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ABSTRACT This paper focuses on the end-to-end signal-to-noise ratio (SNR) maximization for full-duplex
massive multiple-input multiple-output (MIMO) amplify-and-forward (AF) relay systems in the presence of
direct link. First, we rigorously prove the asymptotic optimality of themaximum-ratio combining/maximum-
ratio transmission (MRC/MRT) relaying strategy by taking into account the massive MIMO setup.
Then, concerning the equivalent optimization problem with respect to source beamformer, we advocate
a two-tier iterative algorithm relying on bi-section search, which guarantees a globally optimal solution.
As a byproduct of this approach, we show that the optimal source beamformer has an interesting generalized
channel matching structure associated with both source-relay and source-destination links. In addition to the
optimal design, we devise a high SNR approximation-based suboptimal scheme, which admits a closed-form
solution. Simulation results verify the advantage of our full-duplex relaying designs, and also demonstrate
a negligible performance gap between the proposed optimal and suboptimal methods.

INDEX TERMS Full-duplex amplify-and-forward (AF) relaying, massive multiple-input multiple-
output (MIMO), direct link, signal-to-noise ratio (SNR) maximization.

I. INTRODUCTION
Wireless full-duplex relaying, which simultaneously
transmits and receives signals using the same frequency
resource, has emerged as a promising candidate for boosting
the data rate and meanwhile expanding the coverage of future
communication systems. Recently, a number of research
works, e.g., [1]–[7], [12]–[14], have leveraged promi-
nent multiple-input multiple-output (MIMO) techniques in
full-duplex relays for further performance improvement.

Concretely, Riihonen et al. [1] advocated several
efficient full-duplex relay processing strategies such as
self-interference nullification based precoding. Different
from this study, [2]–[7] optimized end-to-end achievable rate
performance in lieu of merely dealing with self-interference,
where optimization problems were mathematically formu-
lated and addressed by methods such as gradient based
search [3]–[5] and penalty-BSUM algorithm [7].1

1The transceiver optimization for half-duplex MIMO systems have been
extensively investigated in literature, e.g, [8]–[11].

Alternatively, in some recent works [12]–[14], researchers
proposed to apply massive MIMO technology [15], [16] to
handle the inevitable self-interference in full-duplex relay
systems. As revealed in these works, with a large-scale
antenna array available at the relay, it is possible to mit-
igate the self-interference via low-complexity maximum-
ratio combining/maximum-ratio transmission (MRC/MRT)
or zero-forcing (ZF) strategy.

It is necessary to point out that most of the above works
presumed that the source-destination link is weak enough to
be neglected, which may not be suitable for characterizing
certain practical scenarios. In literature, a few efforts have
been devoted to transceiver optimization for multi-antenna
half-duplex amplify-and-forward (AF) relaying with direct
link [17]–[19]. However, we find that the extension to the
more challenging full-duplex AF relaying is non-trivial and
has not been investigated in prior works.

In this paper, we consider signal-to-noise ratio (SNR)
maximized transceiver design for full-duplex massive MIMO
AF relaying with direct link. In particular, we concern the
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scenario where a large-scale transmit antenna array with
low transmit power is equipped at the relay. We first derive
the asymptotically optimal relay receive and transmit filters
in closed forms, based on which we acquire an equivalent
problem with regard to source beamformer only. Then, we
develop a bi-section search based iterative algorithm in order
to optimally solve the problem of interest, from which we
discover that the source beamformer should be the maximum
eigenvector of the weighted difference of the source-relay and
source-destination channels’ Grammatrices.We also propose
a suboptimal closed-form solution via forcing the effective
channel gain of the direct link to be zero, which incurs almost
no performance loss as validated via simulations.
Notations: Throughout the paper, we represent scalars,

vectors andmatrices by plain, bold lowercase and bold upper-
case letters, respectively. |·| and ‖·‖ denote the absolute value
and Frobenius norm, respectively. (·)H represents the Hermi-
tian operation and E{·} stands for the statistical expectation
operation. tr(A) refers to the trace of matrix A. A � 0 means
that matrix A is positive semidefinite. I denotes the identity
matrix.

