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ABSTRACT In this paper, we make an investigation of the problem of passive multi-satellite localization
based on time differences of arrival (TDOA) with Earth constraint (EC). By utilizing TDOA measurements
and EC, the problem of estimating target position is formulated as a quadratically constrained quadratic
optimization. Following this, the approximate analytic solution of target position is obtained by using the
method of Lagrange multipliers and deleting the infeasible roots of polynomial in the Lagrange multiplier.
Simulation results show that the proposed method can achieve the Cramer-Rao lower bound (CRLB) with
EC for three typical scenarios, even in the worst case, e.g., in the presence of large TDOA measurement
errors with even target being far from the subastral point. However, the existing TDOA localization methods
will deviate from the CRLB with EC as the measurement error of TDOA increases. Thus, the proposed
method is more robust compared with the existing methods. In addition, the EC has a significant impact
on the TDOA localization performance. Compared with the case of no EC, the EC can make a one-order-
magnitude improvement in localization precision.

INDEX TERMS Passive multi-satellite localization, time difference of arrival, quadratical optimization,
least squares, earth constraint.

I. INTRODUCTION
Passive localization, referred to as determining the posi-
tion of a target without emitting electromagnetic wave,
has drawn significant attention in widespread applications
such as sonar, navigation, tracking and wireless sensor net-
works (WSNs) [1]–[12]. Several measurement parameters
like time differences of arrival (TDOA), frequency differ-
ences of arrival (FDOA), time of arrival (TOA), signal
strength, and angle of arrival (AOA) are independently or
partially jointly used to implement the target localization.
The TDOA attracts heavy research activities due to its per-
fect localization performance. Several TDOA-based location
methods have been proposed, such as spherical interpola-
tion method (SI) [6], Taylor series method (TS) [7], least
squares method (LS) [8], and approximate maximum likeli-
hoodmethod (AML) [13]. Based on the abovemethods, some
improved algorithms are also presented. The SI estimator
converts the nonlinear hyperbolic equations into a set of linear

equations by introducing an intermediate variable, which is
a function of the target position. But the SI approach solves
the set of linear equations directly by LS without exploit-
ing the known relation between the intermediate variable
and the target position. To improve the location precision
of the SI method and exploit the relation above, Chan and
Ho [8] propose the two-stage weighted least square (TWLS)
algorithm. Also, Huang et al. [14] propose the linear cor-
rection least squares (LCLS) method. These two methods
can achieve the Cramer-Rao lower bound (CRLB) in the
lowTDOA-measurement-error region. TS andAMLmethods
are iterative algorithms and they usually need a good initial
value, which is close to the target position, to guarantee
the convergence to globally optimal solution. However, it is
most often difficult to obtain this initial value in practical
localization scenarios. In [15], the optimal sensor placement
for TDOA-based localization is studied by considering a
distance-dependent noise model in WSNs.
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In a passive multi-satellite localization scenario with Earth
constraint (EC), how to achieve the CRLB of TDOA with
EC is a challenging issue, in particular, by an analytic
approach. The paper aims to present an algorithm which can
obtain an approximate analytic solution of target position
and provide a good localization performance even at high
TDOA-measurement-error region. To make full use of EC,
we model the TDOA localization as a problem of quadric
optimization (QO). Via the method of Lagrange multipli-
ers, the analytic solution of target position is also derived
and proved. Computer simulations show that the proposed
method can reach the CRLB with EC for three typical situa-
tions, even in the high TDOA-measurement-error region with
target position being far from the subastral point.

The rest of the paper is organized as follows: Section II
describes the system model. In Section III, considering EC,
the TDOA localization problem is casted as a quadratic opti-
mization with quadratic constraint. The approximate closed-
form expression for QO is derived and proved by the method
of Lagrange multipliers and deleting the infeasible roots of
the polynomial in the Lagrange multiplier. Simulation results
and analysis are presented in Section IV. Finally, we draw our
conclusions in Section V .

