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ABSTRACT Different educational and didactic papers that allow students to experimentally validate linear
controllers have been reported. However, generally, in those papers, procedure followed to select controller
gains is not discussed. This lack of information renders difficult experimental implementation of controllers
by students who, in general, do not have enough experience on controller tuning. Motivated by this situation,
this paper introduces a methodology that provides important information on how to select controller gains
for regulation in a Furuta pendulum. This methodology allows improving closed-loop system performance
in a desired direction. Differential flatness is the Furuta pendulum property that is exploited. The main idea
is to translate a linear state feedback control design problem into a scenario, where classical tools such as
root locus can be used. As an example, controller design is directed toward reduction or even elimination of
limit cycle effects. The proposal is experimentally tested on a built Furuta pendulum. These experimental
results show that the closed-loop system performance is improved, and hence, the proposed methodology is
successfully validated.

INDEX TERMS Automatic control education, classical control, root locus, differential flatness, state
feedback control, gain selection, furuta pendulum, stabilization.

I. INTRODUCTION
Automatic control is an important subject taught in
many engineering majors such as electrical engineering,
electronics, bionics, robotics, mechatronics, etc. However,
the complex mathematical and abstract concepts treated in
this subject result difficult to understand and grasp for most
students. To solve this, different pedagogical and didactic
materials allowing the students to experimentally validate
automatic control theory have been developed by educators
and researchers at different engineering areas and levels
(undergraduate, graduate, and postgraduate) [1]–[8]. Various
systems have been used for such an aim [9]–[16], among them
inverted pendulums are found due to their simple configura-
tion, nonlinearity, underactuation, etc.

Educational work related to the control of inverted pendu-
lums is as follows. Giron-Sierra [17] presented the descrip-
tion of an inverted pendulum actuated by two electromagnets.

A program based on MS-DOS and Borland C++ was
developed by students to stabilize such a pendulum.
Sánchez et al. [18] introduced a web-based laboratory, which
allows the remote control of an inverted pendulum on a car.
To stabilize the pendulum an LQR controller was designed.
Rodriguez et al. [19] developed an environment for the
modeling, simulation, animation, and real-time control of
electromechanical cart-pendulums. This environment was
based on Microsoft Windows, Visual C++, Direct-3D, and
MATLAB/Simulink. Furthermore, Petrić and Šitum [20],
considering a pneumatic actuation, built three underactated
systems: the inverted pendulum on a cart, the inverted wedge,
and the ball and beam. Also, they implemented a state-
variable feedback with LQR optimal design for the three
systems. Additionally, this control with an observer was
applied to the inverted wedge and a cascade compensation
was implemented in the ball and beam. Lee et al. [21], [22]
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reported an educational kit intended to the intelligent con-
trol system education. This kit included an inverted pendu-
lum on a cart, the control hardware, and a graphical user
interface. Using this kit a PID, an FEL scheme, an RTC
scheme, and an adaptive neuro-fuzzy controller were imple-
mented to execute balancing and tracking control. Moreover,
Lin and Tsai [23] developed and controlled a human
transportation vehicle for teaching automatic control the-
ory in undergraduate engineering areas. For this, an edu-
cation process and a pedagogical method were presented.
Stefanovic et al. [24] reported a web-based laboratory for
the remote control of an inverted pendulum and a crane
system. This with the intention of teaching control concepts
by means of experiments through the internet at any time and
from any location. Mahmoodabadi et al. [25] introduced a
multi-objective particle swarm optimization method for the
tuning of the state feedback control gain vector. This method
was applied to the inverted pendulum and ball and beam.
The simulations were carried out with Java applets. By they
part, Zhou et al. [26] presented a practice-oriented intuitive
approach, in which the students were motivated to construct
and control an inverted pendulum on a car based on their
intuition. Demirtas et al. [27] reported a virtual laboratory
based on LabVIEW for graduate students, which included
sliding mode and PID control for the Furuta pendulum.
There, the parameters of the system and the controls could
be modified. Quian et al. [28] introduced a control based
on energy to set the deviation of an inverted pendulum on
a car. This in the direction of stabilizing the system through a
state-feedback control optimized by the LQR algorithm. The
validation of the approachwas carried out by students through
experiments. Recently, Canale and Casale-Brunet [29] used
a wheeled inverted pendulum, derived from the Lego Mind-
storms NXT, for theoretical and practical teaching of model
predictive control. The designed control for the system
was described step-by-step and experimentally implemented.
Lin et al. [30] developed an inertia flywheel pendulum
mechatronic kit that includes a hybrid controller, integrated
by an energy control and a genetic algorithm PID control for
swinging-up and stabilizing the pendulum, respectively. The
intention of this mechatronic kit was to teach control courses
to university students. Other educational papers related to
automatic control theory, such as modeling [31], construc-
tion [32], [33], and linearization [34] of inverted pendu-
lums have been reported. Particularly, the Furuta pendulum
is a suitable prototype for education because it has two-
degrees-of-freedom, it is underactuated, complex enough
to exhibit interesting phenomena but it is not difficult to
built using low cost materials and to control using hard-
ware that is well known by students. Several research works
have been presented for the Furuta pendulum solving the
swing-up [35]–[38], stabilization [39]–[41], hybrid con-
trol [42]–[44], trajectory tracking [45]–[47], and oscillation
shaping [48]–[50].

Having reviewed the related work it was found that,
generally, a satisfactory control implementation in inverted

pendulums is included. However, few papers describe the
procedure followed for the controller gain selection. For such
an aim, the trial and error approach is the one commonly
used. However, it is difficult for students since several sets
of gains have to be chosen and tested until a desired system
performance be obtained. Furthermore, all of this has to be
accomplished without any information on how to modify
controller gains to enhance performance in a particular direc-
tion. This discourages students to continue exploring auto-
matic control topics. Motivated by this scenario, this paper
introduces a methodology to select the gain vector of a linear
state feedback controller that stabilizes the Furuta pendulum
at the upright pendulum configuration. Such a methodology
is focused on improving closed-loop system performance by
reducing or even eliminating effects of limit cycles, which
appear because of the dead zone induced by static friction at
shaft of motor used as actuator. This methodology exploits
the Furuta pendulum differential flatness property [51] to
translate a linear state feedback control design problem
into a design scenario where classical tools such as root
locus can be employed. Advantages of this methodology are:
i) it allows study of limit cycles when the pendulum is
stabilized, ii) effects of limit cycles can be reduced or
even eliminated, iii) students access to important infor-
mation for controller gain selection, iv) it allows to prac-
tice and, in consequence, to strength classical and modern
linear control theory discussed in the classroom,
v) contrary to optimization techniques used for con-
trol tuning, such as genetic algorithms [25], [52] and
fuzzy logic [53], [54], the proposed methodology exploits
approaches commonly studied in basic automatic control
courses.