II. FULL-DUPLEX MIMO AF RELAY SYSTEM MODEL
We consider a dual-hop AF relay system comprised of one
source, one full-duplex relay and one destination. The source
has Ns antennas, the relay possesses Nr receive antennas and
Nt transmit antennas, and the destination is equipped with a
single antenna. A direct link exists between the source and
the destination. Both source and relay adopt linear transmit
or/and receive beamforming techniques for signal transmis-
sions. In such context, the relay received signal is given by

yr [t] = Hsr fsxs[t]+Hrrxr [t]+ nr [t], (1)

where Hsr and Hrr are the source-relay and self-interference
channels, fs represents the source transmit beamformer that
satisfies ‖fs‖2 ≤ Ps with Ps being the source transmit
power budget, xs[t] is the source symbol with unit variance,
xr [t] denotes the relay transmitted signal, and nr [t] stands for
the additive white Gaussian noise (AWGN) at the relay whose
covariance equals σ 2

r I. After the relay performs receive and
transmit beamforming on yr [t], we obtain the relay transmit-
ted signal by

xr [t] = frgHr yr [t − τ ], (2)

where fr and gr stand for the transmit and receive filters
adopted by the relay, and τ denotes the processing delay of the
relay. Then, based on (1) and (2), we are able to rewrite xr [t]

by the following form:

xr [t] = fr
∞∑
j=0

(gHr Hrr fr )jgHr (Hsr fsxs[t − (j+ 1)τ ]

+nr [t − (j+ 1)τ ]). (3)

We note that similar expression has also been derived
in [6], [20], and [21]. Accordingly, it is readily to calculate
the relay transmit power by

E{‖xr [t]‖2} =
‖fr‖2(|gHr Hsr fs|2 + σ 2

r ‖gr‖
2)

1− |gHr Hrr fr |2
, (4)

which does not exceed a givenmaximum valuePr . Finally, by
taking into account the signals from the relay and the source,
the received signal at the destination takes the form [4], [5],
[20], [22]

yd [t] = hHrdxr [t]+ hHsd fsxs[t]+ nd [t], (5)

where hHrd and hHsd represent the source-relay and
source-destination channels, and nd [t] is the AWGN at the
destination with variance σ 2

d .
From (3)–(5), we are able to obtain the destination SNR for

the above illustrated system by

SNRd

=
|hHrd fr |

2
|gHr Hsr fs|2

|hHrd fr |
2|gHr Hsr fs|2|gHr Hrr fr |2

1−|gHr Hrr fr |2
+
σ 2r |h

H
rd fr |

2‖gr‖2

1−|gHr Hrr fr |2
+|hHsd fs|

2+σ 2
d

,

(6)

which is a rather complicated function of the beamforming
vectors fs, fr and gr .

III. SNR MAXIMIZED FULL-DUPLEX AF RELAY
TRANSCEIVER UNDER MASSIVE MIMO SETUP
A. OPTIMAL RELAY BEAMFORMING WITH LARGE-SCALE
RELAY TRANSMIT ARRAY AND LOW TRANSMIT POWER
According to Section II, we can readily formulate the
SNR maximized transceiver optimization problem as in (7).
Unfortunately, especially due to the self-interference term
|gHr Hrr fr |2, we find that it is indeed a very difficult task to
address the above problem, let alone to reveal some underly-
ing insights as the half-duplex relaying case, e.g., the optimal
structure of the MIMO relay transceiver [19].