Notations: Bold letters denote vectors and matrices. (·)T

and (·)−1 denote the transposition, and inverse of matrix,
respectively. In represents the n × n identity matrix, and
operator diag(v) puts the vector v on the main diagonal. ‖•‖2
denotes the 2-norm of a vector. 0m×n denotes the m × n
zero matrix. Mathematic operation tr {A} denotes the trace of
matrix A.

FIGURE 1. Passive multi-satellite localization system.

II. SYSTEM MODEL
In Fig. 1, we consider a 3D passive multi-satellite localiza-
tion problem based on TDOA technique. The position of
the unknown target on Earth surface position is denoted by

r = (x, y, z)T . The satellite observation system consists ofM
satellites locating at ri = (xi, yi, zi)T , with i = 1, 2, . . . ,M .
Without loss of generality, we choose satellite 1 as the pri-
mary one and the remainingM−1 satellites as the secondary
ones.

Without channel noises, the TDOA from target to satellite 1
and satellite i is expressed as

τi1 =
1
c
{‖ri − r‖2 − ‖r1 − r‖2} =

di − d1
c

, (1)

where c is the speed of light, and di denotes the distances
between target and satellite i represented as

di = ‖r− ri‖2, i = 1, 2, . . . ,M . (2)

Considering the measurement errors in practical environ-
ment, we obtain the TDOA from target to satellite 1 and
satellite i

τ̂i1 = τi1 +1τi1, i = 2, 3, . . . ,M . (3)

where 1τi1 is the TDOA measurement error and assumed to
obey the Gaussian distribution with zero mean and variance
σ 2 [8], [10], [13].
Combining (1) and (3), we have,

cτ̂i1 = di − d1 + c1τi1. (4)

Moving the second term of the right-hand side of (4) to the
left-hand side of (4) forms a new equation

cτ̂i1 + d1 = di + c1τi1. (5)

Then squaring both sides of (5) yields(
cτ̂i1

)2
+ 2

(
cτ̂i1d1

)
+ d21 = (c1τi1)2

+ 2c1τi1di + d2i , i ∈ {2, 3, . . . ,M}, (6)

and using (2), meanwhile, ignoring the first term (c1τi1)2

on the right-hand side of (6), due to its far smaller value
compared with other terms, hence we obtain(

cτ̂i1
)2
+ rT1 r1 − rTi ri = 2

(
rT1 − rTi

)
r

− 2
(
cτ̂i1r10

)
+ 2c1τi1di, i ∈ {2, 3, . . . ,M}, (7)

where r10 = d1 represents the range between target and
satellite 1. Formulating (7) as the following matrix form

b̃ = Aw̃+ n, (8)

where

A =


2rT1 − 2rT2 −2cτ̂21
2rT1 − 2rT3 −2cτ̂31

...

2rT1 − 2rTM −2cτ̂M1

 , (9)

w̃ = (x, y, z, r10)T , (10)

b̃ =


c2τ̂ 221 + rT1 r1 − rT2 r2
c2τ̂ 231 + rT1 r1 − rT3 r3

...

c2τ̂ 2M1 + rT1 r1 − rTMrM

 , (11)
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and

n = (2c1τ21d2, 2c1τ31d3, · · · , 2c1τM1dM )T . (12)

The CRLB provides the lowest bound on the estimated
precision that an unbiased location estimator can achieve. It
is usually used for evaluate the performance of estimation
methods. The target is on Earth and re is the radius of Earth,
then the EC [16] can be written as

rT r = r2e . (13)

Considering the EC, the CRLB of an unbiased estimator is
given by [16]

tr {cov (r)}= tr
{
J−1t − J−1t F

(
FT J−1t F

)−1
FT J−1t |r=ro

}
,

(14)

where matrix F is the gradient vector

F = 2 (x, y, z)T (15)

of EC with respect to the unknown target position, and the
matrix Jt is the Fisher information matrix

Jt = GT
t Q
−1Gt , (16)

with Q = c2σ 2IM−1 being the range measurement error
covariance matrix, matrix Gt is

Gt =



(r− r2)T

d2
−
(r− r1)T

d1
(r− r3)T

d3
−
(r− r1)T

d1
...

