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ABSTRACT This paper proposes a novel scalable digit-serial inverter structure with low space complexity
to perform inversion operation in GF(2m) based on a previously modified extended Euclidean algorithm.
This structure is suitable for fixed size processor that only reuse the core and does not require to modulate
the core size when m modified. This structure is extracted by applying a nonlinear methodology that gives
the designer more flexibility to control the processing element workload and also reduces the overhead
of communication between processing elements. Implementation results of the proposed scalable design
and previously reported efficient designs show that the proposed scalable structure achieves a significant
reduction in the area ranging from 83.0% to 88.3% and also achieves a significant saving in energy ranging
from 75.0% to 85.0% over them, but it has lower throughput compared to them. This makes the proposed
design more suitable for constrained implementations of cryptographic primitives in ultra-low power devices
such as wireless sensor nodes and radio frequency identification (RFID) devices.

INDEX TERMS Scalable systolic arrays, hardware security, finite field inversion, ultra-low power
devices, ASIC.

I. INTRODUCTION AND RELATED WORK
In resource-constrained platforms, the implementation of
public key cryptosystems (PKC) is a challenge due to the
limitations of area and power consumption [1]. Compared
to other PKC algorithms, elliptic curve cryptography (ECC)
algorithms have the merit of giving the same level of secu-
rity using smaller key sizes and this leads to using these
algorithms in resource constrained applications. Recently,
there are a lot of hardware implementations of ECC that
meet the area, energy and timing limitations of these appli-
cations [2]–[5]. These implementations are mainly concen-
trated on the efficient implementation of the operations of
field multiplication and field inversion as they are the most
costly operations in ECC cryptography. The field inversion is
much slower and more expensive in power consumption than
the field multiplication. Thus, improving the performance of
the inversion operation will lead to a total improvement in the
performance of the ECC system.

The systolic architectures for binary field inversion can
be classified into three basic types. The first type of the
systolic architectures composed of two-dimensional arrays

of processing elements (PEs) and have area complexity of
O(m2) [6], [7]. These architectures are more suitable for high-
throughput applications that require small values of m, but
they are not suitable for applications that require large values
ofm due to the high area complexity thatmakes implementing
these architectures on a single chip infeasible. The second
type of systolic architectures are consists of one-dimensional
arrays of PEs and have low area complexity of O(m). These
architectures include folded bit-parallel architectures [8],
bit-serial architectures [8], [9], and in place bit parallel archi-
tectures [8], [10]. The throughput of these architectures may
be very slow for some real-time applications. The third type
of systolic architectures is the Digit serial architectures [9],
[11], [12] that consider the tradeoffs between area complexity
and throughput in its circuit implementation. A digit-serial
architecture with a digit size of d bits has area complexity of
O(dm). For different sizes of d , we can easily obtain different
throughputs.

In this paper, we propose a scalable digit-serial archi-
tecture that is suitable for resource-constrained devices to
perform inversion operation inGF(2m) based on a previously
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modified extended Euclidean algorithm. This architecture is
composed of a one-dimensional array of PEs and has low
area complexity of O(T ), where T is the number of PEs in
the systolic array. This architecture is explored by applying a
nonlinear technique, proposed by authors in [13] and [14], to
the inversion algorithm.

The paper is organized as follows: Section II discusses
the adopted extended Euclidean-based finite field inversion
algorithm over GF(2m). Section III shows how to parallelize
this algorithm using nonlinear data scheduling and projection
techniques. Section IV discusses the proposed scalable archi-
tecture. Section V discusses the proposed design complexity
and compares it to the previous work. Finally, Section VI
provides the conclusions of this work.

II. FINITE FIELD INVERSION
A finite field over GF(2m) could be defined using the
irreducible polynomial:

Q(x) = xm + qm−1xm−1 + · · · + q2x2 + q1x + 1 (1)

where qi ∈ GF(2) for 0 < i < m.
A field element A in GF(2m) can be represented by the

polynomial:

A(x) =
m−1∑
i=0

aix i (2)

where ai ∈ GF(2) for 0 ≤ i < m.
Suppose a polynomial Â in GF(2) represents the multi-

plicative inverse of A(x) such that Â(x)A(x) ≡ 1 mod Q(x),
where Â(x) is denoted as [A−1(x) mod Q(x)]. The most com-
monly used inversion algorithms are based on Fermat’s little
theorem, extended Euclidean algorithm (EEA), and Gaussian
elimination. In practice, EEA is mostly used to carry out
inversion.
Yan et al. [15] proposed a modified EEA-based inversion

