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ABSTRACT With the advance of software receiver, multipath estimation becomes a key issue for high
accuracy positioning systems. It is crucial for eliminating the multipath error and improving the positioning
accuracy to estimate multipath parameters. The accessible multipath estimation algorithms are usually
designed for Gaussian noise, and their performances degrade dramatically in non-Gaussian noise, since the
mean square error criterion is adopted. To tackle the problem, a new filter based on centered error entropy
criterion (CEEC) is proposed for multipath estimation. In the proposed filter, the CEEC is considered as a
performance index, which is not limited to the assumption ofGaussian and linearity. According to a stochastic
information gradient method, an optimal filer gain matrix is obtained by maximizing the performance
function of centered error entropy. Meanwhile, a convergence analysis of the proposed filter is offered.
Furthermore, a recursive estimation method based on modified Parzen windowing technique is proposed for
practical implementation. The simulation results indicate that the proposed filter outperforms the filter based
on minimum error entropy criterion for multipath estimation.

INDEX TERMS Multipath estimation, centered error entropy criterion (CEEC), minimum error entropy
criterion (MEEC), stochastic information gradient (SIG).

I. INTRODUCTION
The positioning accuracy of GNSS is influenced by many
error resources and multipath is the dominate one for high
accuracy positioning systems since it is difficult to miti-
gate by differential techniques [1]. Multipath is the reflec-
tive replicas of the direct signals, which is produced by
obstacles (buildings, hills, etc) [2]. With the development of
software receiver and digital signal processing (DSP), the
multipath eliminating methods based on data processing have
become a hot-spot [3], [4]. The key issue of these methods is
multipath estimation. Various multipath estimation methods,
e.g. the maximum likelihood estimator, the extend Kalman
filter (EKF) estimator, are explored to estimate multi-
path [5], [6]. However, most of these methods are only
competent in Gaussian noise environments since they are
designed with mean square error criterion (MSEC) and
only the second-order statistics is taken into consideration.
Although all statistics can be described by the second-order
statistics for linear systems with Gaussian noise, it is not
enough to describe the statistics for non-Gaussian noise using
only the second-order statistics. As a result, the performances
of the methods based on MSEC degrade dramatically in

non-Gaussian noises. PF prototype algorithms are developed
for multipath estimation in non-Gaussian noise [7]. However,
the problem of sample degeneration and impoverishment
limits its application. To this end, a new multipath estimation
method, which can describe the higher-order statistics for
non-Gaussian, needs to be proposed.

Entropy is a central quantity in information theory, which
quantifies the average uncertainty involved in predicting the
value of a random variable [8]. Entropy can depict not only
the second-order statistics but also the higher-order statistics
of a distribution and it is not limited to the assumption of
Gaussian. As the entropy measures the average uncertainty
contained in a random variable, its minimization makes the
distributionmore concentrated. Thus, minimum error entropy
criterion (MEEC) is studied by many researchers [9]–[14].

Although the minimum error entropy (MEE) is a global
criterion, it is shift-invariant, and a bias is needed to
be set to achieve a zero-mean error. Correntropy is a
similarity measure between two random variables [15].
Correntropy criterion can fix the main peak of the error
PDF at the origin point. Unfortunately, it is a localized
criterion.
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In this paper, correntropy criterion is integrated intoMEEC
to form a new criterion named as centered error entropy crite-
rion (CEEC). CEEC can fix the main peak of the error PDF at
the original point and overcome the drawbacks of MEE being
shift-invariant and maximum correntropy criterion (MCC)
being local optimization. Then, a filter with CEEC is pro-
posed for multipath estimation. In order to implement the
proposed filter in a reasonable way, an online iterative esti-
mation method is explored using modified Parzen window-
ing technique. In the proposed CEEC filter, the stochastic
information gradient (SIG) method is applied to update the
gain matrix. The convergence analysis is also given for the
proposed filter. At last, the performance of CEEC filter for
multipath estimation in non-Gaussian noise is validated by a
simulation.

