classifier is uncertain
(c) Data manifold perturbed with noise (pink colored manifold)

(d) Vicinity around perturbed manifold in which classifier 1s uncertain

FIGURE 12. lllustration of the problem of uncertain region around
manifold which occurs when manifold is perturbed by adding noise.

our classifier with perturbed dataset, we make it learn/fit
the perturbed manifold. As a result, we achieve our aim of
making it more robust in the vicinity of original manifold
(‘b’ in Fig.12) but the original manifold becomes an unknown
region for the classifier, because it (original manifold) is
now in the region of uncertainty of perturbed manifold
(‘d’ in Fig.12). This describes why Ksup and other noise
based training methods did not perform better than normal
training on normal test data (Figure 5). To rectify this issue,
we need a technique that would make the classifiers robust
in the vicinity of original manifold without compromising
its knowledge about the original manifold. It is an open
problem for research community interested in improving
generalization performance of classifiers.

E. EXPERIMENTS ON THE STL-10 DATABASE

For this challenging dataset, we used a convolutional neural
network inspired by the VDD-D Network [19]. Our net-
work consists of 2-stage convolutional layers followed by
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TABLE 4. Classification accuracies on the STL-10: the best performance on each adversarial sets are shown in bold. The magnitude of perturbation is 1.5

Test set accuracy (%) of normal and perturbed data
Training Methods Normal | l. norm | ¢, norm Ksup-adv
Normal 48.2 7.4 35 3.69
Dropout[18] 49.1 20.7 15.8 16.7
Goodfellow[3] 48.6 33.5 27.7 28.0
Ksup 36.9 26.1 224 22.7
Ksup+Dropout25% 394 33.2 30.2 30.3
Ksup+Dropout50% 40.5 35.1 32.3 33.0

3 fully connected layers. For each convolution stage, we have
3 convolutional layers with a (3, 3) kernel size followed by
max polling layer with kernel size (3, 3) and stride of (2, 2).
The 1st and 2nd convolution stage has 40 and 80 kernels
respectively. For the three fully connected layer, number of
units are 400, 400 and 10 respectively. A rectified linear
unit (RELU) has been used as the activation function in all
convolutional and fully-connected layers. We compare our
proposed method with 1. Normal 2. Dropout 3. Goodfellow’s
method.The results obtained are summarized in Table 4.

On STL-10 dataset, proposed K-Support norm based train-
ing achieved better accuracy on perturbed test sets than all
other methods. Compared to Goodfellow’s method, we got an
improvement from 33.5% to 35.1% on test set perturbed with
£oo norm based noise, 27.7% to 32.3% on test set perturbed
with £ norm based noise and 28.0% to 33.0% on test set
perturbed with K-Support norm based noise model. However,
contrary to the performance of K-Support method on MNIST
dataset where it had achieved improvement in accuracy on
normal test set, it did not show improvement on STL-10
dataset and gave an accuracy of 40.5% compared to 48.2%
achieved by normal training. Also, we have seen previously
in Table I that Dropout training could also not improve accu-
racy on normal test set on MNIST dataset and reported an
accuracy of 98.8% as compared to 99% achieved by normal
training but on STL-10 dataset, it showed best performance
with an accuracy of 49.1% on normal test set. The results of
our experiments on MNIST and STL-10 dataset suggest that
training neural network with a noise model may not always
improve accuracy on both perturbed as well as normal test set.
However this issue needs further theoretical investigation, as
our results are empirical.

V. CONCLUSION

The reported work contributes in the recent efforts made by
deep learning community to enhance robustness of neural
networks against adversarial noise. Adversarial noise is gen-
erated using a min-max optimization algorithm that max-
imizes the networks misclassification loss. We proposed a
mechanism to generate a powerful adversarial noise based
on K-Support norm. We experimented using the MNIST
and STL-10 datasets using two neural network architectures
(multi-layer perceptron and convolutional neural networks).
The performance of neural network trained using proposed
noise model was better than several other training methods.

VOLUME 4, 2016

The margin of improvement was further increased when
we augmented our algorithm with dropout noise. We also
empirically validated the significance of adversarial training
by comparing the robustness imparted by a uniform random
noise with that of our algorithm. We showed uniform ran-
dom noise does imparts robustness against different kinds of
perturbations but its performance is far below than network
trained with K-Supp adversarial noise. Finally, we demon-
strated empirically that an improvement in robustness may
not improve generalization performance as well. As future
work, a mathematical framework to support our empiri-
cal results would be an interesting and important advance-
ment. Another direction could be to study and improve the
robustness of K-Support norm based method against uniform
random noise. Further, investigation of different structured
norms such as fused lasso [25], trace lasso [26], and simul-
taneous lasso [27] etc. would be valuable. These could then
be used in the framework of new and efficient adversarial
noise models that would improve robustness and possibly
also generalization of deep learning neural networks.
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