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ABSTRACT Software-defined networking (SDN) has emerged as a new network architecture, which
decouples both the control and management planes from data plane at forwarding devices. However,
SDN deployment is not widely adopted due to the budget constraints of organizations. This is because
organizations are always reluctant to invest too much budget to establish a new network infrastructure from
scratch. One feasible solution is to deploy a limited number of SDN-enabled devices along with traditional
(legacy) network devices in the network of an organization by incrementally replacing traditional network by
SDN, which is called hybrid SDN (Hybrid SDN) architecture. Network management and control in Hybrid
SDN are vital tasks that require significant effort and resources. Manual handling of these tasks is error
prone. Whenever network topology changes, network policies (e.g., access control list) configured at the
interfaces of forwarding devices (switches/routers) may be violated. That creates severe security threats for
the whole network and degrades the network performance. In this paper, we propose a new approach for
Hybrid SDN that auto-detects the interfaces of forwarding devices and network policies that are affected
due to change in network topology. In the proposed approach, we model network-wide policy and local
policy at forwarding device using a three-tuple and a six-tuple, respectively. We compute graph to represent
the topology of the network. By using graph difference technique, we detect a possible change in topology.
In the case of topology change, we verify policy for updated topology by traversing tree using six-tuple.
If there is any violation in policy implementation, then affected interfaces are indicated and policies that
need to be configured are also indicated. Then, policies are configured on the updated topology according
to specification in an improved way. Simulation results show that our proposed approach enhances the
network efficiency in term of successful packet delivery ratio, the ratio of packets that violated the policy
and normalized overhead.

INDEX TERMS Topology change, policy configuration, tree, graph difference, communication switching.

I. INTRODUCTION
Most recently, Software Defined Networking (SDN) has
emerged as a new network architecture which decouples both
the control andmanagement planes from data plane at the for-
warding devices. In SDN, the control andmanagement planes
are implemented at a central device which is called controller.
The data plane is implemented at forwarding devices. Though
SDN has many advantages over traditional networking,
e.g. ease of both network management and enforcement of
security policies in SDN [1]. However, SDN deployment is
not widely adopted due to the budget constraints of organi-
zations. This is because organizations are always reluctant

to invest a large amount of budget in establishing a new
network infrastructure from scratch [2]. One feasible solution
is to deploy a limited number of SDN-enabled devices along
with traditional (legacy) network devices in the network of
an organization by incrementally replacing traditional net-
work devices by SDN devices. This is called hybrid software
defined networking (Hybrid SDN) architecture [25]. Both
network policies and topology of network change frequently
which cause network faults by creating network inconsis-
tency and invariants in term of network policies [3]. In this
case, Hybrid SDN requires manual configuration of legacy
devices (switches and routers) by the network administrator.
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Often, these faults get unnoticed for a longer time. It is
reported that 62% network failures are due to human error
and maintenance, and operations of such networks need 80%
budget [4], [26]. As there is a central controller in hybrid SDN
and this controller can have the overall topology view of the
network, therefore it is possible that we can automatically
configure the policies on both SDN-enabled devices and
legacy devices [1].

The existing approaches, e.g. [5]–[7], do not deal with
automatic policy configuration in case of a topology change
in Hybrid SDN, to the best of our knowledge. We pro-
posed an automatic policy enforcement mechanism, called
Auto-PDTC, which both auto-detects policy violation in the
case of network topology changes and enforces policy by
configuring the policy on affected device’s interfaces. Our
contributions are

• For hybrid SDN, we identify the problem that network
topology changes frequently by addition or removal of
links/device. Due to this, network policies are violated at
legacy devices in case of topology change. This problem
is solved as follows.

• InAuto-PDTC,wemodel network-wide policy and local
policy at forwarding device using a 3-tuple and a 6-tuple,
respectively.

• Auto-PDTC gets the link state information from both
legacy and SDN switches and then constructs the net-
work topology in the form of a graph.

• Through graph matching, Auto-PDTC auto-detects the
change in network topologies taken at different instances
of times.

• In the case of topology change, Auto-PDTC verifies
the policy for updated topology by traversing tree using
6-tuple. If there is any violation in policy implementa-
tion, then affected interfaces are indicated and policies
that need to be configured are indicated.

The rest of the paper is organized as follows. Section II
presents the problem statement. Related work is presented in
Section III. The detail of proposed solution is explained in
Section IV. In Section V simulation results are presented and
Section VI concludes the paper.