The first hypothesis in this paper is that selecting con-
troller gains for a linear state feedback controller can be
accomplished using classical control techniques. However,
application of classical control techniques requires a transfer
function which needs definition of a system output. Hence,
one design problem is the selection of the system output
for the Furuta pendulum, since there are two important
variables to control: pendulum position and arm position.
In this respect, several results exist in the literature showing
that differential flatness is a system property defined for a
special system output that exhibits no zero dynamics and
contains the fundamental system properties rendering pos-
sible to control non-minimum phase systems [55], optimal
trajectory planning [56], and study of systems containing time
delays, [57] and those represented by partial differential
equations [58]. Thus, it is expected, and results in this
paper verify it, that exploiting differential flatness will result
in a plant model with important advantages for controller
design.

The remainder of the paper is organized as follows. Linear
approximate and differential flatness-based models of the
Furuta pendulum are presented in Section II. In Section III
the linear state feedback for Furuta pendulum stabilization,
the proposed methodology for controller gain selection, and

8722 VOLUME 4, 2016



V. M. Hernández-Guzmán et al.: Linear State Feedback Regulation of a Furuta Pendulum

experimental application on a Furuta pendulum prototype
are described. While, the experimental prototype is presented
in Section IV. Section V is devoted to describe course where
this project is developed, whereas evaluation by students of
the project is presented in Section VI. Finally, some conclud-
ing remarks are given in Section VII.

II. FURUTA PENDULUM MODEL
In this section, an approximate linear model for Furuta
pendulum is obtained. The goal is to design a linear
state feedback controller to stabilize the system at the
desired operation point. In order to devise a procedure
for suitable controller gain selection, a differential flat-
ness based-model is obtained from the approximate linear
model.

The Furuta pendulum –also known as the rotary inverted
pendulum– has two degrees of freedom (DOF) and two rota-
tional joints. It is essentially composed by three elements: a
motor and two bars called arm and pendulum. Motor’s shaft
is fixed at one end of the arm, producing angular arm move-
ments in a horizontal plane. Pendulum is placed at the free end
of the arm by means of a joint allowing rotation of pendulum
in a vertical plane orthogonal to arm. A representation of
the Furuta pendulum is shown in Fig. 1. There, θ0 is the
arm angular position measured with respect to an arbitrary
position, θ1 is the pendulum angular position measured with
respect to the upright position, τ represents torque applied to
arm and generated by the motor, I0 stands for motor inertia
plus arm inertia (when this turns around an axis orthogonal
to one of its ends), L0 is the arm length, m1, l1, and J1 are
mass, center of mass location, and inertia (around its center
of mass) of pendulum, respectively. Finally, g is acceleration
of gravity.

FIGURE 1. Furuta pendulum.

The following, complete, nonlinear, Furuta pendulum
dynamic model has been obtained in previous works in
the literature by invoking Euler-Lagrange equations of
motion [35], [36]:

M (q)q̈+ C(q, q̇)q̇+ g(q) = F, (1)

where:

M (q) =
[
I0 + m1(L20 + l

2
1 sin

2(θ1)) m1l1L0 cos(θ1)
m1l1L0 cos(θ1) J1 + m1l21

]
,

C(q, q̇) =
[
c11 c12
c21 c22

]
, g(q) =

[
0

−m1l1g sin(θ1)

]
,

F =
[
τ

0

]
, q =

[
θ0
θ1

]
,

c11 =
1
2
m1l21 θ̇1 sin(2θ1),

c12 = −m1l1L0θ̇1 sin(θ1)+
1
2
m1l21 θ̇0 sin(2θ1),

c21 = −
1
2
m1l21 θ̇0 sin(2θ1), c22 = 0.

Dynamic model (1) is nonlinear because it includes trigono-
metric functions of θ1, as well as different products between
arm and pendulum angular velocities, θ̇0 y θ̇1, respectively.
Since control task to be solved is arm and pendulum position
regulation around an operation point, linear control tech-
niques are more suitable because of its simplicity. Thus, an
approximate linearmodel is obtained in the following section.

A. AN APPROXIMATE LINEAR MODEL
In order to obtain a linear approximate model of (1), which
will be only valid around an operation point, the following is
needed:
i) The state variable representation of (1), i.e. :

ẋ = f (x, u),

where x and u denote the state vector and the system
input, respectively.

ii) To determine the possible system operation points.
The state variable representation of (1) is the following:


θ̇0
θ̈0
θ̇1
θ̈1

 =


θ̇0(
m1l21+J1

)(
τ−ρθ̇0θ̇1+σ θ̇

2
1

)
−γ

(
1
2ρθ̇

2
0+m1gl1 sin θ1

)
α
(
m1l21+J1

)
−γ 2

θ̇1
α
(
1
2ρθ̇

2
0+m1gl1 sin θ1

)
−γ

(
τ−ρθ̇0θ̇1+σ θ̇

2
1

)
α
(
m1l21+J1

)
−γ 2

,

where x = [x1, x2, x3, x4]T = [θ0, θ̇0, θ1, θ̇1]T , u = τ ,
f (x, u) = [f1(x, u), f2(x, u), f3(x, u), f4(x, u)]T is the right-
hand vector, and:

α = I0 + m1L20 + m1l21 sin
2 θ1, ρ = m1l21 sin(2θ1),

γ = m1L0l1 cos θ1, σ = m1L0l1 sin θ1.

