
Received October 28, 2016, accepted December 17, 2016, date of publication December 21, 2016, date of current version January 27,
2017.

Digital Object Identifier 10.1109/ACCESS.2016.2642918

Optimization of Reading Data via Classified
Block Access Patterns in File Systems
JIANWEI LIAO1,2 AND SHANXIONG CHEN1
1College of Computer and Information Science, Southwest University, Chongqing 400715, China
2State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

Corresponding author: J. Liao (liaotoad@gmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61303038 and Grant 61303227 and in
part by the Opening Project of State Key Laboratory for Novel Software Technology under Grant KFKT2016B05.

ABSTRACT This paper proposes a novel mechanism to model a time series of block accesses for
profiling block access patterns, to intentionally direct block data prefetching. The basic idea behind this
scheme is that the block accesses within a certain offset domain may have some correlations that may
contribute to classify an access pattern on the file system level. Moreover, the technique of adjacency
matrix is employed to represent an access pattern for accelerating pattern matching, and then benefits
I/O optimization eventually. Through a series of emulation experiments based on several realistic block
traces on the disk, the experimental results show that the newly proposed prefetchingmechanism outperforms
other comparisons. Specifically, it can reduce average I/O response time by 14.6%–17.9% in contrast to the
commonly used sequential prefetching scheme, and 4.1%–10.5% compared with frequent sequence mining-
based prefetching but with less space and time overhead.

INDEX TERMS Block access pattern, data prefetching, I/O optimization.

I. INTRODUCTION
As the speed difference between processors and disks is
becoming larger, the requirements for high performance stor-
age systems in data-intensive applications are significantly
increasing recently [3]. Data prefetching is a widely adopted
I/O optimization technique for boosting disk performance,
which speculative reads the data from disk in advance, on
the basis of the predicted future I/O requests. Especially,
disk-level prefetching schemes have been proposed recently,
which have to forecast the future block accesses on the disk
based on the analysis of occurred accesses [9], [15]. As a con-
sequence, they can properly prefetch block data to mask disk
service time from the view point of application workloads.

In fact, Chen et al. [12] have verified that blocks reveal
semantic relationship, which has great scientific values and
indicates a promising prospect in applications. Generally,
disk-level prefetching can directly utilize the information
about block layout and the correlations among blocks to
forecast the future access events. It then can contribute to
achieve better I/O performance, in contrast to the prefetch-
ing mechanisms focusing on the logical file level [9].
For instance, C-miner is a typical scheme to disclose the
correlations among blocks for generating frequent sequences,
and then advances forecasting future accesses to dominate

I/O optimization [15]. Similarly, S. Jiang et al. have imple-
mented DiskSeen, which employs a frequent sequence-
based pattern modeling technique to classify block access
patterns, and both temporal and spatial correlations of block
access events have been taken into account, for improving
the sequentiality of disk accesses and overall prefetching
performance [9], [11]. Similarly, frequent sequence-based
data mining schemes are commonly adopted by researchers
working in different study areas, such as the work presented
by Farzanyar and Mohammadreza [14]. They have proposed
a local algorithm for tracing frequent item sets over a P2P
network, for a possible future analysis.

However, the existing disk-level prefetching mechanisms
including C-miner and DiskSeen, normally employ frequent
sequence mining-based association rules to foresee the future
block accesses. This kind of prediction approach has two
limitations: 1) there are a huge number of fixed frequent
sequences, thus, it is a time-consuming task to find a
matched one for the current block accesses in the prediction
window [14]; 2) it is possible to discover the access patterns
with certain frequency on the same blocks, but it cannot
disclose the access patterns targeting to different blocks, even
if they might have same correlations, such as same offset
difference between neighbor accesses.