(r− rM )T

dM
−
(r− r1)T

d1


. (17)

Regardless of EC, the CRLB simply reduces to tr
{
J−1t

}
.

Observing (14) and compared to tr
{
J−1t

}
, it is evident that

introducing EC can lower location error. Additionally, a good
satellite constellation requires that the choice of satellite posi-
tions should guarantee the non-singular property of thematrix
product ATA.

III. PROPOSED QUADRATIC OPTIMIZATION METHOD
In the section, we model the TDOA location problem as a
quadratic optimization [17]. By introducing the method of
Lagrangemultipliers, the problem of TDOA localization with
EC is transformed into a problem of finding a set of feasible
roots of seven-degree polynomial in the Lagrange multiplier.

Firstly, let us define

r̃1 = (x1, y1, z1, 0)T , (18)

b = b̃− Ãr1, (19)

and

w = (x − x1, y− y1, z− z1, r10)T = w̃− r̃1, (20)

then, (8) can be rewritten as

b = Aw+ n. (21)

The EC equation in (13) is represented in matrix form

wT6ew+ 2wT6ẽr1 = ρ, (22)

where

6e = diag{1, 1, 1, 0}, (23)

q = 6ẽr1, (24)

and

ρ = r2e − rT1 r1. (25)

In accordance with (21) and (22), the TDOA localization
problem with EC is casted as the following quadratic opti-
mization

min
w

(b− Aw)T (b− Aw)

s. t. wT6ew+ 2qTw = ρ. (26)

To solve the above optimization problem, using the method
of Lagrange multipliers, we define the Lagrange function

L (w, λ) = (b− Aw)T (b− Aw)

+ λ
(
wT6ew+ 2qTw− ρ

)
. (27)

Differentiating L (w, λ) with respect to w and then equating
the result to zero lead to the solution of ŵ

ŵ =
(
ATA+ λ6e

)−1 (
ATb− λq

)
, (28)

where λ is needed to be determined. So we substitute (28)
into the equation constraint of (26) as shown in (22), then we
have(
bTA− λqT

) (
ATA+ λ6e

)−1
6e(

ATA+ λ6e

)−1 (
ATb− λq

)
+ 2qT

(
ATA+ λ6e

)−1 (
ATb− λq

)
− ρ = 0, (29)

which is an equation of the unknown Lagrange multiplier
λ. Below, we will show how to compute the parameter λ.
The key is to convert the left-hand side of equation (29)
into a seven-degree polynomial of λ by using the following
theorem.
Theorem 1: If rank(A) = 4, and 6e = diag{1, 1, 1, 0},

where the measurement matrix A ∈ R(M−1)×4, then the
matrix product

(
ATA

)−1
6e is diagonalizable.

Proof: Please see Appendix A. �
Since the

(
ATA

)−1
6e is diagonalizable, assuming 3 is the

corresponding diagonal matrix after diagonalization, then the(
ATA

)−1
6e can be diagonalized in the following form(

ATA
)−1

6e = U3U−1. (30)
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where U is an 4× 4 nonsingular matrix. Hence, we get

6e =

(
ATA

)
U3U−1, (31)

which yields(
ATA+ λ6e

)−1
= U (I+ λ3)−1 U−1

(
ATA

)−1
. (32)

Placing (32) in (29), and letting R = I+ λ3, we have

ρ =
(
bTA− λqT

)
×

[
UR−13R−1U−1

(
ATA

)−1] (
ATb− λq

)
+ 2qT

[
UR−1U−1

(
ATA

)−1] (
ATb− λq

)
. (33)