The remainder of this paper is organized as follows.
Section II formulates the multipath estimation problem and
builds the corresponding systemmodel. Section III elaborates
the CEEC filter and the gain matrix updating method. The
convergence analysis and the implementation of CEEC filter
are offered in Section IV. Some conclusions and the future
work are given in Section V.

FIGURE 1. Generation of multipath.

II. PROBLEM FORMULATION
A. SIGNAL DESCRIPTION
The received signal in a multipath environment for GNSS can
be modeled as an M0 + 1 path model composed of a direct
path signal andM0 reflected signals plus noise, which can be
depicted by Fig.1. The corresponding base-band signal can
be modeled as [16].

r(t) = α0c(t − τ0) cos(θ0)+
M0∑
i=1

αic(t − τ0 − τi)

× cos(θ0 + θi)+ n(t) (1)

where α0 is the amplitude of direct signal, αi is the amplitude
of the i-th multipath, τ0 is the time delay of direct signal,
τi is the i-th multipath time delay relative to the direct signal,
θ0 is the direct signal phase, θi is the i-th multipath phase
delay relative to the direct signal, and n(t) is the noise. The
multipath signal is normally weaker than the direct signal
since some signal power is lost due to reflection, whichmeans∑M0

i=1 αi < α0. The multipath signal arrives after the direct
signal for the reason that it must travel a longer distance over

the propagation path, so the multipath time delay is longer
than the direct signal time delay, i.e. τi ≥ 0. Usually, the
short multipath with time delay 0 ≤ τi < 1 + d/2 (d is the
correlator spacing between the early code and the late code)
is considered. In theory there can be an infinite number of
multipath signals present at any given time. In practice there
is rarely more that one or two dominate multipath signals
present at one time [17]. Thus, only one dominant multipath
is taken into consideration for simplicity, i.e. M0 = 1.
Then, (1) can be simplified as

r(t) = α0c(t − τ0) cos(θ0)+ αic(t − τ0 − τi)

× cos(θ0 + θ1)+ n(t) (2)

Express the signal model in a digital form as

r (k) = α0c (k − l0) cos (θ0)

+α1c (k − l0 − l1) cos (θ0 + θ1)+ n (k) (3)

where k denotes the k-th instant, l0 and l1 is the digital
expression of τ0 and τ1, respectively. Usually, the noise n(k) is
supposed to be Gaussian distributed, but sometimes it is
not true. For example, impulsive noise is often encountered
in wireless applications in many indoor and outdoor envi-
ronments, which can be approximated with finite Gaussian
mixture [18].

B. SYSTEM MODEL
The structure of signal tracking in GNSS is shown in Fig.2.
After mixing with the local carrier, the correlator output
vector yk =

[
y1k , y

2
k , · · · , y

S
k

]T
can be measured by correlat-

ing r(k) with the local C/A code vector c
(
k − l̂0 − d

)
=[

c
(
k − l̂0 − d1

)
, · · · , c

(
k − l̂0 − dS

)]T
, where ds(s =

1, . . . , S) is the correlator spacing between the i-th code and
the punctual code c

(
k − l̂0

)
, and S is the correlator number.

c
(
k − l̂0 − ds

)
is the early code if ds < 0, c

(
k − l̂0 − ds

)
is the late code if ds > 0 and c

(
k − l̂0 − ds

)
is the punctual

code if ds = 0. The multipath parameters vector x = [α0, α1,
θ0, θ1, l0, l1]T can be estimated by yk . Once the multiapth
parameters are estimated by an estimation algorithm, the
direct signal part can be got by subtracting the multipath part
from the received signal. Then, a time delay estimation of
the direct signal l̂0 can be obtained after further processing
to control the code generator, and the code generator tunes
the local punctual code c

(
k − l̂0

)
to synchronize the code of

r(k).
Without considering the influence of low pass fil-

ter in signal tracking loop, the output of s-th correlator
in Fig.2 is

ys
k

(
A0,k ,A1,k , εk , l1,k

)
= A0,kR (εk)+ A1,kR

(
εk + l1,k + ds

)
+ nk (4)

where A0,k = α0,k cos(θ0,k ) and A1,k = α1,k cos(θ1,k ) are the
composite amplitude of the direct signal and the multipath at
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FIGURE 2. Structure of signal tracking.