In the rest of the paper, we employ the popular massive
MIMO techniques, which are known to be capable of can-
celing the self-interference without involving sophisticated
signal processing [12]–[14]. Concretely, following [12], we
assume that the relay has a large-scale transmit array and
meanwhile uses a low transmit power proportional to 1/Nt ,

maximize
fs,fr ,gr

|hHrd fr |
2
|gHr Hsr fs|2

|hHrd fr |
2|gHr Hsr fs|2|gHr Hrr fr |2

1−|gHr Hrr fr |2
+

σ 2r |h
H
rd fr |

2‖gr‖2

1−|gHr Hrr fr |2
+ |hHsd fs|

2 + σ 2
d

subject to ‖fs‖2 ≤ Ps, ‖fr‖2(|gHr Hsr fs|2 + σ 2
r ‖gr‖

2) ≤ Pr (1− |gHr Hrr fr |2). (7)
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i.e., Pr =
Er
Nt

where Er is a fixed value irrelevant of Nt .
Moreover, the entries of the channels hHrd and Hrr are inde-
pendent and identically distributed (i.i.d.) zero-mean complex
Gaussian variables whose variances are γ 2

rd and γ 2
rr , respec-

tively. Under such circumstance, we show the asymptotically
optimal AF relaying strategy in the subsequent proposition.
Proposition 1: For any given fs, the asymptotically

optimal relay transmit and receive beamformers for a large-
scale relay transmit array with a low transmit power are,
respectively, given by

f∗r =

√
Er

N 2
t γ

2
rd (‖Hsr fs‖2 + σ 2

r )
hrd , (8)

g∗r =
Hsr fs
‖Hsr fs‖

. (9)

Proof: See Appendix A.
Remark 1: The proposition indicates that, whenNt is large

and Pr is proportional to 1/Nt , the classical MRC/MRT
strategy is actually an asymptotically optimal solution.
Compared to the existing spatial-domain self-interference
suppression methods that rely on numerical
algorithms [3]–[5], [7], MRC/MRT has a closed form
whose implementation complexity is fairly low. Moreover,
MRC/MRT is irrelevant to the self-interference channel Hrr ,
and hence we do not need to acquire the exact value
of Hrr .
By substituting (f∗r , g

∗
r ) in Proposition 1 into problem (7)

and employing the fact that (g∗r )
HHrr f∗r → 0 and

‖hrd‖2
Nt
→ γ 2

rd hold when Nt → ∞ (refer to Appendix A),
we acquire the following problem with only one optimization
variable fs:

maximize
fs

Erγ 2
rd‖Hsr fs‖2

(‖Hsr fs‖2 + σ 2
r )(|h

H
sd fs|

2 + σ 2
d )+ Erγ

2
rdσ

2
r

subject to ‖fs‖2 ≤ Ps. (10)

We need to highlight that, the above problem has a quite
different objective from the one under the conventional half-
duplex relaying [17], [19]. In fact, we cannot apply the algo-
rithm developed in [17], and [19] to address problem (10)
straightforwardly. Moreover, as we will see later, the optimal
structure of the source beamformer revealed in [19, Th. 1]
does not hold any more. In what follows, we first develop
a bi-section search based approach to achieve its globally
optimal solution in a semi-closed form. Subsequently, we
derive a suboptimal but closed-form solution which performs
very close to the optimal method.

B. SEMI-CLOSED FORM SOLUTION TO OPTIMAL
SOURCE BEAMFORMER
The denominator of the objective in (10) contains a cumber-
some quartic term ‖Hsr fs‖2|hHsd fs|

2, making it difficult to find
the optimal solution directly. To obtain a tractable reformu-
lation, we introduce an auxiliary variable t and equivalently

rewrite problem (10) as

maximize
fs,t

Erγ 2
rd‖Hsr fs‖2

(‖Hsr fs‖2 + σ 2
r )(t + σ

2
d )+ Erγ

2
rdσ

2
r

subject to |hHsd fs|
2
≤ t, ‖fs‖2 ≤ Ps. (11)

It is clear that the objective function is monotonically
increasing with the term ‖Hsr fs‖2. Therefore, for any fixed t ,
problem (11) amounts to

maximize
fs

‖Hsr fs‖2

subject to |hHsd fs|
2
≤ t, ‖fs‖2 ≤ Ps. (12)