To simplify the above equation, let us define

cT = qTU = (c1, c2, c3, c4), (34)

eT = bTAU = (e1, e2, e3, e4), (35)

g = U−1
(
ATA

)−1
q = (g1, g2, g3, g4)T , (36)

and

f = U−1
(
ATA

)−1
ATb = (f1, f2, f3, f4)T . (37)

Substituting the above equations from (34) to (37) in (33)
yields

2cTR−1f− 2λcTR−1g+ eTR−13R−1f

− λeTR−13R−1g− λcTR−13R−1f

+ λ2cTR−13R−1g− ρ = 0. (38)

Considering that the rank of matrix
(
ATA

)−1
6e is 3, and

there exists only one zero eigenvalue. Assuming 3 =

diag {γ1, γ2, γ3, γ4}, and γi, i = 1, 2, . . . , 4 , is the cor-
responding eigenvalue. Let γ4 = 0, then the equation in (38)
can be further simplified as

2c4f4 − ρ − 2λc4g4 + 2
3∑
i=1

cifi
1+ λγi

− 2λ
3∑
i=1

cigi
1+ λγi

+

3∑
i=1

eifiγi
(1+ λγi)2

− λ

3∑
i=1

eigiγi
(1+ λγi)2

− λ

3∑
i=1

cifiγi
(1+ λγi)2

+ λ2
3∑
i=1

cigiγi
(1+ λγi)2

= 0, (39)

which can be expanded as a polynomial of degree 7 in λ as
follows

f (λ) = P7λ7 + P6λ6 + P5λ5

+P4λ4 + P3λ3 + P2λ2 + P1λ1 + P0, (40)

where all coefficients of the polynomial in (40) are given in
Appendix B. The roots of equation in (40) can be obtained
by using the numerical methods in [18], like the Newton-
Raphson method in [19]. Notice that in a real optimization

problems, the target position is a real three-dimensional vec-
tor, thus the Lagrange multiplier should be also a real value.
So, all complex roots of λ should be discarded. Then, substi-
tuting the remaining roots into (28), we get the set Sw of esti-
mated values of ŵλ of w. Combining (20), (18), and (21), the
Sr set of estimated candidate positions of target is obtained as
Sr = {̂rλ |̂rλ = ŵλ (1 : 3)+ r1, ŵλ ∈ Sw}. Finally, we attain
the set So,r of the optimal target positions r̂ of minimizing

M∑
i=2

{(‖ r̂λ − ri ‖ − ‖ r̂λ − r1 ‖)− cτ̂i1}2 . (41)

over all r̂λ ∈ Sr . To clearify, the above operation procedure
is summarized in Algorithm 1 below, and the corresponding
detailed flow-chart graph is also plotted in Fig. 2. It is par-
ticularly noted that it is possible to still exist several optimal
feasible solutions in set So, r achieving the same minimum
value in (41). If this situation appears, any element of set So, r
is randomly chosen as the optimal solution to target position.

Algorithm 1 Proposed Quadratic Optimization TDOA
Localization Method
Input: A, b, 6e, q, and ρ.
Output: Target position r̂.
Steps:

1) Calculate matrices3, andU by using (30), and c, e, g
and f by using (34), (35), (36), and (37).

2) Get the seven roots of equation (40) by the Newton-
Raphson method.

3) Discard the complex roots for a real optimization prob-
lem.

4) Obtain the corresponding set Sw of all ŵ′λs by substi-
tuting the rest roots into (28).

5) Compute the set Sr of all candidate target positions
r̂λ = ŵλ (1 : 3)+ r1 using (20).

6) Choose the best estimated target position by
minimizing the following cost function
M∑
i=2
{(‖ r̂λ − ri ‖ − ‖ r̂λ − r1 ‖)− cτ̂i1}2 over the set

Sr of candidate target positions, which is expressed as:

r̂ = arg min
r̂λ∈Sr

M∑
i=2
{(‖ r̂λ − ri ‖ − ‖ r̂λ − r1 ‖)− cτ̂i1}2.