VOLUME 4, 2016
2169-3536 
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

9421



J. Liao, S. Chen: Optimization of Reading Data via Classified Block Access Patterns in File Systems

To overcome the aforementioned shortcomings in the
frequent sequence-based prediction approach for directing
data prefetching, this paper proposes a domain-based scheme
to classify block access patterns. Moreover, we introduce an
adjacency matrix-based pattern matching algorithm to locate
amatched pattern for the block accesses in the predictionwin-
dow, with acceptable time and space overhead. To put it from
another angle, we first transform a block access sequence
to an undirected graph using the horizontal visibility graph
technique (HVG) [1]. After that, we employ certain advanced
(modified) graph algorithms to classify block access patterns
according to the reference of locality, as well as to find
matched patterns, for eventually instructing the process of
data prefetching. In brief, this paper makes the following two
contributions:
• Employing HVG to pre-process the block access
sequence. We utilize HVG to transform a block access
sequence, in which each access event has its rele-
vant logical block address, to an undirected connected
graph. As a consequence, we can make use of existing
algorithms in graph theory to process the connected
graph for completing the task of modeling access pat-
terns. For instance, we can use the Tarjan algorithm for
discovering all cut verties in the graph to preliminarily
generate access patterns.

• Proposing the adjacency matrix-based pattern matching
algorithm. To reduce the time required for seeking out
the matched pattern, we have proposed a matrix-based
pattern matching algorithm. In this algorithm, both fixed
access patterns and the pattern of access events in
the prediction window are represented with relevant
adjacency matrices. That is to say a round of pattern
matching can be satisfied by making a comparison
between two matrices.

The rest of paper is structured as follows: the specifications
of modeling block access patterns and performing pattern
matching are presented in Section II. Section III describes the
evaluation methodology and reports relevant results. Finally,
we conclude the paper in Section IV.

II. PATTERN MODELING AND MATCHING
This section introduces the mechanism of modeling access
patterns by analyzing the sequence of occurred block
accesses, as well as the algorithm of pattern matching, both
of them can definitely conduce to data prefetching.

A. MODELING BLOCK ACCESSES
A sequence of block access events can be measured at
successive events that appear at uniform time intervals. Thus,
this kind of sequence is commonly regarded as a typical time
series [7]. Consequently, for the purpose of exploring the
correlations of block accesses with a certain offset domain,
we have employed the horizontal visibility graph technique,
to pre-process the block access sequence. The technique of
HVG was proposed to generate a mapping network from a
given time series [1]. That indicates HVG can transform a
sequence of occurred block accesses to a connected graph.

To be specific, a data point in the sequence of block accesses
can be simply expressed as Access(time, offset), and we only
focus on the offsets of the block accesses when modeling
and classifying patterns. Actually, two nodes in the horizontal
visibility graph are connected if one can draw a horizontal
line in the time series by complying with the connection rule,
which is explicitly defined as following:
Connection Rule: When Access(tx , offx) is connected with

Access(tz, offz), for an arbitrary Access(ty, offy), if tx <

ty < tz, it must have offx > offy and offz > offy.
Figure 1(a) demonstrates an example of a horizontal

visibility graph that is transformed from a sample time series
of block accesses. In the figure, the bar of each access event
indicates the offset of block, i.e. logical block address. In fact,
we have demonstrated that HVG can facilitate classifying
block access patterns [4].

Because we intend to use advanced algorithms in graph
theory to classify access patterns, as well as perform
patternmatching to benefit data prefetching, we transform the
horizontal visibility graph to an undirected connected graph.
Specifically, we first represent every bar in the HVG graph as
a node in the connected graph. Then we link two nodes with
an undirected edge, if-and-only-if their corresponding
bars are also connected in the HVG graph. Figure 1(b) illus-
trates an example of undirected connected graph, which is
corresponding to the HVG graph shown in Figure 1(a). Both
figures contain same information about node connection,
i.e. the connection relationship among block access events.

