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ABSTRACT Two popular representation learning paradigms are dictionary learning and deep learning.
While dictionary learning focuses on learning ‘‘basis’’ and ‘‘features’’ by matrix factorization, deep learning
focuses on extracting features via learning ‘‘weights’’ or ‘‘filter’’ in a greedy layer by layer fashion. This
paper focuses on combining the concepts of these two paradigms by proposing deep dictionary learning and
show how deeper architectures can be built using the layers of dictionary learning. The proposed technique
is compared with other deep learning approaches, such as stacked autoencoder, deep belief network, and
convolutional neural network. Experiments on benchmark data sets show that the proposed technique
achieves higher classification and clustering accuracies. On a real-world problem of electrical appliance
classification, we show that deep dictionary learning excels where others do not yield at-par performance.
We postulate that the proposed formulation can pave the path for a new class of deep learning tools.

INDEX TERMS Deep learning, dictionary learning, feature representation.

I. INTRODUCTION
In representation learning paradigm, dictionary learning has
received a lot of interest. Researchers applied the concept of
dictionary learning in vision [1] and information retrieval [2]
in late 90’s. In those early days, the term ‘dictionary learn-
ing’ had not been coined; researchers were using the term
matrix factorization. The goal was to learn an empirical basis
from the data. It required decomposing the data matrix to a
basis/dictionary matrix and a feature matrix; hence the name
‘matrix factorization’.

The current popularity of dictionary learning owes to
K-SVD [3], [4]. K-SVD is an algorithm to decompose a
matrix (training data) into a dense basis and sparse coeffi-
cients. However, the concept of such a dense-sparse decom-
position predates K-SVD [5]. Since the advent of K-SVD
in 2006, there has been a plethora of work on this topic.
Dictionary learning can be used both for unsupervised prob-
lems (mainly inverse problems in image processing) as well
as for problems arising in supervised feature extraction.
Furthermore, it (dictionary learning) has been used in virtu-
ally all inverse problems arising in image processing starting
from simple image [6], [7] and video [8] denoising, image
inpainting [9], to more complex problems such as inverse
half-toning [10] and even medical image reconstruction [11].
Such inverse problems can also be solved using the Com-
pressed Sensing (CS) [12], [13] framework. However, it has
been seen that learning the basis (via dictionary learning)

yields better (customized) representation compared to the
fixed basis employed by Compressed Sensing.

Mathematical transforms such as Discrete Cosine Trans-
form (DCT), wavelet, curvelet, and Gabor have been widely
used in image classification problems [14]–[16]. Existing
techniques have used these transforms as a sparsifying step
followed by statistical feature extraction methods such as
Principal Component Analysis (PCA) or Linear Discriminant
Analysis (LDA) before providing the features to a classifier.
Just as dictionary learning is replacing such fixed transforms
in signal processing problems, it is also replacing them in
feature extraction scenarios. Dictionary learning provides
researchers the opportunity to design dictionaries to yield not
only sparse representation (e.g., curvelet, wavelet, and DCT)
but also discriminative information.

Initial techniques in discriminative dictionary learning
have proposed naïve approaches, which learn specific dictio-
naries for each class [17]–[19]. Later, discriminative penalties
are introduced in dictionary learning framework to improve
the classification performance. One such technique is to
include softmax discriminative cost function [20]–[22]; other
discriminative penalties include Fisher discrimination crite-
rion [23], linear predictive classification error [24], [25] and
hinge loss function [26], [27]. In [28] and [29], discrimina-
tion is introduced by forcing the learned features to map to
corresponding class labels. Prior studies on dictionary learn-
ing (DL) are, generally, ‘shallow’ learning models just like
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a restricted Boltzmann machine (RBM) [30] and an autoen-
coder (AE) [31], the two popular deep learning architectures.
In DL, the cost function is Euclidean distance between the
data and the representation given by the learned basis; for
RBM it is Boltzmann energy; whereas for AE, the cost is
the Euclidean reconstruction error between the data and the
decoded representation/features.

Almost at the same time, when dictionary learning started
gaining popularity, researchers in machine learning observed
that better (more abstract and compact) representation could
be achieved by going deeper in neural network architecture.
Deep Belief Network (DBN) is formed by stacking multiple
RBMs, one RBM after the other [32], [33]. Similarly, stacked
autoencoder (SAE) is created by one AE followed by the
other [34], [35].

Inspired from both the feature learning paradigms, in this
paper, we propose to learn multi-level deep dictionaries.
Analogous to what the researchers in the deep learning com-
munity have been able to achieve by designing deeper archi-
tectures, it is our assertion that the proposed formulation of
deep dictionary learning algorithms will inspire researchers
to design more effective dictionary learning algorithms. One
may think that multiple levels of dictionaries can be collapsed
to a single level. However, such a collapsed shallow dictio-
nary will not be the same as the proposed deep dictionary
learning. This is because dictionary learning is a bi-linear
problem.1 Had it been linear the architecture would have
been collapsible; since it is not, the shallow and the deep
architectures will not be equivalent. The remaining paper first
discusses the literature review of dictionary learning, deep
Boltzmann machine and auto-encoder in Section II. This is
followed by mathematical formulation of the proposed deep
dictionary learning in Section III and experimental evaluation
in Section IV.