IV. SIMULATIONS AND DISCUSSIONS
In this section, simulations are carried out to evaluate the per-
formance of the proposed method compared with the TWLS
in [8], the AML in [13], and CRLBs. Below, the root of mean
square errors (RMSE) is adopted as themetric for localization
performance which is defined as

RMSE(r) =

√√√√ 1
N

N∑
k=1

(̂rn − r)T (̂rn − r), (42)
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FIGURE 2. Block diagram for the proposed method.

where N is the total times of simulation loops for every given
measurement error and r̂n represents the estimation of target
position in the nth time of Monte Carlo simulation. The ran-
dom TDOA measurement error obeys the Gaussian distribu-
tion with zero mean and its standard deviation σ varies from
0.01ns to 100ns. The subastral point is the intersection point
between the Earth surface and the line segment of connecting
the primary satellite and Earth center.

According to [10], we also use a symmetric satel-
lite constellation for the convenience of computation.

TABLE 1. Satellite Positions (E: East, N: North)

FIGURE 3. RMSE versus TDOA measurement error σ far from the
subastral point at r = (0,138◦E,8◦N).

The localization system consists of five satellites formed
as a rectangular pyramid, and their positions are listed in
Table 1 above, where h denotes the height away from the
Earth in terms of kilometers (km), β denotes longitude, and
α denotes latitude of the satellites. With the definition of
rm = (xm, ym, zm)T , we have

xm = (re + hm) cosαm cosβm,

ym = (re + hm) cosαm sinβm,

zm = (re + hm) sinαm. (43)

Fig. 3 plots the curves of the RMSEs versus standard
deviation σ of TDOA measurement error for the proposed
method, TWLS in [8], AML in [13] , where the target is
on Earth and sited at 138◦E (E: East longitude) and 8◦N
(N: North latitude), which is approximately 1000 km away
from the subastral point. In the region near the subastral point,
localization errors are small, the proposed method and TWLS
algorithm can both achieve CRLBs with EC, and outperform
AML slightly.

In Fig. 4, we move the target a little farther away from the
subastral point and make a performance comparison similar
to Fig. 3, where the target is located at 112◦E and 8◦N and
is about 2000 km from the subastral point. From this figure,
it is very obvious that the proposed method performs much
better than AML for the entire measurement error region.
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FIGURE 4. RMSE versus TDOA measurement error σ far from the
subastral point at r = (0,112◦E,8◦N).

Compared with Fig. 3, the localization performance differ-
ence becomes large. For example, at the TDOAmeasurement
error σ = 10ns, the location error of the AML is 1 km while
that of the proposed method is only 0.2 km. And when σ ≤
10ns, the performance of the TWLS and proposed schemes
is almost the same, they are both close to the CRLB with
EC. However, as the TDOA measurement error increases to
σ > 10ns, the performance degradation of TWLS becomes
obvious, while our proposed method still achieves the CRLB
with EC.

In Fig. 5, the target position is moved to the point r =
(0, 1550E, 20◦S) on Earth surface, more than 3000 km dis-
tance from the subastral point. Observing this figure, the
TWLS scheme performs worse than that in Fig. 4. It can be
seen that the RMSE value of TWLS scheme increases signif-
icantly and deviates from the CRLB curve with EC at σ ≥
5ns. Here, the AML method outperforms the TWLS scheme.
Unlike the TWLS algorithm, the proposed method can still
achieve the CRLBs even in the large TDOA-measurement-
error region. Also, the proposed method still performs better
than AML algorithm in the regions far away from the subas-
tral point.

From the Fig. 3, Fig. 4 and Fig. 5, it can be seen that the
TWLS algorithm can achieve the CRLB with EC in the small
TDOA measurement error region. However, the TWLS per-
formance degrades quickly when TDOA measurement error
becomes larger. It means that this method is not robust. The
proposed method can always achieve CRLB with EC, which
shows a good robustness. Meanwhile, the curve of CRLB
with EC is below the curve of CRLBwithout EC and the value
of the former value is about one tenth of that of the latter.
It is evident that, exploiting EC can significantly improve
the localization accuracy, which is in good agreement with
theoretical analysis.