time k , respectively. R(ε) is the ideal autocorrelation function

with R (ε) =

{
1− |ε| , |ε| ≤ 1
0, others

. εk = l̂0,k − l0,k , l̂0,k is

the local estimation of l0,k . l0,k and l1,k are the direct signal
time delay and the relative time delay of multipath at time k ,
respectively. nk denotes correlation noise at time k .
From (4), it can be seen that the parameter to be estimated

at time k is reduced to xk = [A0,k ,A1,k , εk , l1,k ]T . Thus,
the system model can be formulated as a first-order Markov
process [6].

xk+1 = F (xk)+ wk+1 (5)

yk = H (xk)+ vk (6)

where xk ∈ RM×1 denotes the state vectors. M equals 4 for
the problem of multipath estimation in this paper. F(·) is the
systemmatrix depending on the state vector xk .wk is assumed
to be system noise with zero mean. yk is the observing vector
with yk =

[
y1k , y

2
k , · · · , y

S
k

]T
.H(·) is the measurement matrix

depending on xk , vk is themeasurement noisewith zeromean.
Then, the estimation problem can be solved by the following
steps,

x̂k+1 = F
(
x̂k
)
+ Lk+1

(
yk − ŷk

)
(7)

ŷk = H
(
x̂k
)

(8)

where Lk is the gain matrix, which is updated at every time
k . This paper aims to obtain an optimal estimation for Lk in
terms of CEEC with Lk =

[
L1,k ,L2,k , · · · ,LS,k

]
∈ RM×S ,

where Lt,k ∈ RM×1. The error esk is formulated in the
following form,

esk = ysk − ŷ
s
k , s = 1, 2, . . . , S (9)

where ŷsk is the filter output of y
s
k .

III. THE FILTER BASED ON CENTERED
ERROR ENTROPY CRITERION
Based on the systems of model (7) and (8), the CEEC filter
is proposed for multipath estimation in this section. Before
proceeding the MEEC and MCC are reviewed.

A. MINIMUM ERROR ENTROPY CRITERION (MEEC)
The MEE estimation aims to minimize the entropy of
the estimation error, and hence decreases the uncertainty

in estimation. The Renyi’s entropy is adopted due to its
easy calculation. Assume a random variable ewith PDF fE(e),
the Renyi’s entropy is defined by [19]

H (e) = − log
∫
f 2E (e)de (10)

The kernel density estimation (KDE) is focused on because
of its wide applicability and its relationship with Renyi’s
entropy [14]. Given a set of i.i.d. data {ei}Ni=1 drawn from the
distribution, the KDE of the PDF is

f̂E (e) =
1
N

N∑
i=1

G∑ (e− ei) (11)

G6(e − ei) is the Gaussian function with the following
expression,

G∑ (e− ei) = 1√
2π
(
det

∑)
· exp

(
−
1
2
(e− ei)T

∑−1
(e− ei)

)
(12)

where N is the number of the data points and 6 is the kernel
parameter. In this paper,6 is assumed to be a diagonal matrix
with the s- th diagonal element being the variance δ2s for es in
e, s = 1, 2, . . . , S. The kernel parameter is a free parameter
that must be chosen by the user. In this paper, the 6 is set
experimentally.

Therefore, using KDE, the Renyi’s quadratic entropy can
be formulated as following,

H2 (e)

= − log
∫ (

1
N

N∑
i=1

G∑ (e− ei)
)2

de

= − log
1
N 2

∫  N∑
i=1

N∑
j=1

G∑ (e− ei)G∑ (
e− ej

)de
= − log

1
N 2

 N∑
i=1

N∑
j=1

∫
G∑ (e− ei)G∑ (

e− ej
)
de


= − log

1
N 2

 N∑
i=1

N∑
j=1

G√2∑ (
ei − ej

)
= − log

1
N 2

 N∑
i=1

N∑
j=1

G∑
2

(
ei − ej

) (13)

where

V (e) =
1
N 2

 N∑
i=1

N∑
j=1

G∑
2

(
ei − ej

) (14)

V (e) is called the information potential (IP) of variable e and
62 =

√
26. Thus, the minimizing of the Renyi’s entropy

H2(e) is equivalent to maximize the IP V (e) due to the mono-
tonic increasing property of the log(·) function. In order to
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decrease the calculating complexity, the Parzen windowing
technique and the instantaneous IP at time k is used as the
performance index, i.e.