II. PROBLEM STATEMENT
Link changes and the addition of new devices, these are
the common events that occur frequently in the network
and affect the network performance [3]. Several network
policies, e.g. access control lists (ACL) [8], load balanc-
ing [8], etc., implemented in the network are badly affected
in these situations. Because when the link changes, pack-
ets may violate the network policy (e.g. ACL) and subse-
quently network traffic flows to an unauthorized area. For
example, there is an enterprise network for a company as
shown in Figure 1(a). The company has two sites A and
B at some different places. Site A has front offices where
the computers (AF1 and AF2) are placed and these are
connected to data centers (AD1 and AD2). Site B also has

computers (BF1 and BF2) in front offices that are connected
to data centers (BD1 and BD2).
Case 1: Suppose a company has ACL policy, say P1,

that data centers of a site (say site A) can only be accessed
from front office computers of site A. Otherwise, the data
center of the site cannot be accessed from other places. More
specifically AF1-AF2 can communicate to AD1-AD2 and
BF1- BF2. Similarly, AF1-AF2 cannot communicate to BD1
and BD2. This policy is implemented using ACL commands
on router’s interface. Suppose, interface i2.1 is configured
to drop all packets originated from BF1-BF2 subnet and
interface i3.1 is configured to drop all packets originated from
the AF1-AF2 subnet.
Case2: Later on, suppose it is decided by a network admin-

istrator to place a new link between R2 and R3 as shown
in Figure 1(b) and the ACL policy is unchanged. Now the
packets originated by AF1-AF2 subnet can reach to BD1-
BD2 by passing through R1, R2, and R3 respectively as
shown by arrows in Figure 1(b). In this case, ACL policy P1
installed on the interface i3.1 of R3 is bypassed and violated
by allowing packets originated by AF1-AF2 subnet to reach
BD1-BD2. In this case, it needs manual configuration by a
network administrator to both detect this situation and config-
ure the policy on both new interfaces that connects R2 andR3.
To manually detect such policy violation, it is very hard in
a large network and may be unnoticed for a long time [4].
Therefore, this requires an intelligent mechanism to auto-
matically both detect this situation and to configure the new
topology as per ACL policy.
Case 3: Suppose ACL policy violation is manually

detected in Case 2. Then the network administrator installs
P1 at interface i2.2 of R2 by discarding the packets originated
from AF1-AF2 and at interface i3.2 of R3 by discarding
the packets originated from BF1-BF2. This way of policy
implementation is not a better option. In this case, suppose
that if the link between R4 and F1 gets down as shown in
Figure 1(c), then AF1-AF2 subnet cannot communicate with
BF-BF2 subnet, though there is a path following R1, R2, R3
and R4 from AF1-AF2 to BF1-BF2, as this can be noticed
in Figure 1(c). This is because the packet originated from
AF1-AF2 will be discarded at interface i1.2 of R2 due to
ACL policy P1 implementation. In this situation, an improved
mechanism is needed for configuring/installing ACL policies
at the interfaces of devices so that only affected interfaces are
blocked and redundant path can be used in the network as
shown in Figure 1(d).

These problems of ACL policy violation occur in hybrid
SDN because SDN controller only controls the data flow
through SDN switches [1]. In addition, the legacy devices
use traditional network protocols to forward the data flows.
In order to control legacy devices in hybrid SDN, cus-
tomized algorithms are needed to be implemented at the
SDN controller. More specifically, if data packets of a flow
are passing through only legacy switches then packets are
forwarded using traditional network protocols. In our targeted
scenario, the packets pass through only legacy devices in all
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FIGURE 1. (a) A network for Case 1. (b) A network for Case 2. (c) A network for Case 3. (d) A network for improved policy implementation.

cases(Case 1, Case 2 and Case 3). Thus, there is a need
of a customized approach to be implemented at the SDN
controller in order to avoid ACL policy violation in the case
of a topology change in hybrid SDN.

III. RELATED WORK
Veriflow [4] presents the technique for checking in real time
the network invariants like loops, black holes, and access
control verification. After detecting these network invari-
ant, one can raise alarm or can block these events. It is
implemented for pure SDN architecture and resides between
SDN controller and forwarding devices as indicated in
Figure 2. Veriflow has three steps (i) by using network policy
rules, the network is divided into slices by generating a set
of equivalence class (EC). An EC represents the set of pack-
ets that experience the same forwarding actions through the
network. (ii) Veriflow builds individual forwarding graphs for
every modified EC that represent network modified behavior.

(iii) Veriflow uses these graphs to determine the status of one
or more invariants. Veriflow is made for pure SDN and thus
it cannot be used in hybrid SDN. Because Hybrid SDN has
switches which require a customized mechanism to operate
them. Veriflow has difficulty in verifying network invariants
in real-time when large numbers of ECs are altered in one
operation, and when there is link failure.