System operation points, (x, τ ), are found by solving:

f (x, τ ) = 0. (2)

This means that operation points (x, τ ) are those values of
state x where system can remain without movement, i.e.
ẋ = 0, under the effect of a suitable constant system input τ ,
i.e. all components of x are constant:

x =
[
θ0 θ̇0 θ1 θ̇1

]T
.
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After solving (2), the following operation points are found:
θ0

θ̇0
θ1

θ̇1

 =

∗

0
±nπ
0

, τ = u = 0,

where n = 0, 1, 2, . . . , and ∗ represents an arbitrary constant.
Since the pursued control objective is to stabilize pendulum

at the upright position, that is, when θ1 = 0, the following
operation point is chosen:[

θ0 θ̇0 θ1 θ̇1

]T
=
[
0 0 0 0

]T
, τ = u = 0. (3)

Hence, the nonlinear model (1) can be approximated
around (3) by the following linear model:

ż = Az+ Bv, (4)

where:

z =


z1
z2
z3
z4

 =

θ0 − θ0

θ̇0 − θ̇0
θ1 − θ1

θ̇1 − θ̇1

, v = τ − τ = τ ;

and the constant matrices A, B, are defined as:

A =


∂f1(x,u)
∂x1

∂f1(x,u)
∂x2

∂f1(x,u)
∂x3

∂f1(x,u)
∂x4

∂f2(x,u)
∂x1

∂f2(x,u)
∂x2

∂f2(x,u)
∂x3

∂f2(x,u)
∂x4

∂f3(x,u)
∂x1

∂f3(x,u)
∂x2

∂f3(x,u)
∂x3

∂f3(x,u)
∂x4

∂f4(x,u)
∂x1

∂f4(x,u)
∂x2

∂f4(x,u)
∂x3

∂f4(x,u)
∂x4


∣∣∣∣∣∣∣∣∣∣ x = x,
u = u

=


0 1 0 0

0 0
−gm2

1l
2
1L0

I0
(
J1+m1l21

)
+J1m1L20

0

0 0 0 1

0 0
(
I0+m1L20

)
m1l1g

I0
(
J1+m1l21

)
+J1m1L20

0

,

B =


∂f1(x,u)
∂u

∂f2(x,u)
∂u

∂f3(x,u)
∂u

∂f4(x,u)
∂u


∣∣∣∣∣∣∣∣∣∣ x = x,
u = u

=


0

J1+m1l21
I0
(
J1+m1l21

)
+J1m1L20

0
−m1l1L0

I0
(
J1+m1l21

)
+J1m1L20

.

It is important to say that this approximate linear model is
valid only if z ≈ 0 and v ≈ 0. This means that the mechanism
must remain close to the operation point defined in (3).
In this respect, the reader can verify that model in (4) remains
without change if θ1 = ±2π .

B. A LINEAR DIFFERENTIAL FLATNESS-BASED MODEL
The controllability matrix C0 of the linear system (4) is given
as:

C0 =
[
B AB A2B A3B

]
.

After carrying out the corresponding computations and
reducing terms, the following is found:

det(C0) =
m4
1l

4
1L

2
0g

2

[I0(J1 + m1l21 )+ J1m1L20 ]
4
6= 0

and, hence, (4) is controllable. According to [59], Ch. 2, this
implies that (4) is also differentially flat and its flat output y
can be found according to:

y = λ
[
0 0 0 1

]
C−10 z, (5)

where λ is an arbitrary nonzero constant. Having carried out
the indicated computations and, by convenience, proposing:

λ =
gl1m1

J1m1L20 + I0
(
m1l21 + J1

) ,
the flat output is found to be given as:

y = z1 + hz3, (6)

where:

h =
J1 + m1l21
L0l1m1

.

Differentiating y four times with respect to time and using the
linear model (4), the following is found:

ẏ = z2 + hz4, (7)

ÿ = (a+ bh)z3,

y(3) = (a+ bh)z4,

y(4) = bÿ+ d(a+ bh)τ, (8)

where:

a =
−gm2

1l
2
1L0

I0(J1 + m1l21 )+ J1m1L20
,

b =
(I0 + m1L20 )m1l1g

I0(J1 + m1l21 )+ J1m1L20
,

d =
−m1l1L0

I0(J1 + m1l21 )+ J1m1L20
.

Applying Laplace transform to (8), the following transfer
function equivalent to (4) is found:

Y (s)
τ (s)
=
d(a+ bh)
s2(s2 − b)

, (9)

where Y (s) and τ (s) stand for Laplace transforms of flat
output and applied torque, respectively. From now on, assume
that d(a + bh) < 0, which will become true later when
replacing numerical values of parameters involved. Transfer
function in (9) has four real open-loop poles: two of them
located at s = 0, one at s = −

√
b < 0, and another

at s =
√
b > 0. Recall that b is a positive real number.

In the following section, transfer function in (9) is exploited
to compute suitable controller gains.
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III. STATE FEEDBACK CONTROL
In Section II was found that linear system (4) is controllable.
Then, limt→∞ z(t) = 0 can be accomplished using a linear
state feedback controller as the following:

v = −Kz, (10)

where K = [k1, k2, k3, k4] is the gain vector. According to
Section 5, this controller can be written as:

τ = −k1z1 − k2z2 − k3z3 − k4z4. (11)

In order to stabilize (4) in closed-loop, K has to be suit-
ably selected. A basic requirement is that the real part of
all of the eigenvalues of the closed-loop matrix A − BK be
negative. Furthermore, eigenvalues of matrix A − BK must
also be assigned such that a desired closed-loop performance
be accomplished. Some times it is required to choose a new
gain vectorK in order to further improve performance. Under
ideal conditions this task could be simple, but in practice it
results difficult since fast and well damped eigenvalues is
not the only thing that matters because of noise and some
other problems related to hardware implementation. In that
direction, the next section presents a methodology that assists
for the selection of the gain vector K .

FIGURE 2. Block diagram of the closed-loop system.

A. CONTROL METHODOLOGY FOR SELECTING
THE GAIN VECTOR
Assuming that d(a+ bh) < 0, the multi-loop control scheme
shown in Fig. 2 is proposed to control (9). This yields the
following closed-loop transfer function:

Y (s)
Yd (s)

=
βd(a+ bh)

p(s)
, (12)

where Yd (s) = 0 is the desired flat output, p(s) is the
characteristic polynomial defined as:

p (s) = s4 − d(a+ bh)kvs3 − (b+ βd(a+ bh))s2 −

−kdβd(a+ bh)s− kpβd(a+ bh),

and β, kv, kd , kp are the controller gains. Transfer function of
the two internal loops is:

Ÿ (s)

Ÿd (s)
= F(s) =

βd(a+ bh)
s2 − d(a+ bh)kvs− (b+ βd(a+ bh))

.