J1 (e) =
1
W

k∑
i=k−W+1

G∑
2
(ek − ei) (15)

whereW is the length of the Parzen window. J1 in (15) is used
as the performance index for MEEC in this paper.

The problem with MEEC is to determine the location of
error PDF because the criterion is shift-invariant. A solution
to this problem is to bias the system output to the desired sig-
nal mean to make the error mean equal to zero. However, the
desired mean cannot be known for the problem of multipath
estimation described in this paper.

B. MAXIMUM CORRENTROPY CRITERION (MCC)
Correntropy is closely related to Renyi’s quadratic entropy.
With Gaussian kernel, correntropy is a localized similar-
ity measure between two random variables. Correntropy is
a robust adaptation criterion in presence of non-Gaussian
impulsive noise [20].

The objective of state estimation is to optimize a perfor-
mance index function (or cost function) in such a way that the
observation output yk resembles the filter output ŷk as closely
as possible. Under MCC, the cost function that we want to
maximize is the correntropy between themeasurement output
and the model output, i.e.,

J2 = E
[
G∑

1
(ek)

]
(16)

61 is the kernel parameter of J2.
In practical applications, one often uses the following

empirical correntropy as the performance index,

J2 =
1
W

k∑
i=k−W+1

G∑
1
(ek) (17)

where W has the same meaning as that in (15). J2 in (17) is
used as the performance index for MCC in this paper.

The problem of MCC is it is a local criterion because it
only cares about the local part of error PDF falling within
the kernel bandwidth. So the kernel size has to be chosen
carefully.

C. THE FILTER BASED ON CEEC USING STOCHASTIC
INFORMATION GRADIENT
Since MEE has the property of shift-invariant, and estima-
tion results obtained by the algorithm with MEEC may not
converge to the true value. Fortunately, MCC is a localized
similarity measure between the observation output yk and the
filter output ŷk . Under MCC, a concave cost function can
be constructed by choosing a large enough kernel parameter
according to the results of [8], and a unique optimal solution
can be expected. Hence, a natural consideration is a global
optimal solution can be fixed by combiningMCC andMEEC.
The combination of MCC and MEEC is called CEEC.

Under CEEC, the performance index can be expressed as

Jk (e) = λ

 1
W

k∑
i=k−W+1

G∑
1
(ei)


+ (1− λ)

 1
W

k∑
i=k−W+1

G∑
2
(ek − ei)

 (18)

where λ is a weighting constant between 0 and 1. Specially,
when λ = 0, Jk reduces to a MEEC; when λ = 1, it is MCC.

According to the property of multidimensional
Gaussian probability density function, if e1, e2, . . . ,
es, . . . , eS are independent of each other, one can obtain

fk (e) =
1
W

k∑
i=k−W+1

G∑
1
(ei)

=
1
W

k∑
i=k−W+1

S∏
s=1

κδs,1
(
esi
)

(19)

where κδ (e) = 1/
√
2πδ · exp

(
e2/2δ2

)
is a Gaussian kernel

function, esi is the s-th element of ei, δ2s,1 is the s-th diagonal
element of 61. Therefore, we only need to maximize

Jk (e) = λ

 1
W

k∑
i=k−W+1

S∏
s=1

κδs,1
(
esi
)

+ (1− λ)

 1
W

k∑
i=k−W+1

S∏
s=1

κδs,2
(
esk − e

s
i
) (20)

where δ2s,2 is the s-th diagonal element of 62.
In order to update gainmatrixLk at every time k adaptively,

the stochastic information gradient (SIG) method is used, and
Lk can be updated as