Header Space Analysis (HSA) [13] presents the technique
that helps the system administrators to statically analyze the
SDN. HSA assumes that a network can be divided into dif-
ferent groups. Each group has a set of hosts, users and traffic
class that are isolated from other groups. For example, ‘‘Can I
prevent host A from talking to host B’’ so a network applica-
tion should slice the network into two groups and ensures that
packets originated from one group should not reach to another
group. HSA provides a set of methods and operations that
examines various failure conditions (like reachability, loop
detection) regardless of a specific communication protocol
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FIGURE 2. Veriflow.

implemented in the network. HSA adopts a general geometric
approach for packets classification. Packets are rendered as
points in a geometric space and switches are considered as
transfer functions on the space. In this way, a packet for-
warding in the network can be seen as a point moving in the
geometric space from one place to another place. HSA further
defines several types of operations on the point in the space
and initiates the optimization for computation. HSA can also
detect different network invariants such as node reachability
or loop detection that can be regarded as tracking traces of
points in the geometric space. HSA does not deal with access
control violation in the case of a topology change in hybrid
SDN. Moreover, this mechanism is limited for pure software
defined network architecture and not feasible for hybrid SDN.

HybNET [6] presents a network management framework
for hybrid SDN. It provides central control and management
over legacy and Openflow based switches through virtual-
ization across the whole network. It tries to hide the disso-
nance between legacy and SDN network configurations by
providing a common interface to the central controller. For
this purpose, virtual links are composed of multiple links
between Openflow and legacy devices. In HybNET, Open-
flow switches provide the main tasks of networkmanagement
and control with the help of a controller. Legacy switches
are working as forwarding devices only. This provides the
network virtualization functionality using VLAN in the tra-
ditional network and using fine-grained forwarding rules
installed by the SDN controller. HybNET is implemented in
OpenStack [15] which is the most popular open source cloud
computing platform by using neutron [16] as the network
service of OpenStack for host side network virtualization.
The physical hybrid network is formed in HybNET by using
Openflow and legacy switches. HybNET focus as neither on
topology change nor access control violation problem.

PGA [5] is a technique for automatic composition of
high-level network policies (e.g. load balancing, ACL, etc.).
It examines multiple individually specified network policies
for any conflict among these policies. In a large organization,
there are a number of policy subdomains like server admin-
istrator, network engineer, DNS domains, etc. To change a
network policy, it takes a long time, like days to weeks.

FIGURE 3. PGA system architecture.

Because this requires extreme care to implement the policy
in such a way that new policy does not have a conflict
with an existing policy. For example, a company wants to
implement a CRM (Customer Relation Management) [17]
application for customers in its office. According to policy
P1 only marketing employees can send data to CRM servers
using port 7000 and through a load balancing service (LB).
Another network wide policy P2 defines that employees
have restricted access to company servers through TCP port
80, 334 and 7000 and traffic should pass through the fire-
wall. These two policies P1 and P2 need to be combined
into a consistent single policy that maintains perspective of
both policies. In some automated network infrastructures, i.e.
enterprise networks, clouds and Network Functions Virtu-
alization (NFV) [14], policies are generated automatically
and the policies are many in number. To detect the conflict
among network policy, PGA uses a graph based abstraction to
simplify the network policies. In PGA, users, administrator,
and SDN applications define their network policies and these
policies are specified in the form of graphs. These graphs
are submitted to Graph Composer through a PGA User Inter-
face (UI). Graph composer automatically resolves the conflict
among different graphs. The graph composer can give some
possible suggestions to the network administrator to resolve
the conflicts among various policies and finally generates an
error-free/conflict free graph. The overall system of PGA is
shown in Figure 3. This paper just focuses on the conflict
in the implementation of multiple policies and resolves these
conflicts. It does not deal with policy configuration.

Telekinesis [18] is a network controller that does efficient
route management activities in the hybrid SDN. Telekinesis
introduced a new flow control, called LegacyFlowMod, to
control the routing activities in both legacy and Openflow
switches. Telekinesis instructs the Openflow switches to send
special packets to legacy switches to update the forwarding
entries at legacy switches in such a way that as soon as a data
packet enters the network is forwarded to nearest Openflow
switch. This is an attempt to forward data packet to the
controller as soon as possible so that the controller process
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FIGURE 4. Overview of telekinesis.

the packet and subsequently installs flow entries in the con-
cerned switches. For example, a path from LE2 to LE3 must
pass from an Openflow switch OF3. In this way, by using
Openflow and Mac Learning, packets received on a specific
port of legacy switches are forwarded to the respective SDN
switches as shown in figure 4.

Telekinesis focuses only on the routing control in hybrid
SDN and does not consider ACL violation in the case of
topology changes.

Exodus [19] presents control system for legacy network
devices that gets device configuration and compile them into
an intermediate form and finally, produces the equivalence
SDN rules. Exodus provides a solution for traditional net-
working to migrate on SDN by translating traditional net-
working configuration (e.g. Cisco IOS) to Openflow based
configuration. Exodus takes the IOS configuration (maybe
from different routers) as input and passed to Exodus IOS
Parser and Compiler that generates the network Specification
and Flowlog libraries that can be used as a prototype for
Openflow rules. In this way, traditional networking devices
can be used to perform as Openflow like infrastructure.
This paper deals with configuration translation from legacy
devices to Openflow control information. However, Exodus
does not consider ACL violation in the case of a change in
network topology.