(13)

From (12), it is clear that a negative d (a+ bh) renders pos-
sible that all of the coefficients of p (s) be positive. This is a

necessary (but not sufficient) condition for all roots of p (s)
to have negative real part.

According to Fig. 2, and by using expressions (7)–(8), the
following controller is found:

τ = kvy(3) + β(ÿd + ÿ),

= kvy(3) + β(kpy+ kd ẏ+ ÿ),

= βkpz1 + βkd z2 + (β(a+ bh)+ βkph)z3 +

+(kv(a+ bh)+ βkdh)z4. (14)

When comparing (11) and the last expression in (14), the
following is concluded:

k1 = −βkp,

k2 = −βkd ,

k3 = −(β(a+ bh)+ βkph),

k4 = −(kv(a+ bh)+ βkdh). (15)

Thus, gain vector K can be selected through gains of con-
troller in (14). Procedure to be followed to determine these
latter gains is described below.

TABLE 1. Numerical parameters of an experimental Furuta pendulum.

Using the numerical parameters of a built Furuta pendu-
lum, which are presented in Table 1, the following is found:

d(a+ bh) = −1.2186× 105, b = 93.9951.

Taking into account these numerical values, β and kv are
chosen such that all coefficients of characteristic polynomial
in (13) be positive. Moreover, as shall be seen next, it is
important that poles of transfer function in (13) have a sig-
nificant negative real part. Thus, kv = 2.3755 × 10−4 and
β = 0.0041 have been selected because this assign poles
of (13) at s1,2 = −14.4734± 14.0048j. Note that aside from
two poles at s = 0, the plant transfer function in (9) has
real poles at s = ±

√
b = ±9.6951. Thus, placing poles

of (13) at s1,2 = −14.4734 ± 14.0048j ensures stability of
this transfer function and, given the proximity of these poles
with that at s = −

√
b = −9.6951, a response which is a

little faster than that of the open-loop system is also ensured.
This is a useful criterion when a desired time response is
not specified but an excessively fast response is undesired
in order to avoid large noise amplification. Also note that
placing poles at s1,2 = −14.4734 ± 14.0048j, a damping
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FIGURE 3. Root locus diagram for control system in Fig. 2.

coefficient of ζ = 0.7186 is introduced, which is intended to
avoid large oscillations. On the other hand, by considering

±180◦(2p+ 1)
n− m

, p = 0, 1, 2, . . .

where n = 4 and m = 1, it is found that root locus of block
diagram shown in Fig. 2 has three asymptotes: at ±60◦ and
±180◦ angles with respect to the positive real axis. Thus,
f = kp/kd = 1 is proposed in order to shape root locus as
indicated in Fig. 3. It is stressed that the open-loop zero at
s = −f is not a closed-loop zero as corroborated by (12).
Recall that curves in Fig. 3 are parameterized by kd which
grows from 0 to +∞. Hence, kd is chosen such that the four
closed-loop poles be on the left-hand half plane. Note that it
is important for this that s1 and s2 have significant negative
real parts, as predicted above. It is found that a good value is
kd = 2.88. Once this variable is known, kp = kd f = 2.88 is
computed. This gain selection assigns poles of (12) at:

−12.1989± 11.8679j, −2.7284, −1.8206.

The exact root locus for this case is depicted in Fig. 4,
which has been obtained using the following transfer function
(see (13) and Fig. 2):

−βd(a+ bh)
s2 − d(a+ bh)kvs− (b+ βd(a+ bh))

kp + kd s
s2

, (16)

with numerical values in Table 1 and the following controller
gains:

β = 0.0041, kv = 2.3755× 10−4,

kd = 2.88, kp = 2.88. (17)

Sign ‘‘−’’ in (16) is introduced because positive feedback is
used in the external loop of Fig. 2.

Finally, using relations in (15) as well as numerical values
in Table 1, the state feedback controller gain vectorK is found
to be:

K = [k1, k2, k3, k4]

= [−0.0118,−0.0118,−0.2742,−0.0298] . (18)

What it has been presented up to here shows how to use
the root locus method to tune the modern controller in (10).

FIGURE 4. Root locus diagram for open-loop transfer function in (16).

From this point on, any classical control technique can be
used to solve this problem. As an example of application,
the remainder of the paper shall focus on using the root
locus method to tune controller in (10) in such a manner that
performance be improved when a particular control problem
appears: oscillation due to limit cycles.

B. EXPERIMENTAL RESULTS
In order to observe the real behavior of the Furuta pendulum
prototype under the influence of the proposed controller and
the proposed gains, an experiment was performed. Since (14)
only stabilizes the prototype at z = x−x = 0 when operating
close to (3), controller reported in [35], [36], was used to
swing-up the pendulum. Such a controller is defined as:

τ =
−

kω
det(M (q))F(q, q̇)− kθθ0 − kδ θ̇0

kEE(q, q̇)+
kω

det(M (q)) (J1 + m1l21 )
,

E(q, q̇) =
1
2
q̇TM (q)q̇+ m1gl1(cos θ1 − 1),

F(q, q̇) = −(J1 + m1l21 )m1l21 θ̇1θ̇0 sin(2θ1)−

−
1
2
m2
1l

3
1L0θ̇

2
0 cos θ1 sin(2θ1)

−m2
1l

2
1L0g cos θ1 sin θ1 +

+ (J1 + m1l21 )m1l1L0θ̇21 sin θ1, (19)

where E(q, q̇) is the Furuta pendulum total energy
(see [35], [36]), kθ > 0, kδ > 0, and kω, kE , are positive
constants that must satisfy:

kω
kE

> 2m1gl1(I0 + m1l21 + m1L20 ).