II. LITERATURE REVIEW
We will briefly review prior studies on dictionary learning,
stacked autoencoders, and deep Boltzmann machines.

A. DICTIONARY LEARNING
Early studies in dictionary learning focused on learning a
basis for representation. There were no constraints on the
dictionary atoms or the loading coefficients. The method of
optimal directions [36] was used to learn the basis:

min
D,Z
‖X − DZ‖2F (1)

Here, X is the training data, D is the dictionary to be learned
and Z consists of the loading coefficients.

1Synthesis dictionary formulation X=DZ is bilinear; the variables are the
dictionary D and feature Z. Bilinearity means that it is linear in each of the
variables (D and Z) if the other one is constant (Z and D respectively).

For multi-level dictionary (say 2) the formulation is X = D1D2Z . This
is a trilinear formulation and is a different problem altogether. Solving the
trilinear 2-level dictionary learning will not yield the same features as that of
a collapsed bilinear (D = D1D2) dictionary learning problem.

For problems in sparse representation, the objective is to
learn a basis that can represent the samples in a sparse fashion,
i.e. Z needs to be sparse. K-SVD [3], [4] is the most well
known technique for solving this problem. Fundamentally, it
solves a problem of the form:

min
D,Z
‖X − DZ‖2F such that ‖Z‖0 ≤ τ (2)

Here we have abused the notation slightly; the l0-norm is
defined on the vectorized version of Z.

K-SVD proceeds in two stages. In the first stage it
learns the dictionary and in the next stage, it uses the
learned dictionary to sparsely represent the data. Solv-
ing the l0-norm minimization problem is NP-hard [37].
K-SVD employs the greedy (sub-optimal) orthogonal match-
ing pursuit (OMP) [38] to solve the l0-norm minimization
problem approximately. In the dictionary learning stage,
K-SVD proposes an efficient technique to estimate the
atoms one at a time using a rank one update. The
major disadvantage of K-SVD is that it is a relatively
slow technique owing to its requirement of computing the
SVD (singular value decomposition) in every iteration. There
are other efficient optimization based approaches for dic-
tionary learning [39], [40] – these learn the full dictionary
instead of updating the atoms separately.

The dictionary learning formulation in equation (2) is
unsupervised. As mentioned before, there is a large vol-
ume of work on supervised dictionary learning problems.
The first work on Sparse Representation based Classifica-
tion (SRC) [41] is not much of a ‘‘dictionary learning tech-
nique’’ but a simple dictionary design problem where all
the training samples are concatenated in a large dictionary.
Later, several improvements to the basic SRC formulation
are proposed in [42]–[44]. In [42] and [43] supervision is
added in the form of group-sparsity. In [44] a non-linear
extension to the SRC is proposed. Later works handled the
non-linear extension in a smarter fashion using the kernel
trick [45]–[47].

The SRC does not exactly fit into the dictionary learning
paradigm. However, [48] proposed a simple extension of
SRC – instead of using raw training samples as the basis,
they learned a separate basis for each class and used these
dictionaries for classification. This approach is naïve; there
is no guarantee that dictionaries from different classes would
not be similar. Ramirez et al. have addressed this issue by
applying an additional incoherency penalty on the dictionar-
ies [49]. This penalty assures that the dictionaries from dif-
ferent classes look different from each other. The formulation
is given as:

min
Di,Zi

C∑
i=1

{
‖Xi − DZi‖2F + λ ‖Zi‖1

}
+ η

∑
i6=j

∥∥∥DTi Dj∥∥∥2F (3)

Unfortunately, this formulation does not improve the overall
results toomuch. It learns dictionaries that look different from
each other but does not produce features that are distinctive;
i.e. the feature generated for the test sample from dictionaries
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of all classes looked more or less the same. This issue was
rectified in [50].

The label consistent KSVD is one of the recent techniques
for learning discriminative sparse representation. It is simple
to understand and implement; it showed good results for
face recognition [28], [29]. The first technique is termed as
Discriminative K-SVD [28] or LC-KSVD1 [29]; it proposes
an optimization problem of the following form:

min
D,Z ,A
‖X − DZ‖2F + λ1 ‖D‖

2
F + λ2 ‖Z‖1 + λ3 ‖Q− AZ‖

2
F

(4)

Here, Q is the label of the training samples; it is a canonical
basis with a one for the correct class and zeroes elsewhere.
A is a parameter of the linear classifier.
In [29], a second formulation is proposed that adds another

term to penalize the classification error. The LC-KSVD2
formulation is as follows:

min
D,Z ,A,W

‖X − DZ‖2F + λ1 ‖D‖
2
F + λ2 ‖Z‖1

+ λ3 ‖Q− AZ‖2F + λ4 ‖H −WZ‖
2
F (5)

H is a ‘discriminative’ sparse code corresponding to an input
signal sample if the nonzero values of Hi occur at those
indices where the training sample Xi and the dictionary item
dk share the same label. This formulation imposes labels not
only on the sparse coefficient vectors Zi’s but also on the
dictionary atoms.

B. DEEP BOLTZMANN MACHINE
Restricted Boltzmann Machines are undirected models that
use stochastic hidden units to model the distribution over
the stochastic visible units. The hidden layer is symmetri-
cally connected with the visible unit and the architecture is
‘‘restricted’’ as there are no connections between units of
the same layer. Traditionally, RBMs are used to model the
distribution of the input data p(x).