This is a non-convex quadratically constrained quadratic pro-
gram (QCQP) with two quadratic constraints, which can be
transformed into an equivalent semidefinite program (SDP)
via semidefinite relaxation (SDR) [23]. Nonetheless, solving
an SDP requires a high computational cost especially when
the problem size is large. Moreover, the SDP based solution
can hardly provide a deep insight into the essence of the
optimal solution. Therefore, instead of applying the standard
SDR tool, we resort to an alternative approach that yields a
semi-closed form solution as below.
Theorem 1: The optimal f∗s to problem (12) has a semi-

closed form expression as

f∗s =
√
Psmax_eig(HH

srHsr − α
∗hsdhHsd ), (13)

wheremax_eig(·) represents the normalizedmaximum eigen-
vector that corresponds to the maximum eigenvalue of the
input matrix, and α∗ is calculated by

α∗ =

{
0 Ps|hHsdmax_eig(HH

srHsr )|2 < t ≤ Ps‖hsd‖2

α̃∗ 0 ≤ t ≤ Ps|hHsdmax_eig(HH
srHsr )|2,

(14)

in which α̃∗ is the nonnegative root of the equation
Ps|hHsdmax_eig(HH

srHsr − αhsdhHsd )|
2
= t and can be found

via bisection search.
Proof: See Appendix B.

Theorem 1 indicates that the optimal source transmit strategy
is to use all available power to transmit along the maxi-
mum eigenvector of the weighted difference of Gram matri-
ces HH

srHsr and hsdhHsd . We would like to note that, since
HH
srHsr − α

∗hsdhHsd is not necessarily positive semidefinite,
the maximum eigenvector here differs from the commonly
known dominant eigenvector corresponding to the eigenvalue
with maximum absolute value.

Based upon the second part of the proof for Theorem 1
and the fact that the constraint |hHsd fs|

2
≤ t of problem (11)

is active at the optimal point, it does not lose optimal-
ity to assume t ∈ [0,Ps|hHsdmax_eig(HH

srHsr )|2]. Thereby,
problem (11) becomes

maximize
t

Erγ 2
rd f (t)

(f (t)+ σ 2
r )(t + σ

2
d )+ Erγ

2
rdσ

2
r

subject to 0 ≤ t ≤ Ps|hHsdmax_eig(HH
srHsr )|2, (15)
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where f (t) denotes the optimal objective value of prob-
lem (12). The major intricacy of solving this problem lies
in the implicit form of the function f (t) which renders a
closed-form solution almost impossible. Nonetheless, after
performing an in-depth analysis, we discover that the optimal
solution to t can be found via a simple bi-section search
owing to the particular properties of f (t) and problem (15)
elaborated as follows.
Proposition 2: f (t) is a concave function and problem (15)

is a quasiconvex problem.
Proof: See Appendix C.

In summary, the proposed algorithm that optimally solves
problem (11) consists of two tiers. In the inner tier, we apply
Theorem 1 to calculate the optimal f∗s with t given. In the outer
tier, we determine the optimal solution to t by performing a
bi-section search for problem (15) thanks to Proposition 2.

C. CLOSED-FORM SUBOPTIMAL SOURCE
BEAMFORMER SOLUTION
The above developed algorithm requires an iterative search
process, which can lead to a high computational cost in
practice. To reduce the implementation complexity, we now
develop a suboptimal but closed-form solution to the source
beamformer fs.

Before presenting the low complexity method, let us first
investigate a special case when the noise variance at the relay
σ 2
r is very small. Under such circumstance, since σ 2

r → 0,
we can approximate the denominator of the objective in (10)
as ‖Hsr fs‖2(|hHsd fs|

2
+ σ 2

d ) by neglecting the terms that
include σ 2

r . Accordingly, when σ
2
r → 0, problem (10) is

simplified as

minimize
fs

|hHsd fs|
2
+ σ 2

d

subject to ‖fs‖2 ≤ Ps. (16)

It is readily to see that we must have hHsd fs = 0 at
optimality. This fact implies that, when the relay SNR is high,
the source should convey information only on the source-
relay-destination link so as to maximize the end-to-end SNR.
Motivated by this interesting phenomenon, we propose to fix
the structure of fs such that hHsd fs = 0 is fulfilled. To be more

specific, we let fs =
(
I− hsdhHsd

‖hsd‖2

)
v , Phsd v and plug it into

problem (10) (without forcing σ 2
r → 0), which gives

maximize
v

vHPhsdH
H
srHsrPhsd v

subject to vHPhsd v ≤ Ps. (17)