Good results have been obtained with:

kE = 480, kω = 1, kδ = 3, kθ = 17. (20)

Experimental results are shown in Fig. 5, where ic is elec-
tric current through motor and uf is voltage applied at
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FIGURE 5. Experimental results when using (11), (18).

motor terminals. Controller (19), (20), is employed from
t = 0 [s] to t = 8.8 [s], whereas controller (11), (18), is
employed for t > 8.8 [s]. It can be seen that the pendu-
lum reaches position θ1 = 2π [rad]. Since 2π [rad] repre-
sents the same pendulum position when θ1 = 0[rad], this
means that the pendulum reaches the desired position and
remains there. It is also observed that arm does not stop
moving but it describes large peak-to-peak oscillations of
about 0.6 [rad] around a constant position of about−0.8 [rad].
In Figs. 5(b) and 5(c), the time axis was modified in order to
consider t = 0 at time when the stabilizing controller (11),
(18), is switched on, i.e. when t = 8.8 [s] in Fig. 5(c). Note
that y and z1 remain close to each other while oscillating
because hz3 is close to zero (see (6)). These oscillations
represent what it is known as a limit cycle, and it is due
to a dead zone nonlinearity induced by static friction at the
motor shaft. Furthermore, static friction is also responsible
for the large constant position value of −0.8[rad] around
which arm oscillations are performed. In order to explain
why oscillations are not present in the pendulum position,
consider (7), (8), where:

y = z1 + hz3, ÿ = (a+ bh)z3,

and assume that the flat output oscillation is sinusoidal, i.e.
y = Y0 sin(ωt) where Y0 is a positive constant representing
the oscillation amplitude. It is not difficult to find that, under
these conditions:

z1 = Y0

(
1+

hω2

a+ bh

)
sin(ωt),

z3 = −Y0
ω2

a+ bh
sin(ωt). (21)

This means that z3 is very small if the oscillation frequency
is small and y ≈ z1. Notice that, in Fig. 5(c), oscillation

frequency is, approximately, ω = 2π
8.5 = 0.7392[rad/s] which

yields ω2

a+bh = 0.0086. This explains why oscillations are not
observed in the pendulum position and why z1 remains close
to y.

Since limit cycle is the dominant effect under action of
controller (11), design efforts will be directed towards limit
cycle elimination in the next sections.

FIGURE 6. The dead zone nonlinearity.

C. DEAD ZONE NONLINEARITY AND LIMIT CYCLES
A dead zone appears at the system input when system does
not respond for small values of the input variable, but system
begins to respond once input variable exceeds a lower thresh-
old. In mechanical systems this phenomenon is due to static
friction. The characteristic function of a dead zone nonlinear-
ity is shown in Fig. 6. The nonlinearity output c = 0 when
the nonlinearity input e is ‘‘small enough’’, that is, |e| ≤ δ for
some δ > 0. For larger values of e, the nonlinearity output
represents a shifted, amplified version of the nonlinearity
input |c| = k|(e− δ)|, k > 0.

FIGURE 7. A closed-loop system including a dead zone nonlinearity.

Fig. 7 presents block diagram in Fig. 2 when a dead zone
nonlinearity is considered. Limit cycles are studied using the
describing function method. For this, it is suggested in [60],
Ch. 5, to represent system in the standard form shown in
Fig. 8, which is performed by using some block algebra on
Fig. 7. The nonlinearity input is e = τ (s) and the linear time
invariant system G(s) is given by:

G(s) =
−d(a+ bh)(kvs3 + βs2 + βkd s+ βkp)

s2(s2 − b)
, (22)

where −d(a + bh) > 0. According to the describing func-
tion method, magnitude of (22) must behave as a low-pass
filter [60], Ch. 5. This is verified since G(s) has four poles
and only three zeros.
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FIGURE 8. An equivalent representation for block diagram in Fig. 7.

The describing function is an approximate frequency
response description of the nonlinearity which, in the case
of a dead zone, is given as [60], Ch. 5:

N (A) =
b1
A
=

2k
π

π
2
− arcsin

(
δ

A

)
−
δ

A

√
1−

(
δ

A

)2
,
(23)

where b1 is the nonlinearity output amplitude when the non-
linearity input e is assumed to be a sinusoidal function of
time with amplitude A and frequency ω. Note that ‘‘transfer
function’’ N (A) is real, positive, frequency independent but
dependent on input amplitude A. Moreover, the maximal
value is N (A) = k > 0 which is reached as A → ∞. The
minimal value tends to zero and it is approached as A→ δ.

According to the describing function method a limit cycle
exists if:

G(jω) = −
1

N (A)
. (24)

Since N (A) is real and positive, −1/N (A) is real and neg-
ative. In consequence, a limit cycle exists if polar plot of
G(jω) intersects the negative real axis in the open interval
(−∞,−1/k). The oscillation frequency and amplitude of the
oscillation are found as the values of ω, in G(jω), and A,
in −1/N (A), at point where their plots intersect.

D. CONTROLLER DESIGN TO AVOID LIMIT CYCLES
In experiments shown in Fig. 5 is observed that oscillation
that appears is slow and it has a wide amplitude. This suggests
that oscillation might be reduced or eliminated if stiffness of
the closed-loop system is increased. Since stiffness is related
to faster responses, this also suggests that the oscillation fre-
quency should be increased. On the other hand, since system
does not respond if |e| ≤ δ and the dead zone threshold
δ > 0 is uncertain, because of the uncertain character of static
friction, it is wondered whether oscillation might disappear
if the oscillation amplitude is rendered small enough. Thus,
in the following a procedure intended to increase frequency
and to decrease amplitude of oscillations due to limit cycle is
formulated.

According to previous section, in order to obtain a limit
cycle with smaller amplitude, polar plot of the equivalent
open-loop transfer function G(s) must intersect the negative
real axis at a point σ located farther to the left. On the other
hand, in order to increase the oscillation frequency, phase
of G(jω) must reach −180◦ at a larger frequency ω = ωσ .

Point σ can be placed farther at the left of the negative real
axis by increasing magnitude of G(s). According to (22) this

requires to increase controller gains kv and β. On the other
hand, according to Fig. 11, G(jω) reaches a −180◦ phase
at larger frequencies if phase lead introduced by controller
is forced to appear at larger frequencies. Since cubic and
quadratic terms in G(s) introduce larger phase leads at larger
frequencies, this phase lead can be forced to appear at larger
frequencies by rendering coefficients of the first order term
and the constant term larger than coefficients of cubic and
quadratic terms, i.e. by increasing kd and kp.

TABLE 2. Numerical values used for G(s) defined in (22).