B. CLASSIFYING ACCESS PATTERNS
We discussed before, an undirected connected graph is corre-
sponded to a horizontal visibility graph, which was originally
generated from a history of occurred block access events.
By referring back to Figure 1(b), the located cut points can
separate the connected graph into several sub-graphs. Each
sub-graph can be regarded as a potential access pattern, when
the number of nodes in the sub-graph is in the reasonable
given range by the reference of locality. Therefore, for the
purpose of effectively disclosing the cut vertices in the con-
nected graph, we utilize a modified Tarjan algorithm [8]
to complete this task, and then explore fixed block access
patterns from block access traces.

As seen, Figure 2(a) is a sub-figure of the connected graph
of Figure 1(b), and can be easily transformed to another form
of connected figure, which is illustrated in Figure 2(b). After
collecting the fixed block access patterns representing with
undirected connected figures through analyzing access traces,
it is necessary to consider how to store them, and then how to
use them for efficiently conducting pattern matching. In this
paper, we use adjacencymatrices to represent the fixed access
patterns, because we aim to minimize the time needed for
pattern matching.

To be specific, for representing an undirected connected
graph with an adjacency matrix, we use ‘‘1’’ to indicate
that two nodes are connected, and vice versa. The value
of the entry in the 3rd row and 4th column of the matrix

9422 VOLUME 4, 2016



J. Liao, S. Chen: Optimization of Reading Data via Classified Block Access Patterns in File Systems

FIGURE 1. Modeling blocks access events by using HVG. (a) Horizontal visibility graph of block accesses.
(b) Access pattern sub-graphs.

FIGURE 2. Classifying an access pattern and representing it with a adjacency matrix.
(a) Access pattern I. (b) Connected graph. (c) Adjacency matrix.

shown in Figure 2(c) is 1, which means No. 3 Access Event
(the third occurred access event) and No. 4 Access Event
(the fourth occurred access event) in Access pattern I (shown
in Figure 2(b)) are connected. Otherwise, the value of matrix
element is set as 0 by default, if there is no connection
between two relevant access events. Figures 2(b) and 2(c)
demonstrate how to denote a collected (fixed) access pattern,
i.e. Access pattern I by taking advantage of an undirected
graph and a relevant adjacencymatrix respectively.Moreover,
all adjacency matrices of collected block access patterns are
saved in a linked list, and the patterns having the same number
of access events are organized together in a group.

C. PATTERN MATCHING ALGORITHM
In general, data prefetching is triggered when a matched
pattern has been found for the current block accesses. This
is because the information (offsets and sizes) about future
block accesses can be retrieved in advance, by resorting to the
matched access pattern. We present the algorithm of pattern
matching in details in the section.

FIGURE 3. Pattern matching with adjacency matrices (note:
Numberpredict is 2, and Numberwindow is 4 in this example). (a) The fixed
pattern. (b) Current pattern in prediction window.

Figure 3 demonstrates the main idea of the newly proposed
algorithm for pattern matching. More specifically, a round of
pattern matching in our proposed mechanism is conducted by
the following steps:

1) We first build a corresponding adjacency matrix for
the block access events in the prediction window. The
prediction window contains the block accesses
occurred much lately (i.e. current ones), and the
following ones are needed to be prognosticated.

VOLUME 4, 2016 9423



J. Liao, S. Chen: Optimization of Reading Data via Classified Block Access Patterns in File Systems

2) According to the number of access events requiring to
be forecast, we try to find all fixed patterns that have
totally Numberpredict + Numberwindow access events.
In which the variable of Numberpredict is the number
of events that are required to be forecast, and the vari-
able of Numberwindow indicates the number of occurred
block access events that will be used for performing
prediction. In other words, the number of block access
events in these located (fixed) patterns is the sum of the
number of accesses to be predicted and the number of
accesses in the prediction window.

3) For each fixed pattern having required number of block
access events, only the values in the matrix related
to the previous Numberwindow access events are sup-
posed to be compared with relevant access events in the
current prediction window. We conduct a right shift of
Numberpredict bit positions on each row in the matrix
of the fixed pattern, and compare the corresponding
elements in two matrices. If there is an unmatched
element, we proceed with checking the subsequent
ones in the same way.