algorithm that solves the problem of long division needed
in each iteration of the conventional EEA-based inversion
algorithm by exchanging the degree comparison with a ring
counter. This algorithm computes four intermediate polyno-
mials, R(x), S(x),Y (x), and H (x) that are stored in m+ 1-bit
registers with bits numbered as m,m−1, · · · , 1, 0. The most
significant bits of registers R and S are the highest degree
terms of the R(x) and S(x) (i.e., R(x) = rmxm + · · · +
r1x1+ r0x0 and similarly for S(x)), while the least significant
bits of registers Y and H are the highest degree terms of
Y (x) and H (x) (i.e., Y (x) = ymx0 + · · · + y1xm−1 + y0xm

and similarly for H (x)). Yan et al. [15] proved that there is
no need to store the mth bit of R(x), S(x),Y (x), and H (x).
Thus, the registers can be shortened from m + 1-bit to
m-bit. The ring counter D bits are ordered from right to
left as (dm−1dm−2 · · · d0). The complement of control bit c1
is represented as c1. In the initial step of the algorithm,
the coefficients of the irreducible polynomial Q(x) and the
coefficients of polynomial A(x) are assigned to the variables
R0 and S0, respectively. Since the MSB of Q(x) is always

Algorithm 1 Pseudo Code of the Bit-Level EEA-Based
Inversion Algorithm
1: INITIALIZE
2: R0 = (r0m−1 · · · r

0
1 r

0
0 )← (q0m−1 · · · q

0
11)

3: S0 = (s0m−1 · · · s
0
1s

0
0)← (a0m−1 · · · a

0
1a

0
0)

4: H0
= (h0m−1 · · · h

0
1h

0
0)← (0 · · · 00)

5: Y 0
= (y0m−1y

0
m−2 · · · y

0
1y

0
0)← (00 · · · 001)

6: D0
= (d0m−1 · · · d

0
2d

0
1d

0
0 )← (0 · · · 010)

7: sign0← 1
8: d i−1
−1 , s

i−1
−1 , h

i−1
−1 , d

i−1
m = 0, for 1 ≤ i < 2m

9: for 1 ≤ i < 2m do
10: c1i = si−1m−1
11: c2i = c1iAND signi−1

12: if signi−1 = 1 then
13: signi = c1i

14: else
15: signi = d i−10
16: end if
17: for m− 1 ≤ j ≤ 0 do
18: if c1i = 1 then
19: sij = r i−1j + si−1j−1

20: yij = hi−1j−1 + y
i−1
j

21: else
22: sij = si−1j−1

23: yij = yi−1j
24: end if
25: if c2i = 1 then
26: r ij = si−1j−1

27: hij = yi−1j
28: else
29: r ij = r i−1j

30: hij = hi−1j−1
31: end if
32: end for

33: Di←

{
2Di−1, if signi = 1
Di−1/2, if signi = 0

34: end for
35: output: âj = h2m−1m−j−1, for 0 ≤ j ≤ m− 1

equal to 1, this bit does not need to be computed or stored
as mentioned in [15]. Thus, Q(x) coefficients can be stored in
a register of size m.
Algorithm 1 is the bit-level version of the modified

EEA-based inversion algorithm ofYan [15]. In this algorithm,
the terms r ij , s

i
j, y

i
j and h

i
j represent the j-th bit of R, S,Y andH

at iteration i, respectively.

III. PARALLELIZATION OF THE
INVERSION ALGORITHM
The ranges of i and j indices of Algorithm 1 define a set
of points in a convex hull D in the 2-D integer space, i.e.
D ⊂ Z2 [13]. In this algorithm, their are two input variables
A and Q; five intermediate m-bit variables Ri, S i,Y i,H i,Di
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FIGURE 1. Dependence graph of the inversion algorithm for m = 3.

and three intermediate 1-bit control variables c1i, c2i, signi;
and one output variable H . The input bits s0j−1, h

0
j−1, y

0
j , r

0
j ,

sign0 are shown in the dependency graph (DG) of Figure 1
at the bottom row. The m-bit input vector D0 also shown in
the DG of Figure 1 at the bottom of the gray nodes column.
The bits c1i, c2i are generated inside the right nodes (gray
nodes) in each row i and broadcasted to the remaining nodes
in the same row. This is pointed out by the horizontal lines
in Figure 1. Also, signi bit is generated inside the right nodes
(gray nodes) using iteration steps 13 and 15. This is pointed
out by the vertical line in the right-most column in Figure 1.
The intermediate variables S i and H i are updated using
iteration steps 19, 22, 27 and 30. This is pointed out by the
anti-diagonal lines (red lines) in Figure 1. Since the control
nodes (gray nodes) in the right column of the DG do not
depend on H i bit values resulted from the nodes in the pre-
vious column, therefore there is no need to connect them to
the H i bits. The iteration steps 20, 23, 26 and 29 of the algo-
rithm updates the intermediate variables of Y i and Ri. This is
pointed out by the vertical lines (black lines) in Figure 1. The
flow of data, at each time step, between the nodes is indicated
by the arrows. The resulted bits of the multiplicative inverse
are the last out bits of the variable H that produced at the top
of the graph.