Based on the aforementioned ideas, three sets of controller
gains were computed which are shown in Table 2. In this
table, the set of controller gains a) corresponds to gains
in (17). The remaining controller gains have been obtained
proceeding as follows. In order to increase system stiffness,
the closed-loop poles are moved farther to the left of the
imaginary axis. This suggests to move the open-loop zero at
s = −f to the left (see Fig. 3). However, this may create two
root locus branches starting at the origin but belonging to the
right half plane. This is because zero at s = −f might attract
the open-loop complex conjugate poles at s1, s2, if it moves to
the left. Hence, instability or bad damped closed-loop poles
might result if f > 0 is increased. Thus, it is proposed to
maintain f = 1 and only to move to the left the three fastest
closed-loop poles.

First, larger values for kv and β are proposed in order to
render larger both the real and the imaginary parts of the
open-loop poles s1 and s2 in Fig. 3 (also see s1,2 in Table 3).
This renders faster and well damped the pendulum response1

and allows selecting larger values for both kd and kp. This is
because, although the root locus branches starting at s1 and s2
move towards the right half plane as kd increases, it is possible
to select larger values for kd before these branches be too
close to the right half plane if s1 and s2 move to the left.
Notice that kp is larger if kd is larger because kp = kd f ,
f = 1. In order to clarify these ideas, Figs. 9 and 10 present
root locus diagrams obtained when using transfer function
in (16) and controller gains in Table 2 (also see Fig. 4).

1Notice, in Fig. 2, that kv and β are the feedback gains of signals ÿ and y(3)

which, according to (7)–(8), represent feedback of the pendulum position and
velocity, z3 = θ1 − θ1 and z4 = θ̇1.
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FIGURE 9. Root locus diagram for open-loop transfer function in (16) and
controller gains in Table 2b).

FIGURE 10. Root locus diagram for open-loop transfer function in (16)
and controller gains in Table 2c).

It is stressed that all poles of (13) shown in Table 3 introduce
damping coefficients between 0.7 and 0.8 and, hence, only
small oscillations are expected. Also note, in Figs. 9 and 10,
that placing poles of (13) farther to the left results in poles
of (12) located farther to the left, as expected.

Using controller gains in Table 2 and (15), the controller
gains in Table 4 were computed. Notice, in Table 3, that the
three fastest closed-loop poles move to the left when going
from a) to c) in Table 3 or, equivalently, in Table 4.

In Fig. 11, Bode plots of transfer function in (22) are
presented when using numerical values in Tables 1 and 2.
As it can be seen in Fig. 11 all of phase plots intersect the
−180◦ phase line. This indicates that a limit cycle exists
in all of the cases presented in Table 2. Furthermore, this
happens when the G(s) magnitude is larger than 0[dB]. It is
recalled that the open interval (−∞,−1/k) corresponds to

TABLE 3. Assigned open-loop and closed-loop poles.

TABLE 4. State feedback controller gains.

the open interval (0,∞)[dB] (because k = 1 is assumed)
when phase is−180◦. Also, it is stressed that the−180◦ phase
line is intersected at a larger frequency as the controller gains
from a) to c) in Table 2 are considered. Moreover, according
to Fig. 12 the negative real axis is intersected by the polar
plot of G(jω) at some point, which moves to the left when
going from a) to c) in Table 2. Thus, it is concluded that the
oscillations amplitude decreases and oscillations frequency
increases when going from a) to c) in Table 2 or, equivalently,
in table 4.

Evolution in simulation of flat output y(t) in Fig. 7 is
presented in Fig. 13, when the numerical values in Table 2
are used as well as k = 1 and the arbitrary value
δ = 0.0115. All of the initial conditions were set to zero
excepting y(0) = 1. These results verify all of the above pre-
dictions. It is important to remark that the above theoretical
discussion on limit cycles was intended to explain amplitude
and frequency of oscillation at input of nonlinearity e = τ (s).
However, in Fig. 13 the oscillation of the different variable
y which relates to e = τ (s) through e = −(kvs3 + βs2 +
βkd s + βkp)Y (s) is presented. Hence, it is clear that, due to
the linear relation between e and y(t), these results are also
valid for y(t).

E. MORE EXPERIMENTAL RESULTS
Figs. 14 and 15 show experimental results obtained when
using controller gains b) and c), respectively, in Table 4.
In Figs. 14(b) and 14(c), t = 0 was set at the point of time

VOLUME 4, 2016 8729



V. M. Hernández-Guzmán et al.: Linear State Feedback Regulation of a Furuta Pendulum

FIGURE 11. Bode plots of G(s) in (22) when using the numerical values in
Table 2. Continuous a). Dashed b). Dash-dot c).

FIGURE 12. Polar plot of G(s) in (22) when using the numerical values in
Table 2. Continuous a). Dashed b). Dash-dot c).

t = 13.8[s] in Fig. 14(a) (when controller (11) is switched
on). Also, in Figs. 15(b) and 15(c), t = 0 was set at the point
of time t = 12.9[s] in Fig. 15(a) (when controller (11) is
switched on).

These results show that the pendulum position is success-
fully stabilized at θ1 = 2π . On the one hand, when gains b) of
Table 4 are used, the following is observed. Although the
arm position still oscillates, the amplitude is smaller and
frequency ω = 2π/5 = 1.2566[rad/s] is larger than values in
Fig. 5. Also, oscillations are performed around a constant arm
position of about−0.35[rad], which is smaller than in the case
of controller gains a). The above values yield ω2

a+bh = 0.0250
which explains, again, why oscillations do not appear in the
pendulum position. On the other hand, when gains c) are
used, in Fig. 15, limit cycle disappears. As can be seen in
Figs. 15(a), 15(b), 15(c), the oscillation amplitude in both

FIGURE 13. Simulation response of flat output y in Fig. 7 when using
numerical values in Table 2.

FIGURE 14. Experimental results when using controller gains in Table 4b).

the flat output y and the arm position θ0 are even smaller
whereas the oscillation frequency has increased to about ω =
2π/2.3 = 2.7318[rad/s]. Furthermore, both of these variables
reach constant values, i.e. oscillation disappears, for t ≥ 7[s]
in Figs. 15(b) and 15(c). The pendulum position reaches its
desired constant value. Also a constant steady state error in
the arm position about 0.2[rad] is observed, i.e. even smaller
than the mean error of −0.35[rad] for controller gains b) in
Table 4. It is important to remark that the small threshold δ
in a dead zone nonlinearity is uncertain and changes during
normal operation. This is because the static friction also has
these properties. Since any movement is not produced when
the generated torque is smaller than δ (or the applied voltage
is small enough), it may wonder whether limit cycles might
be avoided by forcing them to appear only at a very small
amplitudes. Hence, this might explain why limit cycle has
disappeared.
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FIGURE 15. Experimental results when using controller gains in Table 4c).