FIGURE 5. RMSE versus TDOA measurement error σ far from the
subastral point at r = (0,155◦E,20◦S).

FIGURE 6. RMSE versus TDOA measurement error σ far from the
subastral point at r = (0,138◦E,8◦N).

TABLE 2. Satellite Positions (E: East, N: North)

To further verify the localization performance of the pro-
posed method, all satellite positions are moved to the new
positions, which are indicated in Table 2 with the same pri-
mary satellite position as Table 1, but the angles between the

9288 VOLUME 4, 2016
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FIGURE 7. RMSE versus TDOA measurement error σ far from the
subastral point at r = (0,148◦E,10◦N).

FIGURE 8. RMSE versus TDOA measurement error σ far from the
subastral point at r = (0,155◦E,20◦N).

lines of connecting the primary satellite to the secondary ones
and the line of connecting the Earth center and the primary
satellite are greater than those angles shown in Table 1. Simi-
lar to Fig. 3, Fig. 4, and Fig. 5, Fig. 6, Fig. 7, and Fig. 8 plot the
corresponding curves of RMSE versus σ for three different
scenarios: near, medium, and far, respectively. Clearly, they
show the same performance trend as Fig. 3, Fig. 4, and
Fig. 5. EC still makes an one-order-magnitude performance
improvement over no EC case. The localization performance
of the proposed method is better than or equal to those of
AML and TWLS in three different situations (distance: close,
medium, and far).

V. CONCLUSION
In this paper, a quadratically constrained quadratic program-
ming is developed for passive multi-satellite TDOA local-
ization with EC. By adopting the method of Lagrange mul-
tipliers, the TDOA localization problem is converted into a
problem of computing all roots of seven-degree polynomial in
the Lagrange multiplier λ. Then, the corresponding analytic
solution of target position is readily attained by using the
optimal value of λ. From simulations and analysis, we find
the proposed algorithm can achieve CRLB with EC for three
typical scenarios, even when TDOA measurement error is
large and the target is far away the subastral point. Here, EC
plays a significant role in improving the TDOA localization
precision and makes an one-order-magnitude improvement
in localization precision of TDOA compared to the case of
no EC.

APPENDIX A
PROOF OF THEOREM 1
Proof: The matrix A ∈ R(M−1)×4, where R(M−1)×4 denotes
a space of (M − 1) × 4 real matrices, and rank(A) = 4.
Since (ATA)T = ATA, and ((ATA)−1)T = (ATA)−1, we
can conclude that both matrices (ATA) and (ATA)−1 are real
symmetric matrices, which can be diagonalized.
If Av = 0, the vector v must be a zero vector because of

rank(A) = 4. Hence, for any v ∈ R4 and v 6= 0, where R4

denotes the space of four-dimensional real vectors, we have

vT (ATA)v = (Av)T (Av) = (Av,Av) > 0. (44)

The matrix ATA is positive definite, which means that all
eigenvalues of ATA are positive and the matrix (ATA)−1 is
also a positive-definite matrix.
Let us define

J = (ATA)−16e, (45)

and

K = J(1 : 3, 1 : 3). (46)

If we rewrite (ATA)−1 as follows

(ATA)−1 =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 (47)

then matrices J and K have the following relationship

J =


a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 0
a41 a42 a43 0

 = ( K 03×1
sT 0

)
, (48)

where s = (a41, a42, a43)T , 03×1 is a three-dimensional
column vector of all zeros, and