Similar to problem (12), this is also a non-convex QCQP
problem with, however, only one quadratic constraint. We are
able to obtain its optimal solution in closed form as below.
Proposition 3: The optimal solution to problem (17) is

v∗ = dv∗max_eig
(
PhsdH

H
srHsrPhsd

)
, dv∗ ṽ∗, (18)

where dv∗ =
√
Ps/((ṽ∗)HPhsd ṽ∗).

Proof: See Appendix D.

Compared to the optimal approach proposed in Section III-B,
the above solution only involves one eigenvalue decomposi-
tion and hence has much lower complexity. Moreover, it will
be verified via simulations that this method achieves almost
the same performance as the optimal one.

IV. SIMULATION RESULTS
We conduct simulations to evaluate the rate performance of
the following methods:
• The optimal full-duplex relay transceiver with ideal self-
interference cancelation (‘FD Ideal SIC’)

• The proposed optimal full-duplex relay transceiver
(‘FD Optimal’)

• The proposed suboptimal full-duplex relay transceiver
(‘FD Suboptimal’)

• The eigenmode transmission based full-duplex relay
transceiver (‘FD Eigenmode’)

• The optimal half-duplex relay transceiver [19]
(‘HD Optimal’).

The benchmark method ‘FD Ideal SIC’ is achieved by
replacing the constant γ 2

rd in ‘FD Optimal’ with ‖hrd‖
2

Nt
, which

is optimal for any finite Nt due to the absence of self-
interference. For ‘FD Eigenmode’, the source beamformer
only matches the source-relay channel Hsr and is given by
√
Psmax_eig(HH

srHsr ), while the relay receive and transmit
beamformers are the same as ‘FD Optimal’ and ‘FD Sub-
optimal’. Note that, ‘FD Optimal’, ‘FD Suboptimal’ and
‘FD Eigenmode’ all adopt the asymptotically optimal f∗r and
g∗r in Proposition 1, which may violate the relay power con-
straint for finite Nt . To deal with this issue, we scale f∗r such
that the power constraint is satisfied. During the simulations,
we set Ns = Nr = 4 and Ps = Er = 1. The entries of chan-
nelsHsr , hHrd ,Hrr and hsd are generated with i.i.d. zero-mean
complex Gaussian variables with variances being 0 dB, 0 dB,
γrr dB and γsd dB.

The achievable rates of the above listed methods are com-
pared in Fig. 1. From the figure, we find that the proposed
two methods attain almost the same rate and actually per-
form very close to the benchmark scheme ‘FD Ideal SIC’.
Compared to ‘FD Eigenmode’ that neglects direct link, both
proposed schemes achieve remarkable gains. This is due to
the fact that the direct link in the considered full-duplex
relaying protocol is regarded as an interfering link and will
severely degrade the achievable rate if the source beamformer
is not properly designed. Moreover, the proposed methods
clearly outperform ‘HD Optimal’ [19] as exemplified in the
figure.

In Fig. 2, we show the achievable rate versus self-
interference level γrr . It can be observed that, when γrr
increases, the performance of ‘FD Optimal’, ‘FD Subop-
timal’ and ‘FD Eigenmode’ degrades gradually, but they
still perform better than ‘HD Optimal’. Here we would
like to remark that, although the MRC/MRT relaying strat-
egy used in the three full-duplex transmission schemes
can eliminate self-interference when Nt approaches infinity
(see Appendix A), there still exists non-zero self-interference
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FIGURE 1. Achievable rate versus 1/σ2
d for various transmission schemes

(Nt = 32, σ2
r = −20 dB, γsd = −15 dB, γrr = −10 dB).