Even though the limit cycle has disappeared when using
the gain set c), it is stressed that the limit cycle avoidance is
not achieved all of the times that an experiment is performed
with such a controller gains. Some times very small and
very slow oscillations are observed on both z1 and y whereas
z3 remains at zero without oscillations. Thus, limit cycle
avoidance appears as a random event perhaps because the
small threshold δ is uncertain and changes during normal
operation.

IV. EXPERIMENTAL PROTOTYPE
All of the above experiments were performed using a Furuta
pendulum prototype built at the Control Systems Laboratory
of Universidad Autónoma de Querétaro, whose numerical
parameters are shown in Table 1. Fig. 16 presents a picture
of this Furuta pendulum and the complete electric diagram
is presented in Fig. 17. Control algorithm is implemented in
a Builder 6 C++ program which is executed by a personal
computer. The personal computer receives the mechanism
output data from a PIC16F877A microcontroller and sends
back to the microcontroller the mechanism input data. Then,
microcontroller sends to motor the corresponding voltage
signal. Both, personal computer and microcontroller work at
a 0.01[s] sampling period. It is recognized that this is a large
sampling period. However, it must be stressed that, according
to our experience with different Furuta pendulum prototypes,
a large sampling period is recommendable to accomplish
limit cycle elimination. Moreover, it was also found in simu-
lations that, in the case a limit cycle is eliminated, addition of
noise to position measurements results again in oscillations
due to a limit cycle. Interestingly enough is that it was also
observed in experiments that noise is more appreciable when
using a small sampling period.

An L298 integrated circuit containing two full-bridge
drivers, which are parallel connected, is used as power ampli-
fier. Three AND logic gates manage the enable bits for the

FIGURE 16. Furuta pendulum built at the Control Systems Laboratory of
Universidad Autónoma de Querétaro.

L298 full-bridge. The power signal is applied on a permanent
magnet brushed DC motor, model Tohoko Ricoh 7K00011,
which is employed as the mechanism actuator. This motor
is provided with a 400 pulses/revolution encoder, which is
used to measure the arm position. The pendulum position
is measured by a 1000 pulses/revolution encoder, model
S1-1000-250-I-B-D from USDigital (bottom encoder in
Fig. 17). Velocity of both arm and pendulum is estimated by
numerical differentiation, i.e. ωv = 1θ

1t , where θ stands for
position of either arm or pendulum, ωv is velocity of either
arm or pendulum, 1θ = θk − θk−1, with k standing for
discrete time, and 1t = 0.01[s] is sampling period. Com-
munication between personal computer and microcontroller
is rendered possible by a MAX232. Finally, the complete
control system is put to work through SWITCH_1.

The mechanism is provided with an electric current loop
driven by a porportional-integal (PI) controller driven by the
difference id − ic, where ic is electric current through the
motor armature and id is the desired current. The PI controller
is implemented in the personal computer program with 0.8
as the proportional gain and 130 as the integral gain. The
desired current is computed as id = τ/km, where τ is
obtained from either (19) or (11) and km = 0.0368[Nm/A].
This ensures that ic ≈ id for all time and, hence, torque
generated by motor approximately equals the desired torque
given by either (19) or (11). Electric current through themotor
armature ic is converted to a voltage signal by a 1[�]/5[W]
power resistance, which is series connected tomotor armature
terminals. This voltage is measured by the differential voltage
amplifier located at the left upper corner in Fig. 17. After
that, this signal is suitably amplified and a summing amplifier
is used to center the zero current value at a +2.5[V] level.
Then, the measured current is low-pass filtered and sent to
a 10 bit analogue-to-digital converter in the microcontroller,
whose input analogue range is [0,+5][V]. This allows to
measure electric current in the range [−2.5,+2.5][A]. Recall
that the 1[�] power resistance converts electric current into a
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FIGURE 17. Electric diagram of Furuta pendulum used in experiments.

voltage signal whose numerical value equals electric current
in Amperes.

Condition to switch on the stabilizing controller (11) is
set as 3(θ1 − teta1d)2 + θ̇21 < 0.05, where teta1d equals
either 0[rad] or 2π[rad], i.e. the pendulum upward position.
If this is not the case then controller (19) is kept working.
In all of the experiments reported in this paper the initial
conditions [θ0, θ̇0, θ1, θ̇1] = [0, 0, π, 0] were fixed at the time
when controller (19) starts to work. According to theory on
controller (19), reported in [35], [36], an initial ‘‘kick’’ signal
is required to start the swing-upmotion. It was observed in the
experiments that this ‘‘kick’’ signal automatically appears at
the moment when turning on the power supply. As it can be
observed from Figs. 14 and 15, controller (19) accomplishes
the swing-up task in approximately the same time. However
a difference of about 5[s] exists between time required in
these figures and time required in Fig. 5. This difference in
time might be attributed to i) the large sampling period used
in experiments (because of limit cycle elimination reasons,
as explained above), i.e. 0.01[s], ii) saturation of applied
voltage, or iii) a different ‘‘kick’’ signal. However, it is
also important to remember that (nonlinear) friction has not
been taken into account in [35], [36] when designing con-
troller (19). Consider, for instance, Fig. 14(a) where it is
clear that oscillation of θ1 has not an ever growing amplitude.
Moreover, it is observed in figs. 14(a) and 15(a) that con-
troller (11) could be switched on at about t = 10[s], but this
was not the case. Such a behavior can be attributed to friction.
Any way, it must be stressed that study of performance of

controller (19) is not the aim of the present work and it is
employed here just to provide suitable initial conditions to
test controller (11). Although these initial conditions are not
the same in all experiments, they are not artificial in the sense
that they are not specially selected just to show that an exper-
iment works well. On the contrary, these initial conditions are
realistic in the sense that they result from a previous swing-
up task and the stabilizing controller works well when starting
from such non a priori known initial conditions.