From the above literature, it is clear that ACL violation
in the case of a change in network topology has not been
discussed in hybrid SDN. It is a big issue because, in a
communication network, topology changes frequently that
affects both the network control and performance [20], [27].
Due to a topology change, packets may be traveled to an
unauthorized node if the security policy is not verified for
the updated topology. Thus, security of network is at risk
as shown through some examples in Section II. To auto-
configure ACL policies in hybrid SDN, there are following
challenges.
• Auto-identification of proper switches and interfaces
where policies are to be implemented

• In case of topology change, auto-detection of topology
change

• Auto-identification of policy violation
• Pointing out the interfaces where policy violate in case
of topology change

• Which policy is violated in case of topology change?
• Reconfiguring policy as per specification

IV. PROPOSED SOLUTION
In order to handle the problems as discussed in Section II, we
proposed an automatic network policy enforcement mecha-
nism called Auto-PDTC, which detects policy violation in the
case of network topology changes and enforces the policy in
an optimum way by configuring the policy on the affected
device’s interfaces. Wemodel the Hybrid SDN (CN) as CN=
(E, N), where E is a set of the undirected edges and N denotes
the set of nodes. N is subdivided into two subsets; L consists
of legacy switches, and F consists of both Openflow based
switches and controller. Thus, N = L∪F. A path from source
s ε N to destination point t ε N such that s 6= t is represented as
a list of traversed links, the mathematical path is represented
as p(s, t) = {s, v1, v2 . . . vk, t} and where v1, v2 . . . vk L ∪ F.

FIGURE 5. Overall system design

In Figure 5, we have shown the overall system design
components and their interaction with the external envi-
ronment. As we have discussed earlier, Auto-PDTC policy
enforcement system consists of three main components. The
first component is topology construction. In this component,
network topology of devices and links is constructed. This
topology information is passed to next component. The sec-
ond component is graph construction and graph matching.
This fetches the topology information from the first compo-
nent, generates the graph using graph construction algorithm
and also detects the difference between the graphs that are
constructed at different time intervals. The third component is
policy verification that is used to detect policy violation due to
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the change in network topology and subsequently configures
the policies on affect interfaces.

Our prototype support hybrid SDN environment in which
there are a number of legacy switches and among them, a
limited number of Openflow switches are placed. We used
POX Openflow controller to generate the Openflow rules for
packet-in event based on network policies implemented by
the network administrator.

We model network-wide policy and local policy at for-
warding device using a 3-tuple and a 6-tuple, respectively.
We compute graph to represent the topology of network. By
using Graph Difference [11], we detect a possible change
in topology. In the case of topology change, we verify the
policy for updated topology by traversing the tree using
6-tuple. If there is any violation in policy
implementation, then affected interfaces are indicated and
policies that need to be configured are also indicated. Then
policies are configured on the updated topology accord-
ing to specification in an improved way. The detail of
each component of our proposed solution is explained as
follows.

A. NETWORK POLICY REPRESENTATION
Through a 3-tuple <source IP, Access Policy, Destina-
tion IP>, we represent a network wide policy in our system.
In this tuple, Source IP represents the policy for a packet orig-
inated from Source IP, Access Policy describes the specific
policy to drop (not allowed) or forward (allowed) the packet
and Destination IP means the machines to which the packet
is not allowed or allowed. For example, 3- tuple <10.0.1.1 –
10.0.1.2, Not Allowed, 10.0.7.1-10.0.7.2> means that pack-
ets originated from IP address 10.0.1.1 - 10.0.1.2 are not
allowed to access devices with IP 10.0.7.1- 10.0.7.2, for
Case 1. The network-wide policy is translated into local
policies which are installed at switches/router’s interfaces.
The local policy is represented in our system by 6-tuple
<Router/Switch, Source IP Address, Port, Policy, Allowed
Port, Not Allowed Ports> used as follows. For policy, if a
packet Pkt originated from Source IP Address is received at
Router/Switch say R1 at R1’s physical Port, then Pkt can be
forwarded as per Policy to the Allowed Ports of R1 and Pkt
cannot be forwarded (i.e. blocked) to Not Allowed Ports. For
example, for Case 1, 6-tuple <R3, 10.0.1.1-10.0.1.2, i3.1,
P1, 2-4, 1> means that at router R3 if Pkt originated from
10.0.1.1-10.0.1.2 is received at interface i3.1 then Pkt is not
allowed to be forwarded to ports i3.2-i3.3 and not allowed to
port i3.1.