FIGURE 2. Achievable rate versus γrr for various transmission schemes
(Nt = 32, σ2

r = −20 dB, σ2
d = −15 dB, γsd = −15 dB).

for finite Nt , which results in performance degradation
especially when γrr is large.
The rate performance versus direct link gain γsd is

depicted in Fig. 3, where we find that the proposed opti-
mal and suboptimal schemes achieve evident rate gains over
‘FD Eigenmode’ when γsd is large, since the latter method
does not take into account the direct link. It is also interesting
to observe that, unlike the half-duplex counterpart, the per-
formance of the proposed full-duplex relaying designs is not
sensitive to the value of γsd .
We investigate the relationship between the achievable rate

and the number of relay transmit antennas in Fig. 4, from
which we can see that the rate of each method is enhanced
with the increase inNt . Furthermore, the gap between the pro-
posed full-duplex schemes and the benchmark method with
ideal self-interference cancelation becomes more and more
negligible when Nt gets larger, which verifies the asymptoti-
cal optimality property shown in Proposition 1.

We compare the achievable rate of the proposed optimal
and suboptimal transmission schemes in Fig. 5. It can be

FIGURE 3. Achievable rate versus γsd for various transmission schemes
(Nt = 32, σ2

r = −20 dB, σ2
d = −15 dB, γrr = −10 dB).

FIGURE 4. Achievable rate versus log2 Nt for various transmission
schemes (σ2

r = −20 dB, σ2
d = −15 dB, γrr = −10 dB, γsd = −15 dB).

FIGURE 5. Achievable rate versus 1/σ2
r for various transmission schemes

(Nt = 32, σ2
d = −15 dB, γrr = −10 dB, γsd = −15 dB).

found that the suboptimal scheme performs quite close to
the optimal one even when σ 2

r is large, thus validating the
effectiveness of the simplification adopted in Section III-C.
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V. CONCLUSIONS
We maximized the end-to-end SNR of a full-duplex
multi-antenna AF relay system with direct link, which uses a
large-scale transmit antenna array with low transmit power at
the relay.Wefirst proved thatMRC/MRT is an asymptotically
optimal relaying strategy. An iterative algorithm was then
devised to obtain an optimal source beamformer, which has
a semi-closed form that generalizes the conventional channel
matching structure. In addition, we also established a subopti-
mal source beamformer solution in closed formwhile causing
only a negligible performance loss compared to the optimal
design.

APPENDIX A
PROOF OF PROPOSITION 1
First, without loss of generality, let us assume that ‖gr‖ = 1
at optimality. It is then clear to see that the SNR objec-
tive in problem (7) is monotonically increasing with the
terms |hHrd fr | and |g

H
r Hsr fs|, and meanwhile decreasing with

|gHr Hrr fr |. Therefore, the asymptotically optimal solution to
fr and gr must maximize |hHrd fr | and |g

H
r Hsr fs| and minimize

|gHr Hrr fr | when Nt →∞.
We set f∗r = cfrhrd and g∗r =

Hsr fs
‖Hsr fs‖

, which maximize
|hHrd fr | and |g

H
r Hsr fs|, respectively. Then, let us set the coef-

ficient cfr =
√

Er
N 2
t γ

2
rd (‖Hsr fs‖2+σ 2r )

, resulting in (g∗r )
HHrr f∗r =√

Er
N 2
t γ

2
rd (‖Hsr fs‖2+σ 2r )

(Hsr fs)H
‖Hsr fs‖

Hrrhrd . Recall that the entries of

hHrd and Hrr are i.i.d. zero-mean complex Gaussian vari-
ables with variances γ 2

rd and γ 2
rr , respectively. Hence, when

Nt → ∞, Hrrhrd
Nt
→ 0 and accordingly (g∗r )

HHrr f∗r → 0,
meaning that (f∗r , g

∗
r ) minimizes gHr Hrr fr . Furthermore, since

‖hrd‖2
Nt

→ γ 2
rd , we can show that (f∗r , g

∗
r ) also fulfills the

relay power constraint when Nt → ∞. Thereby, (f∗r , g
∗
r ) is

asymptotically optimal.