4) Finally, the algorithm will finish only if the match
is found or all fixed patterns that have the required
number of block access events have been traversed.

We have also studied the time complexity of our pattern
matching algorithm: since it requires to traverse all access
patterns have the expected number of involved access events.
Consider that we have a total ofM collected access patterns,
and the largest number of access events in the pattern is N .
The newly proposed algorithmwill requireO(MN ) time over-
head, and O(MN ) extra-space in the worst case. Generally,
it is necessary to set a reasonable range for N , to make the
matching algorithm working more efficiently.

D. PREDICTION AND PREFETCHING
The main purpose of using adjacency matrices to express the
connection relations among occurred block accesses, is to
accelerate the speed of pattern matching. Once the matched
pattern has been located, its raw data about offset differences
and sizes of access events are supposed to be used to foresee
the logical block address and size of the future block access.
Namely, the logical block address of the future access can
be computed by considering real offset differences illustrated
in both the matched pattern and the accesses in the predic-
tion window. Similarly, the size of the future access can be
obtained with the same way as well.

After understanding the logical block addresses and the
sizes of future block accesses, the storage system can read the
required data in advance, to mask the time overhead resulted
from heavy disk operations. Consequently, the prefetched
data are cached in the file local cache, to immediately respond
to application I/O requests, when the predictions hit.

In summary, the newly proposed forecasting scheme is
rather different from the commonly used frequent sequence-
based prediction schemes. It abstracts connection relationship
of block access events from block access patterns to group

these patterns. As a result, it not only reduces storage space
for saving the fixed patterns, but also significantly accelerates
pattern matching.

III. EXPERIMENTS AND EVALUATION
This section conducts evaluation to show strongpoints of
the newly proposed approaches for classifying and matching
block access patterns, to finally support block data prefetch-
ing. We utilized the evaluation methodology described
in [15], which suggests to do trace-driven simulations with
several disk traces collected in real systems. Therefore, we
constructed a experimental platform by taking advantage of
a widely used the DiskSim simulator [2], with a storage
cache simulator, i.e. CacheSim [5], to emulate a real storage
system that has totally 16MB storage cache. Besides, the
Least Recently Used (LRU) replacement policy implemented
by CacheSim has been leveraged to evict and load the
prefetched data.

We selected several disk traces for evaluation. A block
I/O traces with a one-week period span starting from 5PM
GMT on 22nd February 2007 was selected as another bench-
mark, i.e. the MSRC trace. This trace collection is offered
by 13 enterprise servers for different applications including
web/SQL server, media server and web proxy. Therefore,
MSRC is universally identified as the representative trace to
cover all major access patterns [6], [13]. Since prefetching
schemes make sense for read requests, we have only selected
some read-intensive workloads from the MSRC trace.
Furthermore, TPC-C benchmark, which can simulate a typi-
cal online transaction processing (OLTP) workload [10] was
used in our simulations, as well.

Apart from our proposed Domain-based prefetching
approach, the following three comparison counterparts have
been used in experiments:
• Non-prefetching, which means the distributed file
system without any I/O optimization facilities, such as
prefetching. Consequently, there is no overhead intro-
duced by analyzing block accesses and prefetching data.
It has been selected as our Baseline for other compar-
isons, to demonstrate the gain/loss in a global scale
resulted by other comparisons.

• Sequential prefetching, which is also called the Readad-
head scheme. Namely, when there are non-consecutive
misses to the server, the file system is supposed to issue
a prefetch request reading the data of certain consecutive
blocks in advance.
Different from our proposal, however, the Sequential
prefetching scheme fixedly fetches the data of following
blocks (after the target block according to the current
I/O request). That implies that the rule used to guide
prefetching data is unchanged in all cases, though there
will be plenty of stride read requests.