Ls,k+1 = Ls,k + η ·
∂Jk (e)
∂Ls,k

(21)

where Ls,k ∈ RM×1, η is learning rate for adaptation.
∂Jk (e)
∂Ls,k

= −λ ·
1
W

k∑
i=k−W+1

{

[
S∏
s=1

κδs,1
(
esi
)]′
·

[
H ′:,s

(
x̂i
)
·
∂ x̂i
∂Ls,i

]T
}

+ (1− λ) ·
1
W

k∑
i=k−W+1

{

[
S∏
s=1

κδs,2
(
esk − e

s
i
)]′

·

[
H ′:,s

(
x̂i
)
·
∂ x̂i
∂Ls,i

−H ′:,s
(
x̂k
)
·
∂ x̂k
∂Ls,k

]T
} (22)

with [
S∏
s=1

κδs,1
(
esi
)]′
= −

S∏
s=1

κδs,1
(
esi
)
·

[
S∑
s=1

esi/
(
δ2s,1

)]
[

S∏
s=1

κδs,2
(
esk − e

s
i
)]′
= −

S∏
s=1

κδs,2
(
esk − e

s
i
)

·

[
S∑
s=1

(
esk − e

s
i
)
/
(
δ2s,2

)]
(23)
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where ∂ x̂k
∂Ls,k

can be obtained by the chain rule,

∂ x̂k
∂Ls,k

=
[
F′
(
x̂k−1

)
− Lk−1 ·H ′:,s

(
x̂k−1

)]
·
∂ x̂k−1
∂Ls,k−1

+
(
ysk−1 − ŷ

s
k−1

)
· IN×N (24)

with IN×N being identity matrix, and

F′
(
x̂k−1

)
=
∂F
(
x̂k−1

)
∂ x̂k−1

, H ′
(
x̂k−1

)
=
∂H

(
x̂k−1

)
∂ x̂k−1

(25)

H ′:,s
(
x̂k−1

)
is the s-th column of H ′

(
x̂k−1

)
.

Once Lk is obtained, the estimation result x̂k can be got
by (7).

IV. THE CONVERGENCE ANALYSIS AND
IMPLEMENTATION OF CEEC FILTER
A. CONVERGENCE ANALYSIS
Since the filter gain Lk is influenced by the learning rate
η according to (21), the choice of η should be analyzed to
ensure the convergence of CEECfilter. After such analysis, an
acceptable range of learning rate which results in decrease of
the squared sum of output error would be given. Under known
errors ek−1, the following conditional expectation needs to be
satisfied for convergence [21],

Dk = E
[
eTk ek |ek−1

]
− eTk−1ek−1 < 0 (26)

Using the approximation H (xk) ≈ H ′ (xk) xk = Ckxk
and (8), one can obtain,

eTk ek ≈
[
yTk − x̂

T
k C

T
k

]
×
[
yk − Ck x̂k

]
= yTk yk − y

T
k Ck x̂k − x̂

T
k C

T
k yk + x̂

T
k C

T
k Ck x̂k (27)

where Ck is determined by x̂k . According to (7), Ck can be
determined by x̂k−1 and ek−1.

Using the approximation F
(
x̂k
)
≈ F′

(
x̂k
)
x̂k = Ak x̂k ,

together with (7) and the update law of learning rate expressed
by (21), the following formula can be got by substituting (27)
into (26),

Dk

= E{yTk yk − y
T
k Ck

[
Ak−1x̂k−1+

(
Lk−1 + η

∂Jk−1
∂Lk−1

)
ek−1

]
−

[
Ak−1x̂k−1 +

(
Lk−1 + η

∂Jk−1
∂Lk−1

)
ek−1

]T
CT
k yk

+

[
Ak−1x̂k−1 +

(
Lk−1 + η

∂Jk−1
∂Lk−1

)
ek−1

]T
CT
k Ck

·

[
Ak−1x̂k−1 +

(
Lk−1 + η

∂Jk−1
∂Lk−1

)
ek−1

]
}− eTk−1ek−1

< 0 (28)