V. COURSE DESCRIPTION
The Engineering Faculty of Universidad Autónoma de
Querétaro at Querétaro, México, offers the Automation Engi-
neering major. As a part of the curricula, in the fifth and sixth
semesters, the enrolled students attend the subjects Control I
and Control II, respectively. Control I is a course composed
by three hours a week lectures on theoretical aspects of the
time response approach of classical control systems: first and
second order systems, block algebra, Routh stability criterion,
the steady state error, and analysis and design using root
locus. Additionally, a one hour a week laboratory session
is included where students gain experience on system mod-
elling, system response simulation, control systems analy-
sis and design, and experimental controller implementation
using both analogue (operational amplifiers) and digital (per-
sonal computer and microcontrollers) electronics. As a final
project, students model and experimentally identify a ball
and beam system, design a controller using root locus and,
finally, experimentally test controller that they have designed
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TABLE 5. Student evaluation.

using a computer to implement the control algorithm and a
microcontroller-based acquisition board built in the labora-
tory sessions.

Control II is divided in two parts: the classical frequency
response approach of control systems and the modern control
state variable approach for linear systems. This course is com-
posed by four hours a week lectures on theoretical aspects
of these subjects and one hour a week is devoted to labora-
tory. In laboratory, students perform experiments with passive
filters as a manner to understand what frequency response
means, they experimentally identify a brushed DC motor
using its frequency response and, based on these results,
they design a proportional-integral velocity controller and
a proportional-integral-derivative position controller. They
are also introduced to limit cycle phenomenon by studying
its effects when controlling position of an inertia actuated
by a brushed DC motor through a rotational spring. As a
project for the frequency response approach, they design and
experimentally test a controller for the ball and beam system.
Second part of semester in laboratory is focused to control
the Furuta pendulum as exposed in the present paper. With
this aim, theoretical lectures on the state variable approach
are focused on state variables definition and model represen-
tation, stability, controllability and observability, linear static
state feedback control, linear feedback using observers, and
differential flatness.

Although differential flatness might seem too elaborated
for a first course on the state variable approach, exposition of
the subject is simplified by focusing on the strictly necessary
tools for application to Furuta pendulum. For instance, a
linear differentially flat system is defined just as a control-
lable linear system. Then, result in [59], Ch. 2 is presented,
i.e. expression in (5) as the manner to find the flat output.

Using these ideas and all of the previous subjects studied in
both Control I and Control II courses, students are capable to
understand all of the concepts presented in this paper.

Since the main subject of both Control I and Control II
courses are linear control systems, the linear approximate
model of the Furuta pendulum is not deduced but it is just
described in classroom, highlighting main attributes such
as local validity, system order, state variables and input
variables, controllability, differential flatness property, and
proportional-integral control of electric current. The students
are motivated to see model deduction in [35], [36]. Students
are organized in groups and guided to simulate the dynamic
model of the Furuta pendulum in the Matlab-Simulink envi-
ronment. For this, they are provided with the complete non-
linear model of the Furuta pendulum which is used by them
as a black box with an input and state variables as output. This
is with the intention to understand the behavior of the system.
Students are asked to select controller gains for controller
in (11) with the only direction that real part of all eigenvalues
of matrix A−BK must be negative. The proposed controllers
must be simulated in closed-loop with the nonlinear model of
the Furuta pendulum. This is intended for students to realize
that this is not a simple task and somemethodology rendering
it easier would be useful. Then, students are asked to obtain
transfer function in (9). Subsequently, they are encouraged to
apply the methodology herein presented for tuning a linear
controller that regulates the Furuta pendulum in the upright
position. When the controller design and its corresponding
tuning are approved by the subject professor, the students
proceed to simulate the system in closed-loop. Once their
professor has verified that a good performance is obtained
in simulation, students are allowed to test their design in the
Furuta Pendulum prototype associated with Figs. 16 and 17.
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To do this, students only have to replace their controller gains
in the Builder 6 C++ program that is provided by professor.
This avoids equipment damage due to uncarelessness of stu-
dents. Finally, the students have to carry out a report, where
they explain with their own words what they have understood
about the Furuta pendulum system, control methodology,
gain selection using root locus, and behavior of the closed-
loop system.

VI. EVALUATION
After experimentally controlling the Furuta pendulum, the
fourteen students enrolled in the course Control II were asked
to answer a questionnaire to evaluate the course. The obtained
results are presented in Table 5. There, a scale from 1 to 5
was used to indicate dreadful, bad, regular, good, and excel-
lent, respectively. Most students have found that tuning a
linear state feedback for the Furuta pendulum is difficult
when the only direction is to render negative real part of
all eigenvalues of a matrix. They have explained that this
is specially true because they have performed simulations
using the complete nonlinear model of the Furuta pendulum.
In such a scenario actuator saturation and large state vari-
ables values may appear when using large controller gains
which avoids success of the control task. On the other hand,
the proposed methodology renders easier controller gains
selection. Besides, they have found that solving this control
problem clarifies use of classical control tools such as root
locus and frequency response. The above is sustained by the
obtained average score which is found between 3.29 and
4.86 points, that is, the course was evaluated as regular to
excellent. Therefore, it is concluded that the proposed activ-
ities related to the design of a linear state regulator for the
Furuta pendulum by using differential flatness and root locus
are positive and effective to enhance the understanding and
grasping of knowledge in students.

VII. CONCLUSION
This paper has presented a control methodology to tune a
linear state feedback regulator for the Furuta pendulum. This
has been accomplished exploiting the Furuta pendulum dif-
ferential flatness property and using classical control design
tools such as the root locus method. The proposed approach
has been used to prove existence of a limit cycle induced by
static friction at shaft ofmotor used as actuator. Then, our pro-
posal has been focused to improve closed-loop system perfor-
mance by reducing or even eliminating effects of limit cycles.
Experimental results show that the proposed methodology
successfully improves closed-loop performance by reducing
and, eventually, eliminating effects of limit cycles.

Students have found that the proposed controller tuning
methodology renders easier to learn control design tech-
niques. Reason for this is that our proposal relies on clear clas-
sical control ideas to give insight on how to select controller
gains. Furthermore, students believe that use of classical
control design tools allow them to understand and validate
by practice classical control concepts.
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