• Frequent sequence-based prefetching, which was
firstly implemented by C-miner, and it explores the
frequency sequences to conduce to forecasting future
block accesses [15]. As a matter of fact, the Frequent

9424 VOLUME 4, 2016



J. Liao, S. Chen: Optimization of Reading Data via Classified Block Access Patterns in File Systems

FIGURE 4. The normalized I/O response time with various prefetching schemes.

sequence mining based prefetching approach is heuris-
tic and effective for different read patterns, it is the
most related work to our newly proposed mechanism.
As discussed before, however, this approach has its
own shortcomings and may fail to work effectively for
general cases of block accesses.

Considering block access patterns are supposed to be
updated from time to time, we divided the selected trace
of block accesses into several pieces, and each part may
have 20, 000 access events. Then, for each part of the trace,
the first 25% trace of block accesses are used to classify
access patterns, that is to say the prefetching works for the
remaining 75% accesses. The number of access events in
each fixed access pattern was constrained to the interval
of [4, 12]. Besides, we have conducted the experiments to
measure the effects on performance with Sequential prefetch-
ing by reading different size of block data in advance, but
we have disclosed that there are no much difference while
prefetching data of 2, 4 or 6 blocks, so that we set the number
of prefetched block data as 2 while employing Sequential
prefetching. Actually, with the exception of Non-prefetching,
other three prefetching schemes have 4MB prefetching
cache, which is a part of the storage cache, for saving the
prefetched data. The following sub-sections explore both pos-
itive and negative aspects of this newly proposed mechanism
respectively.

Before evaluating the proposed prefetching mechanism,
we have analyzed characteristics of disk block accesses in
different workloads. Table 1 shows the details of selected
workloads used in our simulations. All of them are abstracted
from two standard benchmark suits, i.e. the MSRC trace and
TPCC, reflecting high-end enterprise environments.

A. I/O RESPONSE TIME
We first measured the I/O response time in the emulated
storage systems, which may equip with different prefetch-
ing schemes. Since the response time varies in size from
each other greatly while running different disk traces in

TABLE 1. Characteristics of selected workloads.

experiments, we show the normalized response time in
Figure 4. In the figure, X-axis shows the name of disk
traces, andY-axis illustrates the normalized I/O response time
(the lower one is better).

Clearly, the Sequential prefetching scheme achieves the
worst I/O response time, that is to say Sequential prefetch-
ing may place negative effects on the storage systems
when the major part of the disk traces are not sequential.
Compared with other comparison prefetching schemes, our
newly proposed Domain-based prefetching mechanism can
reduce average I/O response time by 14.6−17.9% in contrast
to Sequential, and 4.1 − 10.5% compared to Frequent. For
instance, Domain can save more than 6.1% response time
than Frequent, and 13.2% time than the selected Baseline,
when the disk trace is web0 at MSRC. In summary, the
proposed mechanism outperforms others in the metrics of
I/O response time, it thus can speedup the executions of
applications.

B. PREDICTION ANALYSIS
For showing the feasibility of our proposed prediction
model in practice, there is a need to check the prediction
error/deviation when applying different estimation models on
the varied workloads in the selected benchmarks. This section
intends to report the statistics relating to read predictions and
prediction hits, by employing different estimating models.
As Baseline does not perform read prediction and data
prefetching, there are no relevant prediction statistics, so that

VOLUME 4, 2016 9425



J. Liao, S. Chen: Optimization of Reading Data via Classified Block Access Patterns in File Systems

FIGURE 5. Prediction analysis with different prediction models adopted by different
prefetching schemes.