B. TOPOLOGY CONSTRUCTION
We get the network topology of Openflow and legacy
devices at the controller as follows. An Openflow device
(switch/router) exchanges periodically its link state informa-
tion with a controller. The controller gets remote log informa-
tion of legacy devices (switches/routers) to get their link state
information. Thus, after getting the link state information
from all forwarding devices, the edges are stored in a set E

Algorithm 1 Graph Construction
Input: E is number of edges, V is number of vertices
Output: Graph G

1: G= {0} // G is empty
2: while (the Instance is not solved)
3: Select the edge from the E and vertices from
4: if edge connects two vertices in disjoint subsets then
5: merge the subsets;
6: add the edge to G;
7: end if
8: if all the subsets are merged then
9: the instance is solved

10: end if
11: end while

and the nodes are stored in a set V.We construct an undirected
graph G where forwarding devices are represented as nodes,
and links are represented as edges.

In graph construction algorithm, an edge from E and its
respective vertices are selected and added to graph G. Then
next edge and its respective vertices are selected, and then
added to G. This process is repeated till all edges and vertices
are added to G. Algorithm 1 explains the graph construction.

C. DETECTING CHANGE IN NETWORK TOPOLOGY
If network topology is changed as shown in Figure 6(b), then
we detect this change in topology with the help of graph
difference algorithm [11], [28]. Let G1= (V1, E1) represents
communication network topology over a time t1. In this tuple,
V1 denote the vertices and E1 denote the edges. Let at another
time instance t2 graph G2 is computed for the topology. If G2
is isomorphic to G1, then edge structure is preserved in both
the graphs and thus there is no change in the topology of the
network. Otherwise, there is a change in the topology. For
Figure 6(a) and Figure 6(b), we can detect the difference of
edges using mapping of edges of both figures.

Graph difference algorithm works as follows.
Definition 1: A triple G = (V ,E, µ) represent an undi-

rected and labeled graphG for communication network topol-
ogy over a time t1 where:
• V is a finite set of vertices
• E ⊆ V×V is set of edges and e(i, j) represents a directed
edge transmitting traffic from vertex i to j.

• µ : V → Lv is a function assigning unique labels to each
vertex in G such that µ(i) 6= µ(j)

Graph isomorphism exists between two graphs if both graphs
are same. Two graphs which contain the same number
of graph vertices connected in the same way are said to
be isomorphic. If G1 and G2 are two graphs, then graph
isomorphism can be detected by mapping vertices of one
graph G1 onto vertices of second graph G2.
Definition 2: A bi-jective function f : V1 → V2 is a

graph isomorphism from G1 = (V1,E1, µ1) and G2 =

(V2,E2, µ2), if
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FIGURE 6. (a) Graph for Case 1. (b) Graph for Case 2.

• µ1(v1) = µ2(f (v1)), v1εV1
• For all v1, v2εV1, the edge e1 = (v1, v2)εE if and only
if the edge e2 = (f(v1), f(v2))εE2

There are a number of techniques [21]–[23] to measure the
degree of similarity between two graphs. We used error
correcting graph matching (ECGM) technique to detect the
graph isomorphism. ECGMmeasures the difference between
two graphs by computing the minimal sequence of edit opera-
tions required to convert one graph G1 into another graph G2.
Edit operations include insertion, deletion, and substitution of
edges or vertices. These edit operations are calculated while
converting one graph G1 to another graph G2 as a similarity
measure.

To derive an expression for similarity measure based on
ECGM, the following definitions are used.
Definition 3: Given a graph G = (V, E, µ), define all

possible edit operations δ on G as follows:

• (v→ $), v ε V: deleting a vertex v from G and all edges
in G that are incident to v

• ($→v): inserting a vertex v into Gwith the unique vertex
label µ (v) ε Lv(v)

• (e→ $), e ε E: deleting the edge from G
• ($→ e), e= (v1, v2) and v1 and v2ε V: inserting an edge
between two vertices v1 and v2

Definition 4: Given a graph G = (V, E, µ) and an edit
operation δ on G, the edited graph δ(G) becomes the graph

δ(G) = (Vδ , Eδ , µδ) where:

Vδ =


V − {v} if δ = (v→ $)
VU {v} if δ = ($→ v)
V otherwise

Eδ =


E − {e} if δ = (e→ $)
EU {e} if δ = ($→ e)
E otherwise

µδ =


µ|V − {v} if δ = (v→ $)
ext.of µ to V U {v} if δ = ($→ v)
µ otherwise

Definition 5:Given a graph G= (V, E,µ) and a sequence of
edit operations1 = (δ1, δ2, . . . .., δk ), k≥ 1, the edited graph
1 (G) becomes

1(G) = δk(. . . ..δ2(δ1(G)) . . .)