FIGURE 1. Restricted Boltzmann Machine.

The schematic diagram of RBM is shown in Fig. 1. The
objective is to learn the network weights (W) and the repre-
sentation (H). This is achieved by optimizing the Boltzmann
cost function given by:

p(W ,H ) = e−E(W ,H ) (6)

where, E(W ,H ) = −HTWX including the bias terms.
Assuming independence, the conditional distributions are
given by

p(X |H ) =
∏

p(x|h) (7)

p(H |X ) =
∏

p(h|x) (8)

Assuming a binary input variable, the probability that a
node will be active can be given as follows,

p(x = 1|h) = sigm(W T h)
p(h = 1|x) = sigm(Wx)

Computing the exact gradient of this loss function is
almost intractable. However, there is a stochastic approx-
imation to approximate the gradient termed as contrastive
divergence gradient. A sequence of Gibbs sampling based
reconstruction, produces an approximation of the expectation
of joint energy distribution, using which the gradient can be
computed.

Usually, RBM is unsupervised, but there are studies
where discriminative RBMs are trained by utilizing the class
labels [51]. There are also RBMs, which are sparse in
nature [52]. The sparsity is controlled by firing the hidden
units only if they are over some threshold. Supervision can
also be achieved using sparse RBMs by extending it to have
similar sparsity structure within the group/class [53].

FIGURE 2. Deep Boltzmann Machine.

Deep Boltzmann Machines (DBM) [54] is an extension of
RBM created by stacking multiple hidden layers on top of
each other (Fig. 2). DBM is an undirected learning model and
thus it is different from the other stacked network architec-
tures in which each layer receives feedback from both the top-
down and bottom-up layer signals. This feedback mechanism
helps in managing uncertainty in learning models. While
the traditional RBM can model logistic units, a Gaussian-
Bernoulli RBM [55] can be used as well with real-valued
(between 0 and 1) visible units.

C. STACKED AUTOENCODER
An autoencoder consists (as seen in Fig. 3) of two parts –
the encoder maps the input to a latent representation and the
decoder maps the latent representation back to the data. For a
given input vector (including the bias term) x, the latent space
is expressed as:

h = Wx (9)

Here, the rows of W are the link weights from all the input
nodes to the corresponding latent node. Usually, a non-linear
activation function is used at the output of the hidden nodes
leading to:

h = φ(Wx) (10)
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FIGURE 3. Single Layer Autoencoder.

Although the sigmoid function is popularly used, other
non-linear activation functions such as tanh can also be used.
Rectifier units and large neural networks employ linear acti-
vation; owing to this linearity, the training process is consid-
erably faster. The decoder reverse maps the latent variables to
the data space.

x = W ′φ(Wx) (11)

Since the data space is assumed to be the space of real
numbers, there is no sigmoid function here. During train-
ing, the problem is to learn the encoding and decoding
weights – W and W ′. These are learned by minimizing the
Euclidean cost:

argmin
W ,W ′

∥∥X −W ′φ(WX )∥∥2F (12)

Here X = [x1| . . . |xN ] consists of all the training samples
stacked as columns where total number of training samples
are N . The problem in Equation (12) is clearly non-convex,
but is smooth and hence can be solved by gradient descent
techniques; the activation function needs to be smooth and
continuously differentiable.

FIGURE 4. Stacked Autoencoder.

There are several extensions to the basic autoencoder archi-
tecture. Stacked autoencoders have multiple hidden layers
– one inside the other (see Fig. 4). The corresponding cost
function is expressed as follows:

argmin
W1...WL ,W ′1...W

′
L

‖X − g ◦ f (X )‖2F (13)

where,

g = W ′1φ
(
W ′2 . . .W

′
L (f (X ))

)

and

f = φ (WLφ (WL−1 . . . φ(W1X )))

Solving the complete problem (13) is computationally
challenging. Also learning so many parameters (network
weights) lead to over-fitting. To address both these issues,
the weights are usually learned in a greedy layer-by-layer
fashion [32], [34].

Stacked denoising autoencoder [35] is a variant of the basic
autoencoder where the input consists of noisy samples and
the output consists of clean samples. Here the encoder and
decoder are learned to denoise noisy input samples. Another
variation for the basic autoencoder is to regularize it, i.e.

argmin
(W )s

‖X − g ◦ f (X )‖2F + R(W ,X ) (14)

The regularization can be a sparsity promoting
term [56], [57] or a weight decay term (Frobenius norm of
the Jacobian) as used in the contractive autoencoder [58].
The regularization term is usually chosen so that they are
differentiable and hence minimizable using gradient descent
techniques.

III. DEEP DICTIONARY LEARNING
In this section, we describe the main contribution of this
research. A single/shallow level of dictionary learning yields
a latent representation of data and the dictionary atoms. Here,
we propose to learn the latent representation of data by
learning multi-level dictionaries. The idea of learning deeper
levels of dictionaries stems from the success of deep learning.
In this section, for ease of understanding, we first explain
the concept with two-layer deep dictionary learning and then
extend it to a multi-level dictionary.

FIGURE 5. Schematic diagram for dictionary learning.