TABLE 2. Time overhead for various prefetching schemes (seconds).

only the statistic data while using Sequential, Frequent and
Domain prediction algorithms are presented.
Figure 5 shows the experimental results about predic-

tion statistics by using different prediction models. In the
figure, the horizontal axis indicates the name of workloads,
and the vertical axis represents the percentage of prediction
hits, which is the rate of (the number of prediction
hits/total number of reads). The experimental results explic-
itly show that the proposedDomain-based prefetching mech-
anism can achieve more prediction hits by 19.2 − 24.7%
compared to Sequential prefetching mechanism, and
6.3 − 10.1% compared to the commonly used Frequent
sequence-based prefetching scheme. For example, the
Domain-based prefetching approach can result in more
than 8.3% prediction hits than Frequent, and 12.9% hits than
the selected Sequential, when the disk trace isweb0 at MSRC.

C. TIME AND SPACE OVERHEAD
After reporting the benefits resulted from the newly
proposed prefetching mechanism, this section measures the
overhead brought by various prefetching schemes. Besides
reading block data in advance, predicting future block
accesses definitely cause time overhead. This is because esti-
mating future block accesses relies on analyzing block access
history to generate fixed access patterns or sequences, as well
as performing pattern matching.

As seen in Table 2, the split time overhead resulted from
different operations while using various prefetching schemes,
is explicitly reported. The Baseline scheme does not conduct
prefetching, it does not result in any time overhead. And
the Sequential prefetching approach indeed requires to read
block data in advance; however, it performs neither modeling
access patterns, nor matching patterns. On the other side, both
Domain and Frequent schemes must to generate and manage
the fixed access patterns or sequences, that is why both
of them cause more time for completing data prefetching,
compared with Sequential.
Another interesting clue shown Table 2 is that the newly

proposedmechanism can reduce 27.7−50.0% time overhead,
compared with Frequent, though both of them require almost
same time for reading the prefetched block data. In fact, the
Frequent prefetching approach generates more fixed frequent
sequences (the modeling part), and then spends more time
to locate a matched frequent sequence for current block I/O
events (thematching part). As a consequence, Frequent needs
more time for completing data prefetching.

Furthermore, we recorded overall memory space for
storing disk traces and the fixed access patterns, and Table 3
reports the results. Since both Baseline and Sequential do
not buffer logs of block access events for classifying access
patterns, they do not cause any space overhead. But, the pre-
sentedDomain-based prefetching scheme is efficient in terms

9426 VOLUME 4, 2016



J. Liao, S. Chen: Optimization of Reading Data via Classified Block Access Patterns in File Systems

TABLE 3. Space overhead for various prefetching schemes (MB).

of space overhead, in contrast to Frequent. More exactly, our
proposal can save 6.3−17.1%memory space for guiding data
prefetching.

IV. CONCLUDING REAMARKS
This paper has proposed and evaluated a Domain-based
prefetching mechanism, which classifies block access
patterns occurred on disks to finally conduce to data prefetch-
ing. Specifically, it employs the horizontal visibility graph
technique to model the history of block accesses, and then
uses the Tarjan’s algorithm to classify block access patterns.
Moreover, the proposed mechanism employs an adjacency
matrix-based pattern matching algorithm to speedup data
prefetching. The experimental results demonstrate that our
newly proposed mechanism can yield attractive I/O accelera-
tion, and then significantly improve system performance with
acceptable time and space overhead.

We have only evaluated the selected real-systemworkloads
individually, as the current implementation fails to work for
more complicated cases. In other words, this newly proposed
mechanism cannot classify block access patterns while there
are two or more workloads access disk blocks in parallel,
because they might lead to interleaved block accesses. We are
now in the process of sifting the block accesses belonging to
the different workloads, to enable our proposal for supporting
concurrent execution of more workloads.

ACKNOWLEDGMENT
The author would like to thank anonymous IEEE TC
reviewers for their thorough reviews and highly appreciate the
comments and suggestions, which significantly contributed
to revise this paper.

REFERENCES
[1] B. Luque, L. Lacasa, F. Ballesteros, and J. Luque, ‘‘Horizontal visibility

graphs: Exact results for random time series,’’ Phys. Rev. E, vol. 80, no. 4,
p. 046103, 2009.