After some algebraic calculation, (28) can be reformulated as

Dk = aη2 − 2bη + c < 0 (29)

with

a = eTk−1
∂JTk−1
LTk−1

CT
kCk

∂Jk−1
Lk−1

ek−1 (30)

and

b = yTk Ck
∂Jk−1
Lk−1

ek−1 − x̂
T
k−1A

T
k−1C

T
k Ck

∂Jk−1
Lk−1

ek−1

− eTk−1L
T
k−1

∂Jk−1
Lk−1

ek−1 (31)

and also

c = yTk yk − 2yTk CkAk−1x̂k−1 − 2yTk CkLk−1ek−1
+ x̂Tk−1A

T
k−1C

T
k CkAk−1x̂k−1

+ 2x̂Tk−1A
T
k−1C

T
k CkLk−1ek−1

+ eTk−1L
T
k−1C

T
k CkLk−1ek−1 (32)

Solving (32) for η, the constant η1 and η2 can be
determined as:

η1 =
−b−

√
b2 − ac
a

(33)

η2 =
−b+

√
b2 − ac
a

(34)

Thus, in order to ensure the convergence of CEEC filter, the
learning rate η should be chosen so that

η1 < η < η2. (35)

Other parameters are chosen by empirical method. For exam-
ple, the kernel size σs,1 of MCC function is set large enough
to ensure the MCC function concave. The kernel size σs,2
of MEE function needs to be set properly to guarantee MEE
function capturing higher-order statistics property.

B. IMPLEMENTATION OF CEEC FILTER
FOR MULTIPATH ESTIMATION
For the multipath estimation problem, only one measurement
output vector is obtained at one instant and there are not
enough samples used for implementing the CEEC filter in
the way of data-driven at the initial iteration stage. To apply
the CEEC filter in a practical way for multipath estimation,
an online iterative method using modified Parzen windowing
technique is proposed in this section.

In (18), W error samples ei (i = k − W + 1, k − W +
2, . . . , k) are needed to compute the performance function
Jk (e) at time k . However, there are not enough samples can
be used to calculate Jk (e) if k ≤ W . To tackle this problem,
the following formula is used for (18).

Jk (e) = λ

1
t

k∑
i=k−t+1

G∑
1
(ei)


+ (1− λ)

1
t

k∑
i=k−t+1

G∑
2
(ek − ei)

 (36)

where t =

{
k k ≤ W
W k > W

.

According to (36), the CEEC filter can be implemented in
the way shown in Fig.3.

9982 VOLUME 4, 2016



L. Cheng et al.: Multipath Estimation Based on CEEC for Non-Gaussian Noise

FIGURE 3. The implementation of CEEC filter.

This iterative algorithm is different from other itera-
tive algorithms mentioned in [6], [21], [22], and [23]. For
instance, the iterative algorithm based on EKF mentioned
in [6] use only one sample (or sample vector) to perform filter
in one iteration. It is not suitable for multipath estimation to
reduce the randomness of estimation error because enough
samples are needed to capture the error PDF’s stochastic
property in non-Gasussian noise. The iterative algorithm
in [21] can be performed only whenW samples are collected,
which leads to a waiting time at the initial stage and it is
not suitable for positioning systems due to its high real-time
need. The iterative algorithms in [22] and [23] are adopt to
reduce the order of filter gain for continuous-time system,
which is not suitable for the estimation problem of discrete
system described in this paper.
Remark: k samples can be used to calculate Jk even if

k ≤ W at the initial estimation stage and only the newest
W samples are utilized for calculating Jk if k > W . In this
way, one does not need to wait to collect all the needed
samples for calculating Jk at the initial stage and the calcu-
lation complexity can be controlled by limiting the sample
number as iteration goes on. The most important is that
the error randomness can be reduced under the criterion
of CEEC.

FIGURE 4. PDF of n(k).

FIGURE 5. The performance index of CEEC.

FIGURE 6. Gain of the CEEC estimator.