The schematic diagram for dictionary learning is shown
in Fig. 5. Let X be the data, D1 be the dictionary and Z be the
feature/representation ofX inD1. Dictionary learning follows
a synthesis framework (15), i.e. the dictionary is learnt such
that the features synthesize the data along with the dictionary.

X = D1Z (15)

There is a dictionary learning approach termed as analysis
K-SVD, but it cannot be used for feature extraction. Analysis
K-SVD can only produce a ‘clean’ version of the data and
hence, is only suitable for inverse problems.

We propose to extend the shallow (Fig. 5) dictionary learn-
ing into multiple layers – leading to deep dictionary learning
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FIGURE 6. Schematic diagram for deep dictionary learning.

(Fig. 6). Mathematically, the representation at the second
layer can be written as:

X = D1D2Z2 (16)

It must be noted that learning two-levels of dictionaries
along with the coefficients (16) is not the same as learning a
single (collapsed) dictionary and its corresponding features.
The problem (15) (single level) is a bi-linear problem and
(16) is a tri-linear problem; they are not the same. Hence one
cannot expect to get the same features from single level dic-
tionary learning and a collapsed two level dictionary learning.

The challenges of learning multiple levels of dictionaries
in one go are the following:

1) Recent studies have proven convergence guarantees for
single level dictionary learning [59]–[63]. These proofs
would be very hard to replicate for multiple layers.

2) Moreover, the number of parameters required to be
solved increases when multiple layers of dictionaries
are learned simultaneously. With limited training data,
this could lead to over-fitting.

Here we propose to learn the dictionaries in a greedy
manner, which is in sync with other deep learning tech-
niques [32]–[34]. Moreover, layer-wise learning will guaran-
tee the convergence at each layer. The diagram illustrating
layer-wise learning is shown in Fig. 7.

FIGURE 7. Greedy layer-wise learning.

Extending this idea, a multi-level dictionary learning prob-
lem with non-linear activation (ϕ) can be expressed as,

X = D1ϕ (D2ϕ(. . . ϕ(DNZ ))) (17)

Ideally, we would have to solve the following problem.

min
D1,...DN ,Z

‖X − D1ϕ (D2ϕ(. . . ϕ(DNZ )))‖2F + µ ‖Z‖1

(18)

However, such a problem is highly non-convex and requires
solving a huge number of parameters. With the limited
amount of data, it will lead to over-fitting. To address

these issues, as mentioned before, we propose a greedy
approach where we learn one layer at a time – similar to pre-
training in the deep learning paradigm. With the substitution
Z1 = ϕ (D2ϕ(. . . ϕ(DNZ ))), Equation (17) can be written as
X = D1Z1 such that it can be solved as single layer dictionary
learning. The representation Z1 is not sparse. Hence it can be
solved using alternating minimization –

min
D1,Z1

‖X − D1Z1‖2F (19)

Optimality of solving (19) by alternating minimization has
been proven in [56]. Therefore we follow the same approach.
The dictionary D and the basis Z is learned by:

Z1 ← min
Z
‖X − D1Z1‖2F (20a)

D1 ← min
D
‖X − D1Z1‖2F (20b)

This is the method of optimal directions [36] and both (20a)
and (20b) are simple least square problems having closed
form solutions.
For the second layer, we substitute Z2 = ϕ(. . . ϕ(DNZ )),

which leads to Z1 = ϕ(D2Z2), or alternately, ϕ−1(Z1) =
D2Z2; this too is a single layer dictionary learning. Since the
representation is dense, it can be solved using

min
D2,Z2

∥∥∥ϕ−1(Z1)− D2Z2
∥∥∥2
F

(21)

This too can be solved by alternating minimization as in the
case of first layer (20). Continuing in this fashion till the
penultimate layer, in the final layer we have ZN−1 = ϕ(DNZ )
or ϕ−1(ZN−1) = DNZ . In the last level, the coefficient Z can
be sparse. For learning sparse features, one needs to regular-
ize by applying l1-norm on the features. This is given by:

min
DN ,Z

∥∥∥ϕ−1(ZN−1)− DNZ∥∥∥2
F
+ λ ‖Z‖1 (22)

This too is solved using alternating minimization.

Z ← min
Z

∥∥∥ϕ−1(ZN−1)− DNZ∥∥∥2
2
+ λ ‖Z‖1 (23a)

DN ← min
DN

∥∥∥ϕ−1(ZN−1)− DNZ∥∥∥2
F

(23b)

As before, (23b) is a least square problem having a closed
form solution. Although not analytic, the solution to (23a)
can be solved using the Iterative Soft Thresholding Algo-
rithm (ISTA) [64]. The ISTA solution for (23a) is given by:

Initialize: Z ← min
Z

∥∥∥ϕ−1(ZN−1)− DNZ∥∥∥2
2

Iterate till convergence

B = Z +
1
α
DTN

(
ϕ−1(ZN−1)− DNZ

)
Z ← signum(B) max

(
0, |B| −

λ

2α

)
It is important to note that learning multiple dictionaries

cannot be collapsed into a single one even if the activa-
tion function is linear. This is because dictionary learning is
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bi-linear. For example, if the dimensionality of the sample is
m and the first dictionary is of sizem×n1 and the second one
is n1×n2, it is not possible to learn a single dictionary of size
m× n2 and expect the same results as a two-stage dictionary.
In general, for non-linear activation functions, it is not

possible to collapse the multiple levels of dictionaries into
a single level for testing. However, for the linear activation
function, the multiple levels of dictionaries can be collapsed
into a single stage by matrix multiplication of the differ-
ent dictionaries and the sparse code / features computed
from the thus formed single level dictionary by standard
l1-minimization.