If we assign a cost W(δi) for every edit operation, then total
cost related to this sequence of edit operation 1 is

W(1) =
∑k

i=1
W (δi)

Definition 6: Given two graphs G1 = (V1,E1, µ1) and
G2 = (V2,E2, µ2), and 1 represents the series of edit oper-
ations on G1 such that1 (G1) is graph isomorphic to G2, the
edit distance d(G1,G2) between two graphs is the minimum
sum of costs associated with edit sequence 1

d(G1,G2) = W (1)

Definition 7: Suppose the graph G1 = (V1,E1, µ1) repre-
sent the communication network functioning at time t1 and
G2 = (V2,E2, µ2) describe the same network as time t2
where t2 = t1 + 1 t. The network edit distance d(G1,G2)
can be defined as :

d(G1,G2) = |V1| + |V2| − 2|V1 ∩ V2| + |E1|

+ |E2| − 2|E1 ∩ E2|

Where the cost function for edit operations δ is

W (δ) =



1 δ = (v→ $)
1 δ = ($→ v)
1 δ = (e→ $)
1 δ = ($→ e)
0 otherwise

We can see here that the edit distance is used as a mea-
sure of change in topology of the network and edit distance
increases in case of more change in network topology over
time 1 t. Edit distance d(G1,G2) of two graphs is bounded
and d(G1,G2) = 0 when G1 and G2 are isomorphic means
that there is no change in topology. The algorithm to find the
change in two graphs G1 (the network topology at t1) and G
(the network topology at t2) is given in Algorithm 2.
If there is a change in the topologies (i.e. G1 and G2),

then we will traverse the updated network topology
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Algorithm 2 Graph Difference Algorithm
Input: Non-empty attributed graphs G1 = (V1, E1,

µ1) and G2 = (V2, E2, µ2) where V1 = {u1,
. . ., un} and V2 = {u2, . . ., u|v2|}

Output: A minimum cost edit path (pm) from G1 to
G2 e.g., {u1→v3, u2→ ε, ε→v2}

1: New← {ϕ}, Pm← ϕ

2: For each node w ε V2, New← New ∪ {u1→ w}
3: New← New ∪ {u1→ ε}
4: end For
5: while (true) do
6: Pm← argm{g(p)+ lb(p)} s.t. p ε New
7: New← New \ Pm
8: if Pm is a complete edit path then
9: return Pm as a solution (i.e., the minimum cost

edit
10: distance from G1 to G2)
11: else
12: Let Pm← {u1→ vi1, . . . , uk→ vik}
13: if k < |V1| then
14: For each w ε V2 \ {vi1,. . ., vik}, New←

New ∪ {Pm ∪ {uk+1→ w}}
15: Pnew← Pm ∪ {uk+1→ ε}
16: New← New ∪ {Pnew}
17: end For
18: else
19: Pnew← Pm ∪ UwεV2\{vi1, . . . , vik}

{ε→ w}
20: New← New ∪ {Pnew}
21: end if
22: end if
23: end while

(i.e. the graph G2) for the policy violation. For this pur-
pose, we propose to construct a search tree by using both
network topology G2 and 6-tuple. Policies are implemented
on the interfaces of forwarding devices (routers/switches)
by starting from an end system (i.e. AF1, AF2, BF1, BF2,
AD1, AD2, BD1, and BD2). That is, we model the network
topology G2 and 6-tuple policies in the tree form by defining
the interfaces of a forwarding device as branches of the
tree.

The branch of the tree is defined as allowedif the traffic
is allowed/can be forwarded on these interfaces. Otherwise,
the branch is defined as not allowed as per 6-tuple pol-
icy. This indicates the blocking and non-blocking paths for
a packet at the forwarding device. For example, for Case
1, we want to explore that, packet originated from AF1-
AF2 can reach to which part of the network as per 6-tuple
<Router/Switch, Source IP Address, Port, Policy, Allowed
port, Not Allowed Ports> policy P1 implemented on the
interfaces of forwarding devices. In this scenario, a packet
Pkt originated by AF1 will reach to R1 router and Pkt can
be forwarded to all other ports of router R1 as indicated by

Algorithm 3 Algorithm for Modeling Both Network
Topology and 6-Tuple Policy in the Tree Form
Input: G2 = (V2, E2) where V2 = {v1, v2 . . . vk} are

vertices and E2 = {e1, e2 . . . ..ek} are the edge of
the updated network topology, 6-tuple policy P1,
Pkt originated from Host AF1, AF2, BF1, BF2
etc.

Output: Policy violation either exists or not.
1: Pkt.src
2: For h1 to hn
3: model both G2 and P1 for Pkt originated from hi
4: if (Policy violation exists) then
5: Point Out (Generate Alarm)
6: else
7: ][ Select appropriate path for packets
8: end if
9: end For

6-tuple at R1, this is shown in Figure 7(a) model according
to the proposed approach. Then Pkt reaches to the router f1
which is Openflow router. After this, f1 forwards to router R4
as shown in Figure 7(b). R4 can forward to three ports (i.e.
allowed ports are 10.0.5.1, 10.0.5.2 and 10.0.6.1) as shown in
Figure 7(c). Similarly, after reaching at R3 at interface i3.1,
the Pkt is not allowed to be forwarded as shown in Figure 7(c),
i.e. thus Pkt will be dropped here. Similarly, for Case 2, when
the topology is updated due to the addition of new link from
R2 to R3. Then we traverse new topology and find policy vio-
lation for the AF1-AF2 subnet on interface i3.2 as shown in
Figure 7(d). In Case 3, when there is a link breakage
between f1 and R4 then AF1-AF2 subnet cannot commu-
nicate with BF1-BF2 subnet although there is path present
in through R1, R2, R3 and R4, as shown in Figure 7(e).
Thus, in this case, the optimum way of policy implemen-
tation will be to implement P1 at R3’s interfaces BD1 and
BD2, as shown in Figure 1(d) and its policy tree is shown
in Figure 7(f). The algorithm for modeling both network
topology and 6-tuple policy in the tree form is given in
Algorithm 3.