K =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 . (49)
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Because matrix (ATA)−1 is real symmetric and positive defi-
nite, its leading principal minors are positive due to the nature
of positive-definite matrix. Thus, we conclude that matrix K
is a real symmetric matrix with rank(K) = 3. The matrix K
can be diagonalizable, there exists three linearly independent
eigenvectors, i.e., x1, x2, and x3 associated with its three
eigen-values λ1, λ2, and λ3. This implies that Kxi = λixi
for i ∈ {1, 2, 3}. The characteristic polynomial of K is

p(t) = det(tI−K) = (t − λ1)(t − λ2)(t − λ3), (50)

where λ1, λ2, and λ3 are the eigenvalues of matrix K and
all are non-zeros. The characteristic polynomial of J can be
expressed as

q(t) = det(tI− J) = t(t − λ1)(t − λ2)(t − λ3), (51)

which means that the set of all non-zero eigen-values of
matrix J is the same as that of K. Below, we construct the
corresponding eigen-vectors of J from all eigen-vectors of
matrix K.
Firstly, we find that the eigen-vector corresponding to the

zero-eigen-value of matrix J is

y0 = (0, 0, 0, 1)T (52)

by observing the detailed structure of matrix J in (48). For the
second eigen-value of t = λ1, we assume the corresponding
eigenvector is the form y1 = (xT1 , y14)

T , where x1 is known
to be the eigen-vector of matrix K associated with the first
eigen-value t = λ1, and the value of y14 is unknown. Con-
sidering y1 is the eigen-vector of matrix J associated with the
eigen-value t = λ1, we have

Jy1 =
(
K 03×1
sT 0

)(
x1
y14

)
=

(
Kx1
sT x1

)
(53)

Placing Kx1 = λ1x1 into the above equation, we have

Jy1 =
(
λ1x1
sx1

)
= λ1

(
x1
sT x1
λ1

)
(54)

which yields

y14 =
sT x1
λ1

, (55)

which results in the fact that y1 is the eigen-vector associated
with the eigen-value λ1 of matrix J with

y1 =

(
x1
sT x1
λ1

)
. (56)

In a similar manner, we get the remaining two eigen-vectors

y2 =

(
x2
sT x2
λ2

)
, (57)

and

y3 =

(
x3
sT x3
λ3

)
(58)

of matrix J corresponding to the eigen-values λ2 and λ3.
We infer that y1, y2 and y3 are three linearly indepen-
dent eigen-vectors because of linear independence of x1, x2
and x3.

Belowwewill prove by contraction the fact that four eigen-
vectors y0, y1, y2, and y3 of matrix J are linearly indepen-
dent. Suppose y0, y1, y2, and y3 are linearly dependent, then
we have

α0y0 + α1y1 + α2y2 + α3y3 = 0, (59)

where α0, α1, α2, and α3 are not all zeroes. It means at least
one αi 6= 0 for i ∈ {0, 1, 2, 3}. Equation (59) can be
expressed in the block-matrix form

α0

(
03×1
1

)
+ α1

(
x1
y14

)
+ α2

(
x2
y24

)
+ α3

(
x3
y34

)
=

(
α1x1 + α2x2 + α3x3

α0 + α1
sT x1
λ1
+ α2

sT x2
λ2
+ α3

sT x3
λ3

)
=

(
03×1
0

)
,

(60)

which yields

α1x1 + α2x2 + α3x3 = 03×1, (61)

and

α0 + α1
sT x1
λ1
+ α2

sT x2
λ2
+ α3

sT x3
λ3
= 0. (62)

In terms of the linear independence of x1, x2, and x3, the
equation in (61) reduces to

α1 = α2 = α3 = 0. (63)

Substituting the above condition (63) in (62) gives

α0 = −α1
sT x1
λ1
− α2

sT x2
λ2
− α3

sT x3
λ3
= 0. (64)

Until now, we have proved the fact that α0, α1, α2, and α3
are all zeros, which contradicts our assumption. Thus, we can
conclude that y0, y1, y2, and y3 are four linearly independent
eigen-vectors. According to the [20, Th. 1.3.7], we claim that
J or (ATA)−16e is diagonalizable. This completes the proof
of Theorem 1. �

APPENDIX B
COEFFICIENTS OF SEVEN-DEGREE POLYNOMIAL (40)
Proof : Define S = {1, 2, 3}, and S−i represents the remaining
set after excluding the ith element with any i ∈ S. Let
q, n, m ∈ S, j, k ∈ S−i, and

p = 2c4f4 − ρ, (65)

all coefficients of polynomial (40) are the following

P7 = −2c4g4(
∏

γ 2
n ), (66)

P6 = p(
∏

γ 2
n )− 2c4g4(

∑
m 6=n 6=q

γqγ
2
mγ

2
n ), (67)
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P5 = p(
∑

m6=n 6=q

γqγ
2
mγ

2
n )+ 2

3∑
i=1

cifi(γi
∏
j

γ 2
j )

− 2c4g4(
∑

m6=n 6=q

2γqγ 2
mγ

2
n +

1
2
γ 2
mγ

2
n )

− 2
3∑
i=1

cigi(
∑
j 6=k

1
2
γ 2
j γ

2
k + 2γiγjγ 2

k )

−

3∑
i=1

eigiγi(
∏
j

γ 2
j )−

3∑
i=1

cifiγi(
∏
j

γ 2
j )

+

3∑
i=1

cigiγi(
∑
j 6=k

2γjγ 2
k ), (68)

P4 = p(
∑

m 6=n 6=q

2γqγmγ n2 +
1
2
γ 2
mγ

2
n )

− 2c4g4(
∑

m6=n 6=k

2γmγ 2
n +

4
3
γqγmγn)

+ 2
3∑
i=1

cifi(
∑
j 6=k

1
2
γ 2
j γ

2
k + 2γiγjγ 2

k )

− 2
3∑
i=1

cigi(
∑
j 6=k

2γiγjγk + γiγ 2
j + 2γjγ 2

k )

+

3∑
i=1

eifiγi(
∏
j

γ 2
j )−

3∑
i=1

eigiγi(
∑
j 6=k

2γjγ 2
k )

−

3∑
i=1

cifiγi(
∑
j 6=k

2γjγ 2
k )

+

3∑
i=1

cigiγi(
∑
j6=k

2γjγk + γ 2
j ), (69)

P3 = p(
∑

m 6=n6=q

2γmγ 2
n +

4
3
γqγmγn)

− 2c4g4(
∑
m6=n

γ 2
n + 2γmγn)

+ 2
3∑
i=1

cifi(
∑
j 6=k

2γiγjγk + γiγ 2
j + 2γjγ 2

k )

− 2
3∑
i=1

cigi(
∑
j 6=k

2γiγj + 2γjγk + γ 2
j )

+

3∑
i=1

eifiγi(
∑
j 6=k

2γjγ 2
k )−

3∑
i=1

eigiγi(
∑
j 6=k

2γjγk + γ 2
j )

−

3∑
i=1

cifiγi(
∑
j 6=k

2γjγk + γ 2
j )+

3∑
i=1

cigiγi(
∑
j

2γj),

P2 = p(
∑
m 6=n

γ 2
n + 2γmγn)− 2c4g4(

∑
2γn)

+ 2
3∑
i=1

cifi(
∑
j 6=k

2γiγj + 2γjγk + γ 2
j )

− 2
3∑
i=1

cigi(γi +
∑
j

2γj)+
3∑
i=1

eifiγi(
∑
j 6=k

2γjγk+γ 2
j )

(70)

−

3∑
i=1

eigiγi(
∑
j

2γj)−
3∑
i=1

cifiγi(
∑
j

2γj)+
3∑
i=1

cigiγi,

(71)

P1 = p(
∑

2γn)− 2c4g4

+ 2
3∑
i=1

cifi(γi +
∑
j

2γj)− 2
3∑
i=1

cigi

+

3∑
i=1

eifiγi(
∑
j

2γj)−
3∑
i=1

eigiγi −
3∑
i=1

cifiγi, (72)

and

P0 = p+ 2
3∑
i=1

cifi +
3∑
i=1

eifiγi. (73)

This completes the representation of all coefficients of the
polynomial in (40). �
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