Algorithm 1 Training Algorithm (for Any Activation
Function ϕ)

Initialize: Di, i = 1 . . .N
For first level; repeat until convergence –

Z1 ← min
Z
‖X − D1Z1‖2F

D1 ← min
D
‖X − D1Z1‖2F

From 2nd to penultimate level; repeat until convergence –

Zl ← min
Zl

∥∥∥ϕ−1(Zl−1)− DlZl∥∥∥2
F

Dl ← min
Dl

∥∥∥ϕ−1(Zl−1)− DlZl∥∥∥2
F

For final level; repeat until convergence –

ZN ← min
ZN

∥∥∥ϕ−1(ZN−1)− DNZl∥∥∥2
F
+ λ ‖ZN‖1

DN ← min
DN

∥∥∥ϕ−1(ZN−1)− DNZN∥∥∥2
F

Algorithm 2 Testing Algorithm (for Linear Activation
Function)
Collapse multiple levels of dictionaries into a single one

D = D1D2 . . .DN

Compute sparse code / features for the test sample xtest.

ztest = min
ztest
‖xtest − Dztest‖22 + λ ‖ztest‖1

A. CONNECTION WITH EXISTING ALGORITHMS
In this section, we compare and contrast the proposed deep
dictionary approach with some popular deep learning algo-
rithms, namely RBM and Autoencoder, and hierarchical dic-
tionary learning approaches. From Figures 1 and 5, it is
evident that in both RBM and dictionary learning, the task
is to learn the network weights/atoms and the representation
given the data. They differ from each other in the cost func-
tions used. For RBM it is the Boltzmann function whereas

Algorithm 3 Testing Algorithm (for Non-Linear Activation
Function)
Generate features for first level

z1,test = min
z1,test

∥∥xtest − D1z1,test
∥∥2
2

From 2nd to penultimate level

zl,test = min
zl,test

∥∥∥ϕ−1(zl−1,test )− Dlzl,test∥∥∥2
2

For final level

ztest = min
zN−1,test

∥∥zN−1,test − Dztest∥∥22 + λ ‖ztest‖1

for dictionary learning, instead of maximizing similarity, we
minimize the Euclidean distance between the data (X ) and the
synthesis (DZ). Further, RBM has a stochastic formulation
whereas dictionary learning is deterministic. Moreover, RBM
typically uses binary or real values as input. On the other
hand, deep dictionary learning can work both on real and
complex inputs.

Similar to RBM, a comparison of the proposed deep
dictionary learning with autoencoders can be performed.
The synthesis dictionary learning model is expressed as:
X = DSZ where X is the data, DS is the learned synthesis
dictionary and Z are the sparse coefficients. Usually one
promotes sparsity in the features and the learning requires
minimizing the following,

‖X − DSZ‖2F + λ ‖Z‖1 (24)

This is the well-known synthesis prior formulation where the
task is to find a dictionary that can synthesize/generate signals
from sparse features. There is an alternate co-sparse analysis
prior dictionary learning paradigm [65] where the goal is to
learn a dictionary such that when it is applied to the data the
resulting coefficient is sparse. The model is represented as
DAX̂ = Z . The corresponding learning problem is framed by
minimizing: ∥∥∥X − X̂∥∥∥2

F
+ λ

∥∥∥DAX̂∥∥∥
1

(25)

If we combine analysis and synthesis, using X̂ =

DSZ ,DAX̂ = Z and impute it in (24) we get:∥∥∥X − DSDAX̂∥∥∥2
F
+ λ

∥∥∥DAX̂∥∥∥
1

(26)

If we drop the sparsity term, it becomes∥∥∥X − DSDAX̂∥∥∥2
F

(27)

This is similar to the expression of a sparse denoising
autoencoder [54] with linear activation at the hidden layer.
Further, we can express autoencoder in the terminology of
dictionary learning – autoencoder is a model that learns the
analysis and the synthesis dictionaries. To the best of our
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knowledge, this is the first work that shows the architectural
similarity between autoencoders and dictionary learning.

We also briefly discuss the differences with recently pro-
posed dictionary learning algorithms. First, we would like to
emphasize that the proposed approach is not related to hierar-
chical or structured dictionary learning techniques [66], [67].
In these studies, unlike the proposed approach, the goal is to
learn dictionary atoms that are related to each other. Gener-
ally, these studies follow shallow learning techniques (single
level) and the relationships are between atoms of dictionary
within the same level.

We next discuss thework on ‘‘Double Sparsity’’ [68] where
the authors decompose the dictionary into a product of a fixed
basis (e.g. wavelet, and DCT) and a sparse set of coefficients;
instead of learning the full dictionary (as is done in standard
dictionary learning), they learn a dictionary that can be rep-
resented as a linear combination of fixed basis. The learning
mechanism is formulated as follows:

min
T ,Z
‖X −8TZ‖2F s.t. ‖T‖0 ≤ s and ‖Z‖0 ≤ s (28)

In this formulation, 8T = D; i.e. instead of learning the
full dictionary, the authors learn the coefficients required to
synthesize the dictionary D from a fixed basis8. The advan-
tage of this approach is that the learned dictionary has fast
forward and ad-joint operators (since it is synthesized from an
efficient operator) and hence is useful for solving large-scale
inverse problems. Clearly, the proposed algorithm is different
from Equation (28) [68]. We learn the full dictionary in each
level and continue the process for multiple levels with a goal
to learn abstract representations.