Each point in the DG of Figure 1 is assigned a time
value t(p) using timing function S and a parameter T ,
which represents the number of nodes to be computed at the

same time step.
t(p) = Sp− α

= i
⌈m
T

⌉
−

⌊
j+ µ
T

⌋
− α (3)

S =
[ ⌈m

T

⌉
−

⌊
ph+µ
T

⌋ ]
(4)

µ = T
⌈m
T

⌉
− m (5)

α = −

⌊
m− 1+ µ

T

⌋
(6)

where terms bph/T c and dph/T e represent floor and ceiling
functions, respectively, and the ‘ph’ represents a place holder
for the argument.

FIGURE 2. Node timing for the inversion algorithm for m = 3 and T = 2.

The node timing function S is shown in Figure 2 form = 3
and T = 2. The nodes that have the same time index is
indicated by the light blue areas. The values in each light
blue area represent the time index. This time index depends
on the values of both i and j indices. Whenm is not an integer
multiple of T , we notice that the number of nodes processed
at each time step are not the same. To have a constant number
of nodes processed at each time step, m should be an integer
multiple of T . Thus, the value of m should be increased to m′

using the following relation:

m′ = T
⌈m
T

⌉
= m+ µ (7)

For the case when m = 3 and T = 2, we get m′ = 4 and
µ = 1 as shown in the figure. We chose to pad the LSB bits
ofR, S,H ,Y withµ zeros tomakem an integer multiple of T .
This is indicated by the dark blue nodes shown in Figure 2.
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Using the nonlinear scheduling function S represented by
Eq. (4), we will be able to control the workload per time step
and the number of time steps required to complete the exe-
cution of the inversion operation. In this case, the workload
is equal to T = 2 and the inversion operation will require
(2m− 1)(dm/T e + 1) time steps to complete.
Now, we need to map several nodes of the DG onto a

single node that forms the resulting systolic array. The pro-
jection technique discussed in [13], [14], [16], [17] can be
used to perform this mapping operation. The third author of
this paper explained in [13] how to carry out the projection
operation using a projection Matrix P. Since our algorithm
is two-dimensional, P will reduce to a row vector. The valid
projection matrices associated with the scheduling function S
are as follows:

p1 =
[
0 (ph+ µ)mod T

]
(8)

p2 =
[
0 b[(ph+ µ)mod T ] /W c

]
(9)

µ = T dm/T e − m (10)

Each scalable systolic array configuration is associated
with one projection matrix, therefore the processor design
space allows for two scalable systolic designs. The scalable
systolic array related to the projection matrix P2 has a high
control complexity and is not suitable for VLSI implementa-
tion. Thus, this design will be ignored in this research paper.
In the following section, we will investigate the scalable
systolic array related to the projection matrix P1.

FIGURE 3. Proposed scalable systolic array when m = 3 and T = 2.

IV. THE PROPOSED SCALABLE DESIGN FOR
THE INVERSION ALGORITHM
Using projection matrix P1 = [ 0 (ph+ µ)mod T ], A point
p = [i j]t ∈ D will be mapped onto the point:

p = P1p− δ = (j+ µ)mod T (11)

where

µ = T dm/T e − m, and δ = 0 (12)

The scalable systolic array design resulted from this mapping,
when m = 3 and T = 2, is shown in Figure 3. The number of
PE’s is T + 1. Thus, the required number of PEs depends

FIGURE 4. PEs details. (a) PET details. (b) PEj details when 0 ≤ j ≤ T − 1.
Boxes labeled FIFOs are (m′/T )+ 1-bit flip-flops with load and clear/set
control inputs. Box labeled register is m-bit flip-flops with load and clear
control inputs.

on the value of T and there is not any dependency on the
field size m. Figure 4 (a) shows the details for the control
processing element PET . Fig. 4 (b) shows the details for PEj.

Each PE processes dm/T e = m′/T bits, where m′ is given
in Eq. (7), and works on one bit at each clock cycle. The
processing elements PEj, 0 ≤ j ≤ T − 2, store (m′/T ) bits
for S, R, Y , and H as shown by the four sets of FIFO buffers
in Fig. 4 (b). Also, the processing element PET will need to
store (m′/T ) bits for sign0 as shown by the FIFO buffer in
Fig. 4 (a). The processing element PET−1 will need to store
only (m′/T )− 1 bits for S, R, Y , and H .
The operation of each PEj (0 ≤ j < T ) for the proposed

scalable design can be summarized as follows:
1) For the first (m′/T ) + 1 time steps (i.e. 1 ≤ t ≤

(m′/T ) + 1), all the D-FFs of the FIFO_sign will set
to have the initial value of sign0 equal to 1 through all
these time steps. Also, through these time steps, MUX8
is set to accept input D0. The register at the output of
shifter is loaded every (m′/T )+ 1 time steps.