In Figure 8, we have shown the flowchart for overall
system operation. First, we get link state information from
all switches and nodes, and then the graph is constructed
for topology. After this graph difference is calculated. if
there is a change in the graph then we use tree travers-
ing to detect the affected interfaces for policy violation. In
the case of policy violation, proper policy configuration is
performed.

Our proposed solution also addresses other network invari-
ants like reachability and loop detection. For example, in the
scenario shown in Figure 9, when node AF1 sends six packets
to node BF1. Suppose after first two packets passed through
f1, the outgoing link goes down. Then remaining packets
are dropped in dropped at f1 in the existing approaches.
However, by using our proposed solution, we can traverse the
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FIGURE 7. Tree computation. (a) Tree computation at R1 for a packet originated from AF1-AF2 for case1. (b) Tree
computation at f1 after traversing from R1, for a packet originated from AF1-AF2 for case 1. (c) Tree computation at
R4 after traversing from R1 and f1 for a Packet originated from AF1-AF2 for case 1. (d) Complete Tree computed for
a packet originated from AF1-AF2 for case 2. (e) Complete Tree computed for a packet originated from AF1-AF2 for
case 3. (f) Complete Tree computed for a packet originated from AF1-AF2 for Figure 1(c).

tree from AF1, find the alternative route f1, R1, R2 and R3,
then we forward remaining packets through this alternative
route.

Similarly, loops can also be detected by using our
tree computation method. In this method, we can traverse
the whole network for possible looping condition and by
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FIGURE 8. Flow chart for different cases of topology change.

FIGURE 9. Reachability scenario.

implementing a specific rule on interfaces we can avoid the
loops.

V. PERFORMANCE EVALUATION
For performance evaluation, we used Mininet [10] with POX
controller [24]. All of our experiments are performed on an
HP Envy 14-j102tx machine with an Intel Core i5 6200 CPU
with 4 physical cores and 8 threads at 2.4 GHz speed, and
8 GB of RAM, running 64 bit Ubuntu Linux 16.01 LTS.
We used Openflow switches and legacy switches to construct
a topology of the system [29]. To use OpenvSwitch (OVS) as
a legacy switch, we set the ovs fail mode to be ‘‘standalone’’
and disconnected it with the controller. We study the scenar-
ios of 1, 2, 3, 4 and 5 number of links failure or update, in
a random way, for change in network topology. We evaluate
the performance of our proposed approach using following

parameters by varying frequency of links failure/addition,
number of switches, data rate and frequency of getting net-
work topology information at the controller.

• Successful Packet Delivery (SPD) ratio: The total num-
ber of packets received at destinations as per policy to
the total number of packets initiated at source nodes.

• Packets Policy Violated (PPV) ratio: Total number of
packets that violate the policy to the total number of
packets initiated at source nodes.

• Normalized overhead: Total number of transmissions in
the network divided by total number of packets received
successfully at destination nodes as per policy.

We assumed that nodes try to violate the policy by send-
ing packets randomly to different destination nodes or by
broadcasting the packet. The approach that is adopted in [1],
we call it as existing approach. In this technique, network
topology change is detected by the system administrator and
proper identification of affected interfaces is performed. It is
necessary for a network administrator to implement policies
on new interfaces according to specification. For this purpose,
firstly, the network administrator will translate the network
policy to corresponding network rules. Secondly, this policy
will be configured on switches using ACL commands [30].
This task requires a lot of time to implement policies properly
on respective interfaces.

A. RESULTS BY VARYING FREQUENCY OF LINK
FAILURE/ADDITION
Failure and addition of links are the most common events
that occur very frequently in a communication network.
Figure 10(a) shows that SPD ratio in our proposed approach
is higher than existing one because our proposed approach
automatically detects the change in topology and imple-
ments policies on affected interfaces at an early stage. Thus,
our proposed approach avoids the occurrence of Case 3.
By enforcing the policies at an early stage at the interfaces of
forwarding devices, our approach stops the packets to violate
the policy. The SPD ratio gets decreased in both approaches
(i.e. in our approach and the existing one) as the frequency of
link failure/addition in the network increases. This is due to
following reasons. (i)By adding more number of new links,
the probability that the policy is violated by a packet gets
increased, as discussed in Case 1. Subsequently, this results
in the violation of policies by more number of packets. This
reduces the SPD ratio of both approaches. (ii)When a number
of links get failed in the network, the chances of Case 2
increases which in turn reduces the SPD.