IV. EXPERIMENTAL EVALUATION
The effectiveness of the proposed deep dictionary learning
is evaluated on multiple benchmark databases from different
areas such as images, text, and signals. The results are com-
pared with related state-of-the-art algorithms. In this work,
we use a linear activation function for all the experiments.

A. DATASETS
We have evaluated the performance on several benchmarks
datasets. The first one is the MNIST dataset that consists of
28×28 images of handwritten digits ranging from 0 to 9. The
dataset has 60,000 images for training and 10,000 images for
testing. It should be noted that we have not performed any
preprocessing on this dataset.

Related to MNIST database, MNIST variations datasets
are also used. These are more challenging databases, primar-
ily due to fewer training samples (10,000) and a larger number
of test samples (50,000). The validation set of 2000 samples
are not used in this work since our method does not require
tuning and SAE as well as DBN are already optimized for
MNIST. Here is the listing of these databases.

1. basic (smaller subset of MNIST)
2. basic-rot (smaller subset with random rotations)
3. bg-rand (smaller subset with uniformly distributed

noise in background)

4. bg-img (smaller subset with random image
background)

5. bg-img-rot (smaller subset with random image
background plus rotation)

These datasets are primarily created to empirically bench-
mark deep learning algorithms [69]. Samples for each of the
datasets are shown in Fig. 8.

FIGURE 8. Top to bottom. basic, basic-rot, bg-rand, bg-img, bg-img-rot.

The second database is related to text documents and
relates to the problem of classifying documents into their
corresponding newsgroup topic. We have used a version of
the commonly used 20-newsgroup dataset [70] for which the
training and test sets contain documents collected at different
times, a setting that is more reflective of practical application.
The training set consists of 11,269 samples and the test set
includes 7,505 examples. We have used 5000 most frequent
words for the binary input features and follow the same
protocol as outlined in [51].

The third dataset is the GTZAN music genre dataset [71].
The dataset contains 10,000 three-second audio clips, equally
distributed among ten musical genres: blues, classical, coun-
try, disco, hip-hop, pop, jazz, metal, reggae, and rock.
592 Mel-Phon Coefficient (MPC) features represent each
example in the set. These are a simplified formulation
of the Mel-frequency Cepstral Coefficients (MFCCs) that
have been shown to yield better classification perfor-
mance in literature. Since there is no predefined stan-
dard split and fewer examples, we have used 10-fold
cross validation (procedure mentioned in [35]), where
each fold consisted of 9000 (we do not require valida-
tion examples unlike [35]) training examples and 1000 test
examples.
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TABLE 1. Deep vs shallow dictionary learning.

B. EFFECT OF LAYERS ON DICTIONARY LEARNING
We first analyze the results of the proposed deep dictionary
learning and the effect of increasing the number of layers. The
objective of this experiment is to show that the representations
learned from a single level of dictionary and multi-level dic-
tionary are different and multi-level dictionaries yield better
classification performance. With just one level of dictionary,
i.e., a shallow dictionary, we learn 50 atoms for MNIST,
625 atoms for the 20-newsgroup, and 148 for GTZAN; these
correspond to the last level of dictionary atoms. For deep
dictionary, we performed experiments with up to three lev-
els of dictionary. For the MNIST database and its varia-
tions, the number of basis in the multi-level dictionaries is:
300-150-50. For the 20-newsgroup and the GTZAN (music
genre classification) datasets, the number of atoms in every
layer is halved from that of the previous layer. The clas-
sification is performed with a simple K-Nearest Neighbor
(K= 1). The classification accuracies are reported in Table 1,
Column 2 reports the results for shallow dictionary and
columns 3-5 report the results with different layers of deep
dictionary. The results show that for all the databases, deep
dictionary (3-layer) learning offers improvements over shal-
low dictionary learning. The improvement in accuracy is
possibly owing to more abstract representation learned from
these layers. Depending on the complexity of the dataset,
the difference in performance varies from 0.40% to more
than 9%. Fig. 9 illustrates first layer dictionary on MNIST
database.

Generally, the dictionary atoms are initialized by randomly
choosing samples from the training set; however, this leads
to variability in results. In this research, we propose a deter-
ministic initialization based on the QR decomposition of the
training data matrix. Orthogonal vectors fromQ (in order) are
used to initialize the dictionary.

We next show that the multi-level dictionaries cannot be
collapsed into a single one and should not be expected to
yield the same results. The difference between the perfor-
mance of multi-level dictionary learning and single level
dictionary learning is evident in Table 1; see columns 2 and 5.
If the learning is linear, it is possible to collapse multiple

FIGURE 9. First level dictionary for MNIST.

TABLE 2. Comparing the classification accuracy of DDL with DBN and SAE
with KNN (K = 1) Classification.

TABLE 3. Comparing the classification accuracy of DDL with DBN and SAE
with SVM Classification.

dictionaries into one; but dictionary learning is inherently
non-linear. Hence it is not feasible to learn a single layer of
dictionary in place of multiple levels and expect the same
output.