[2] G. R. Ganger, ‘‘System-oriented evaluation of I/O subsystem per-
formance,’’ Tech. Rep. CSE-TR-243-95, Dept. Comput. Sci. Eng.,
Univ. Michigan, Ann Arbor, MI, USA, Jun. 1995.

[3] J. Liao, F. Trahay, G. Xiao, L. Li, and Y. Ishikawa, ‘‘Performing
initiative data prefetching in distributed file systems for cloud
computing,’’ IEEE Trans. Cloud Comput., to be published,
doi: 10.1109/TCC.2015.2417560.

[4] J. Liao, F. Trahay, B. Gerofi, and Y. Ishikawa, ‘‘Prefetching on storage
servers through mining access patterns on blocks,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 27, no. 9, pp. 2698–2710, Sep. 2016.

[5] M. L. C. Cabeza, M. I. G. Clemente, and M. L. Rubio, ‘‘CacheSim:
A cache simulator for teaching memory hierarchy behaviour,’’ ACM
SIGCSE Bull., vol. 31, no. 3, p. 181, 1999.

[6] MSR Cambridge Traces, accessed on Feb. 20, 2014. [Online]. Available:
http://iotta.snia.org/tracetypes/3

[7] N. Tran and D. A. Reed, ‘‘Automatic ARIMA time series modeling for
adaptive I/O prefetching,’’ IEEE Trans. Parallel Distrib. Syst., vol. 15,
no. 4, pp. 362–377, Apr. 2004.

[8] R. E. Tarjan and U. Vishkin, ‘‘An efficient parallel biconnectivity algo-
rithm,’’ SIAM J. Comput., vol. 14, no. 4, pp. 862–874, 1985.

[9] S. Jiang, X. Ding, Y. Xu, and K. Davis, ‘‘A prefetching scheme exploiting
both data layout and access history on disk,’’ ACM Trans. Storage, vol. 9,
no. 3, 2013, Art. no. 10.

[10] TPC-C Database Benchmark Traces, accessed on Dec. 2, 2013. [Online].
Available: http://tds.cs.byu.edu/tds/

[11] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang, ‘‘DiskSeen: Exploit-
ing disk layout and access history to enhance I/O prefetch,’’ in Proc.
USENIX Annu. Tech. Conf., San Francisco, CA, USA, 2007, Art. no. 20.

[12] Y. Chen, F. Li, B. Du, J. Fan, and Z. Deng, ‘‘A quantitative analysis on
semantic relations of data blocks in storage systems,’’ J. Circuits, Syst.
Comput., vol. 24, no. 8, p. 1550118, 2015.

[13] Y. Zhang et al., ‘‘Warming up storage-level caches with bonfire,’’ in Proc.
11th USENIX Conf. File Storage Technol. (FAST), 2013, pp. 59–72.

[14] Z. Farzanyar and M. Kangavari, ‘‘Distributed frequent item sets mining
over P2P networks,’’ Comput. Inform., vol. 34, no. 2, pp. 458–472, 2015.

[15] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou, ‘‘C-Miner: Mining block
correlations in storage systems,’’ in Proc. 3rd USENIX Conf. File Storage
Technol. (FAST), 2004, pp. 173–186.

JIANWEI LIAO received his Ph.D. degree in
computer science from the University of Tokyo,
Japan, in 2012. He joined the College of Computer
and Information Science, Southwest University,
China, in March, 2012. He is also with the State
Key Laboratory for Novel Software Technology,
Nanjing University, China. His research interests
are system software and high performance storage
systems for distributed computing environments.

SHANXIONG CHEN received the Ph.D. degree in
computer science and technology from the College
of Computer, ChongQing University. He was a
Visiting Scholar with South Australia University
in 2014. He is currently an Associate Professor
with the College of Computer and Information Sci-
ence, Southwest University, China. He currently
holds the post-doctoral position with Southwest
University. His research interests include machine
learning, network security, and data mining.

VOLUME 4, 2016 9427