The number of packets that violate network policy due to
change in topology are also computed and the corresponding
results are shown in Figure 10(b). Figure 10(b) indicates
that our proposed approach has a lower ratio of packets that
violated the policy during topology change and implemen-
tation of policy on new interfaces. We also examine the case
when some packets are dropped during the detection of policy
violation and policy implementation on the new interfaces in
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FIGURE 10. Result in case of No. of links changed. (a) Comparison of SPD
Ratio. (b) Comparing both approaches in term of PPV. (c) Comparing
normalized Overheads of both approaches.

our approach. Though our proposed approach incurs some
traffic overhead by getting log files periodically from the
legacy forwarding devices for network topology (graph) con-
struction. However, this traffic overhead is amortized by the
gain in both SPD as follows. FromFigure 10(c) one can notice

FIGURE 11. Effect of Data rate on SPD, PPV and Normalized Overhead.
(a) Comparing SPD in case different data rates. (b) Effect of Data rate on
PPV in both schemes. (c) Normalized Overhead in case of varying data
rate for both schemes.

that our proposed approach improves the performance of the
network by having a lower value of normalized overhead
as compared to existing approach. Our proposed approach
also decreases the network administrator interaction with the
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FIGURE 12. Change in network topology computation and its effect.
(a) SPD ratio with varying time interval. (b) PPV ratio with different time
intervals. (c) Normalized Overhead in case of time interval for topology
change.

network to manually detect and address ACL policy viola-
tion in the case of topology change. Because our proposed
approach automatically detects ACL policy violation due to
topology change and helps a network administrator to config-
ures that ACL policy in a better way.

B. RESULTS BY VARYING DATA RATES
For these results, we keep the link/failure value on average
as 3, a number of nodes are 10 and the number of switches

are 5 and the time interval for topology computation is
10 seconds. By varying sending data rates from 1 to 10 bits
per seconds (bps), Figure 10 shows the effect of the data rate
on SPD ratio, PPV ratio, and normalized overhead.

Figure 11 (a) indicates that SPD ratio of both the
approaches decreases with the increase in data rates due to
following reason. Due to higher data rate, when the network
topology is changed then a large number data packets will
be reaching on the faulty interfaces during the process of
detection and implementation of the policy violation. This
situation will result in traffic loss of most of the packets.
However, our approach has higher SPD ration as compared
to existing one.

It is indicated in Figure 11 (c) that normalized overhead
gets increased in both approaches as data rates get increased.
This is because a higher number of packets violate the pol-
icy in case of higher data rates as shown in Figure 10 (b).
Figure 11 (c) shows that normalized overhead in our approach
still is acceptable even in the case of increased data rate.

C. RESULTS BY VARYING TIME INTERVAL FOR TOPOLOGY
CHANGE DETECTION
To get the results for a time interval, we used some simulation
parameter as constant. we kept the link failure value on aver-
age as 3, a number of nodes are 10, the number of switches
are 5 and data rate is 5 kbps (Kilobits per seconds). In our
proposed approach, we get the link state information from
forwarding devices after each time interval, say t, in order to
detect the change in network topology. Results in Figure 12
show that SPD ratio, normalized overhead, and PPV ratio
decreases with the increased value of t. The reason for this
is explained as follows.

For a large value of t, it has low traffic overhead because
less number of messages are sent for link state information
in our approach. However, this cannot detect the change in
network topology at an earlier stage. Similarly, by having
a smaller value of t, there is more computation and traffic
overhead in our approach. But this can detect a change in
the network topology at an earlier stage. Subsequently, this
results in enforcing the policy at an early time after traversing
the tree as per our proposed approach.

However, our approach outperforms the existing approach
in all cases as shown in Figure 12.

In Figure 12 (c) it is indicated that when time interval to
get topology information is longer than traffic overhead is less
and vice versa. This is because of the computation of topology
information and detection of a change in network topology.

VI. CONCLUSION
We proposed in this paper a new approach for Hybrid
SDN that auto-detects the interfaces of forwarding devices
and network policies that are affected due to change in
network topology. In the proposed approach, we mod-
eled network-wide policy and local policy at forwarding
device using a 3-tuple and a 6-tuple, respectively. We com-
puted graph to represent the topology of the network.
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By using Graph Difference, we detected a possible change
in topology. In the case of topology change, we verified
the policy for updated topology by traversing the tree using
6-tuple. If there was any violation in policy implementation,
then affected interfaces were indicated and policies that need
to be configured were also indicated. Then policies were
configured on the updated topology according to specifica-
tion in an improved way. Simulation results showed that our
proposed approach outperforms the existing approach in term
of successful packet delivery ratio, the ratio of packets that
violated the policy and normalized overhead. We would like
to consider more complex network policies violation as future
work.
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