C. COMPARISON WITH DEEP LEARNING APPROACHES
Since the proposed deep architecture is inspired by existing
deep learning approaches, we have compared our results with
a stacked autoencoder (SAE) and deep belief network (DBN).
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TABLE 4. Comparing the classification accuracy of DDL+SVM with existing algorithms and architectures.

The implementation for these have been obtained
from [72] and [73] respectively. Similar to deep dictionary
learning, SAE and DBN also have a three-layer architecture.
The number of nodes is halved in every subsequent layer and
comparison is performed using K-Nearest Neighbor (KNN)
and Support Vector Machine (SVM). To ensure a fair com-
parison of representation techniques, we have kept the clas-
sifier fixed for these experiments. The results are shown in
Tables 2 and 3, respectively.

We observe that apart from one case each in Tables 2 and 3,
the proposed algorithm yields better results than
DBN and SAE. For KNN, the results of deep dictionary
learning are slightly better; however, with SVM classifier,
deep dictionary yields considerably better results.

We have also compared the performance of the pro-
posed algorithm with dictionary learning techniques such as
D-KSVD [28], LC-KSVD [29], and supervised dictionary
learning [21]. These are individually fine-tuned to yield
the best possible results. The comparison is also performed
with stacked denoising autoencoder (SDAE), deep belief net-
work (DBN) fine-tuned with soft-max classifier and convolu-
tional neural network (CNN). The results on DBN and SDAE
are from [35]; the results from CNN are from [74] – which
is a baseline technique for CNN architectures. The results are
summarized in Table 4.

It can be observed that the proposed deep dictionary
learning techniques almost always yields better results than
shallow dictionary learning (supervised DL, LC-KSVD and
D-KSVD); only for two instances i.e., the simple MNIST
dataset and bg-img-rot, the shallow learning techniques yield
better results. In other cases, the proposed algorithm is in the
top two best algorithms and achieves better accuracy than
highly tuned models such as DBN, SDAE, and CNN. CNN
cannot be run on the 20-newsgroup dataset since it does not
have local correlation and cannot be represented as a linear
time invariant system – an aspect required for the convolution
operation to hold.

We next compare the proposed algorithm with other
deep learning approaches in terms of computational speed
(train feature generation + test feature generation time).

All the algorithms are run until convergence on a machine
with Intel (R) Core(TM) i5 running at 3 GHz; 8 GB RAM,
Windows 10 (64 bit) running Matlab 2014a. The run times
for all the smaller MNIST variations are approximately the
same. Therefore, we only report results for the larger MNIST
dataset (60K) and the basic (10K) dataset. We do not include
the training and testing time for classification here; since they
will be almost the same for all the techniques as long as
the dimensionality of the features remains the same. Further,
Table 5 shows that for training the proposed algorithm is
around two orders of magnitude faster than deep belief
network and three orders of magnitude faster than stacked
autoencoder. However, the testing times (Table 6) for the
proposed algorithm is somewhat slower – since we need to
solve an optimization problem for generating the test features
whereas, the others simply need a fewmatrix-vector products.

TABLE 5. Training feature generation time (in seconds).

TABLE 6. Test feature generation time (in seconds).

D. ELECTRICAL APPLIANCE CLASSIFICATION
The previous sections demonstrate results on benchmarking
datasets. In this section, we evaluate the effectiveness of deep
dictionary learning for solving a real-world problem. Gupta et
al. proposed the problem of classifying electrical appliances
from their energy electro-magnetic interference (EMI) signa-
tures [75]. They showed results on appliance classification
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TABLE 7. Correct classification accuracy for Appliance Classification
Database.

from differential mode (DM) EMI signatures; but DM EMI
has an inherent shortcoming. The power signal and its har-
monics interfere with the DM EMI, hence analysis based on
such signatures is not reliable [76]. In a technical report [77],
it has been shown that, using rudimentary heuristics one
can achieve decent results from CM EMI based appliance
classification. The details regarding the development of the
CMEMI sensor, data acquisition and details are given in [77].

FIGURE 10. Block view of EMI sensor.

Fig. 10 shows the setup for data collection. The data is
collected for five devices – CFL, CPU, LCD, Laptop Charger
and Background Noise (when nothing is in use). There are
five instances of every appliance. 1500 traces are collected
for each instance of each appliance. Each trace is of 1 mil-
lisecond duration and constitutes a vector of length 16,384.
The training set consists of samples from 1 instance for each
appliance while the remaining 4 instances of each appliance
constitutes the test set. Thus, for every problem, the training
data for each class has 1500 traces and the test data has
4× 1500 = 6000 traces.

The experimental protocol has been defined in [77]. For
testing, all 1500 traces should be considered as a single sig-
nature; the task is to identify the appliance from this signature.
Therefore the predicted class labels of the 1500 samples
should be fused via majority voting to a single appliance.
Cepstrum features [78] are used as the feature set for clas-
sification; some examples of cepstrum features are shown
in Fig. 11. It can be seen how the cepstrum features for
the same appliance look similar and those from different
appliances look different.