V. SIMULATION RESULTS
Without loss of generality, a C/A signal of GPS is simu-
lated assuming a scenario composed of a direct signal and
a multipath signal. Set A0 = 0.8, A1 = 0.4, l0 = 10Tc,
l1 = 0.5Tc, Ts = Tc/10, where Tc is the C/A code chip
duration with 1/1023 ms, 1023 is the number of C/A code
chip in a period, Ts is the sampling interval. The local esti-
mation of l0 is l̂0 = 10.4Tc, so ε = l̂0 − l0 = 0.4Tc.
Our goal is to estimate A0, A1, ε, τ1. In this simulation,
Four correlation outputs are used to construct a observation
vector yk , i.e. S = 4, and the correlation space vector is set as
d = [d1, d2, d3, d4] = [−0.5,−0.3, 0.3, 0.5]Tc. Assume the
multipath parameter being unchanged during the observating
period. Then, the systemmatrixFk is set as anM×M identity
matrix.
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FIGURE 7. The multipath estimation results under different criterion.

FIGURE 8. The error PDF at different instant for CEEC filter.

In non-Gaussian noise environments, the impulse noise is
considered. The PDF of impulse noise can be modeled by
a Gaussian mixture PDF. In the receiving signal r(k), the
PDF of n(k) is modeled as fn = λ1N (µ1, σ1) + λ2N (µ2,
σ2), where N (µ, σ ) is the Gaussian distribution with mean
µ and variance σ . In this simulation, we set λ1 = 0.9,
µ1 = 0, σ1 = 10, λ2 = 0.1, µ2 = 0, σ2 = 100. The
PDF of n(k) is shown in Fig.4. x0 is set as the true value,
i.e. x0 = [A1A0εl1]T = [0.8 0.4 0.4 0.5]T , e0 = [0 0 0 0]T .

In this simulation, ek = [(k − 1)ek−1 + ek ]/k is
used to improve performance since the multipath param-
eters are unchanged during observating period. The per-
formance index is given in Fig.5. It can be seen that
the maximum of J is achieved after about 300 itera-
tions. The change trend of the gain Lk is shown in Fig.6.

For simplicity, only the diagonal elements of Lk are given in
this figure.

The multipath estimation results are shown in Fig.7, where
λ = 0, δ2s,2 = 0.38, W = 32, η = 0.00001 for MEE.
λ = 0.32, δ2s,1 = 0.15, δ2s,2 = 0.38,W = 32, η = 0.00005 for
CEEC. In this figure, the absolute error is considered. It indi-
cates the CEEC filter has better performance than MEE filter
for multipath estimation. This is due to the fact that CEEC is a
balance criterion between MCC and MEE. CEEC can fix the
main peak of the error PDF at the original point and overcome
the drawbacks of MEE being shift-invariant and maximum
correntropy criterion (MCC) being local optimization.

The error PDF of multipath parameters for CEEC was
shown in Fig.8. It is shown that the shape of the PDF of
estimation error turns to be narrower and sharper over the
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FIGURE 9. The error PDF at different instant for MEEC filter.

iteration process, which means the error becomes smaller.
The error PDF of multipath parameters for MEECwas shown
in Fig.9. It can be seen that the error PDF of MEEC fil-
ter is wider than that of CEEC filter at the same instant,
which means the CEEC filter has a better performance than
MEEC filter.

VI. CONCLUSIONS
In this paper, the multipath estimation problem is converted
into a state estimation problem. The CEEC instead of MSEC
is used as the performance index for filter design to describe
the high order statistics of error PDF for multipath estimation
in non-Gaussian noise. The multipath parameters are esti-
mated by the proposed CEEC filter in an iterative way. The
comparison of CEECfilter andMEECfilter shows the former
has a better performance for multipath estimation in terms of
estimation accuracy.

Compared with the previous work, the main contributions
of this paper are two folds: (1) The CEEC filter instead
of MSEC filter are proposed for multipath estimation in
non-Gaussion noise; (2) An online iterative estimation
method based on modified Parzen windowing technique
is presented for practical implementation. However, the
CEEC estimator is sensitive to the initial state, initial gain
matrix. These problems should be focused on in the future
work.
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