2) For the first (m′/T ) + 1 time steps (i.e. 1 ≤ t ≤
(m′/T ) + 1), MUXs M1, M3, M4, and M7 are set to
accept the inputs of s0m−1, s

0
k , r

0
k , and y

0
k corresponding

to the polynomials S, R and Y , respectively. Through
these time steps, the flip-flops of FIFO_H is cleared
to to have the input bits of h′0k equal to zero. PEj will
accept bits s0k , r

0
k , and y

0
k at time t such that:

j = k mod T 0 ≤ k < m′ (13)

t = m′/T − bk/T c + 1 (14)

These bits will be loaded in FIFO_S, FIFO_R, and
FIFO_Y , respectively.

3) For times t > (m′/T )+ 1, MUXsM1,M3,M4,M6,M7
and M8 are set to accept the inputs of si−1m−1, s

i−1
j−1, r

i−1
j ,

hi−1j−1, y
i−1
j and Di−1, respectively.

4) Control bits c1i and c2i are broadcast to all PEs at
iteration i where:

i =
⌊

t
(m′/T )+ 2

⌋
+ 1 (15)
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TABLE 1. Comparison between different digit-serial finite field inverters.

TABLE 2. Synthesis results of different digit-serial inverters for m = 233, T = 64, d = 4 and S = 1.

5) The output product H is available at time t , which
satisfies the inequalities:

(2m− 1)(m′/T + 1)− (m′/T )

≤ t < (2m− 1)(m′/T + 1) (16)

We can conclude that the scalable design is suited to
resource-constrained embedded applications due to the fol-
lowing reasons:

1) Ability to control the number of PEs in the systolic
array.

2) Inter-processor communication is limited to one-bit
data only.

V. COMPLEXITY COMPARISON
From Fig. 3, we can estimate the time and area complexities
of the proposed scalable design. Table 1 compares the area ,
latency, and critical path delay of the proposed scalable digit-
serial design to the closest digit-serial competitor designs in
the literature [12], [18].

In Table 1 we have:
1) TA is AND gate delay
2) TMUX is MUX delay
3) TX is XOR gate delay
4) F1 = 30m + (6d + 2)( 2mSd ), where S is the pipelined

stages inserted in each PE and d is the digit size.
5) F2 = (4T + 1)(dmT e + 1)
6) L1 = d 2m−2d e(S + 2)+ dmd e − 1
7) L2 = (2m− 1)(dmT e + 1)
8) τ1 = d

S+1 (TA + TX )
9) τ2 = 2dTMUX

10) τ3 = 2TMUX
In order to verify the area and performance (delay and

power) of the proposed scalable design, we used Synopsys
synthesis tools package version 2005.09-SP2 for logic syn-
thesis and power analysis of the proposed design as well
as the most efficient digit-serial designs of [12] and [18].

The designs are first described using VHDL and then syn-
thesized to obtain the gate level for field size of m = 233,
digit size d = 4, S = 1, and T = 64 using (45 nm, 1.1 V)
standard-cell CMOS technology. Table 2 shows the obtained
synthesis results (area, delay, power) of the different digit-
serial inverters. Also, it shows the calculated energy as well
as the throughput rate that are used to measure the degree of
the improvement achieved in each digit-serial inverter design.
The power was estimated at a low frequency of 100kHzwhich
is suitable for ultra-low power devices like RFID.

From this table, we notice that the proposed scalable design
has a significant reduction in the area (ranging from 83.0%
to 88.3%) and energy (ranging from 75.0% to 85.7%) over
the compared efficient designs that make it very suitable for
constrained implementations of cryptographic primitives in
ultra-low power devices that have tight restrictions on area
and power consumption. On the other hand, the proposed
design has significantly lower throughput values compared
to all other designs.

VI. SUMMARY AND CONCLUSION
This paper presented a new scalable systolic array structure to
perform inversion operation inGF(2m) based on a previously
modified extended Euclidean algorithm. This structure is
suitable for fixed size processor that only reuse the core and
does not require tomodulate the core sizewhenm is modified.
This structure is extracted by applying a nonlinear method-
ology that gives the designer more flexibility to control the
processing element work load and also reduces the overhead
of communication between processing elements. Implemen-
tation results of the proposed scalable digit-serial design and
the previously reported efficient digit-serial designs shows
that the proposed scalable structure achieves a significant
reduction in the area and power that makes it more suitable
for constrained implementations of cryptographic primitives
in ultra-low power devices such as wireless sensor nodes and
radio frequency identification (RFID) devices.
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