On this dataset, stacked autoencoders and deep belief
networks, even after pre-processing and normalization, are

not able to surpass the results with random assignment,
and the classification accuracy is pegged at = 1/(num-
ber of appliances). The standard technique for classifying
appliances from EMI signatures is [78]; therefore we com-
pare our proposed technique against ElectriSense [78] and
features extracted using Conditional Likelihood Maximiza-
tion (CLM) [79] followed by SVM classification. As a bench-
mark, the results are also compared using LC-KSVD and
the results are shown for 5-fold cross validation. For the
proposed method, two levels of dictionaries are learned, in
the first level the number of atoms is 500 and in the second
level 100. The first level generates dense features whereas
the second level generates sparse features. Table 7 shows that
the proposed algorithm significantly outperforms all three
approaches. ElectriSense yields around 30% correct classi-
fication accuracy and CLM yields around 60-67% accuracy,
whereas the proposed deep dictionary learning yields more
than 85% for all the folds. This also suggests that the pro-
posed algorithm can be extended to other interesting appli-
cations where deep learning techniques may not provide an
acceptable level of performance.

E. CLUSTERING
Most deep learning tools are applied for classification prob-
lems. A recent study [80] proposed GraphEncoder, which
uses a stacked sparse autoencoder feature learning followed
by K-means clustering. In this research, we compare the
results of the proposed algorithm with GraphEncoder on a
subset of the datasets (we chose only those datasets with
ground-truth) used by them and follow the same experimental
protocol. We extract features using deep dictionary learning
and use K-means clustering on the learned features. The
databases selected for this experiment are described below.

1) WINE [81]
This is a dataset from the UCI Machine Learning Repository,
consisting of 178 instances with 13 attributes. Every instance
corresponds to a certain wine with its chemical analysis
information as the attributes. All instances are labeled with
three wine categories. We built a cosine similarity graph
using these instances and used the labels as the ground
truth.

2) 20-NEWSGROUP [69]
The dataset has already been discussed before. Every docu-
ment as a vector of tf-idf (term frequency – inverse document
frequency) scores of each word; the cosine similarity graph
was built based on the tf-idf scores. To demonstrate the
robustness of our algorithms with different targeting cluster
numbers, we constructed three graphs built from 3, 6, and 9
different newsgroups respectively. The newsgroup names in
each graph are listed as the following, where the abbreviation
NG used in graph names is short for Newsgroup.

• 3-NG:corp.graphics, rec.sport.baseball, talk.politics.
guns.
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FIGURE 11. Cepstrum features – horizontal axis – frequency in kHz and vertical axis – Volt.

• 6-NG: alt.atheism, comp.sys.mac.hardware, rec.
motorcycles, rec.sport.hockey, soc.religion.christian,
talk.religion.misc.

• 9-NG: talk.politics.mideast, talk.politics.misc, comp.os.
mswindows.misc, comp.sys.ibm.pc.hardware, sci.
electronics, sci.crypt, sci.med, sci.space, misc.forsale.

For each chosen group, 200 documents are randomly
selected and thus the three graphs contain 600, 1200,
and 1800 nodes respectively. The document labels are used
as the ground truth.

TABLE 8. Network architecture.

TABLE 9. Clustering performance.

Table 8 shows the network architecture proposed in [80].
We use the same number of basis in our deep dictionary learn-
ing framework and the results are summarized in Table 9.
Since the previous work (GraphEncoder) has already shown

the superiority of their technique over spectral clustering and
K-means, we compare the results with the GraphEncoder
formulation only. Along with that, we also use a DBN frame-
work for feature extraction followed by K-means clustering.
The DBN uses the same architecture as shown in the pre-
vious table. The metric for evaluation is normalized mutual
information (NMI).

The results clearly demonstrate that apart from the 3-NG
subset of the 20-newsgroup database on which both DDL and
GraphEncoder yield same accuracy, the proposed algorithm
yields better results than DBN as well as GraphEncoder.

V. CONCLUSION
In this research, we propose the idea of deep dictionary
learning, where, instead of learning one shallow dictionary,
we learn multiple levels of dictionaries. Learning all the
dictionaries simultaneously makes the problem highly non-
convex. Also learning so many parameters (atoms of many
dictionaries) is always fraught with the problem of over-
fitting. To account for both these issues, we learn the dic-
tionaries in a greedy fashion – one layer at a time. The
representation/features from one level are used as the input
to learn the following level. Thus, the basic unit of deep
dictionary learning is a simple shallow dictionary learning
algorithm; which is a well known and solved problem.

Experiments are carried out for both classification and
clustering problems. We compare the proposed algo-
rithm with existing methods such as stacked autoencoder,
deep belief network, and convolutional neural network.
We observe that the proposed method yields comparable or
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better results on benchmark datasets. Experiments on a practi-
cal problem of appliance classification show that our method
offers higher accuracies where other deep learning techniques
yield significantly lower results. Similar to the advancements
made in ‘‘deep learning’’, it is our assertion that the proposed
formulation of deep dictionary learning provides the basis to
developmore efficient dictionary learning algorithms and can
help in advancing state-of-the-art.

In the future, we plan to test the robustness of dictio-
nary learning in the presence of missing data, noise and
limited number of training sample. We also plan to apply
this technique to other practical problems such as biometrics,
vision, and speech processing. Further, there has been a lot of
work on supervised dictionary learning; we expect to improve
the results even further by incorporating techniques from
supervised learning paradigm.
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