APPENDIX B
PROOF OF THEOREM 1
According to [24, Th. 2.4], problem (12) admits an optimal
solution f∗s if and only if there exist α∗ ≥ 0 and β∗ ≥ 0 such
that the following optimality conditions hold

(HH
srHsr − α

∗hsdhHsd )f
∗
s = β

∗f∗s , (19a)

α∗(|hHsd f
∗
s |
2
− t) = 0, (19b)

β∗(‖f∗s ‖
2
− Ps) = 0, (19c)

β∗I+ α∗hsdhHsd −HH
srHsr � 0, (19d)

|hHsd f
∗
s |
2
≤ t, ‖f∗s ‖

2
≤ Ps. (19e)

It can be inferred from (19a) that β∗ is an eigenvalue of matrix
9 , HH

srHsr − α
∗hsdhHsd with f∗s being the corresponding

eigenvector. Moreover, by defining z = max_eig(9) and
invoking (19e), we obtain zH (β∗I−9)z = β∗−λmax(9) ≥ 0,
where λmax(9) denotes the maximum eigenvalue of 9. Con-
sequently, we conclude that β∗ = λmax(9) and f∗s is a
scaled version of z. To verify the expression of f∗s in (13),

we need to further show that the constraint ‖fs‖2 ≤ Ps
must be active at optimality. Suppose that ‖f∗s ‖

2 < Ps.
Then, β∗ = 0 holds from (19c). Based on the fact that
β∗ is the largest eigenvalue of 9, 9 should be negative
semidefinite. However, this cannot be true because we can

always construct a vector v =
(
I− hsdhHsd

‖hsd‖2

)
w 6= 0 such

that vH9v = wH
(
I− hsdhHsd

‖hsd‖2

)
9

(
I− hsdhHsd

‖hsd‖2

)
w > 0.2

Therefore, ‖f∗s ‖
2
= Ps and (13) holds.

We now determine the value for α∗. Define ρ(α) =
Ps|hHsdmax_eig(HH

srHsr − αhsdhHsd )|
2 and let θ (α) denote

the maximum eigenvalue of HH
srHsr − αhsdhHsd . Then, it

follows from [25] that dθ (α)
dα = −|hHsdmax_eig(HH

srHsr −

αhsdhHsd )|
2
= −

ρ(α)
Ps

and accordingly d2θ (α)
d2α

= −
1
Ps

dρ(α)
dα .

Since λmax(X) is convex for any Hermitian matrix X [26],
d2θ (α)
d2α
≥ 0 must hold and hence dρ(α)

dα ≤ 0. Consider the case
where t > Ps|hHsdmax_eig(HH

srHsr )|2 = ρ(0). It is deduced
from (13) and the monotonically decreasing property of ρ(α)
that |hHsd f

∗
s |
2
= ρ(α∗) ≤ ρ(0) < t . Thus, based on (19b),

we have α∗ = 0. For the case where t ≤ ρ(0), let us
assume that |hHsd f

∗
s |
2
= ρ(α∗) < t . Then, (19b) indicates that

α∗ = 0 which contradicts the condition t ≤ ρ(0). Hence,
ρ(α∗) = t and we can find α∗ via bisection method owing to
the decreasing monotonicity of ρ(α).

APPENDIX C
PROOF OF PROPOSITION 2
Let us perform SDR on the QCQP problem in (12), which,
according to [23], yields an equivalent SDP problem as

minimize
Qs�0

− tr(HH
srHsrQs)

subject to t − tr(hsdhHsdQs) ≥ 0, Ps − tr(Qs) ≥ 0. (20)

Then, by invoking [27, Corollary 2.1], we arrive at the con-
clusion that the optimal objective value of the above problem
is a convex function of the parameter t . Therefore, the optimal
objective value of problem (12), i.e., f (t), is concave.
To show the quasiconvexity of problem (15), we rewrite

it as

minimize
t

(f (t)+ σ 2
r )(t + σ

2
d )+ Erγ

2
rdσ

2
r

f (t)
subject to 0 ≤ t ≤ Ps|hHsdmax_eig(HH

srHsr )|2. (21)

Denote the above objective by g(t). Then, we calculate
the first-order and second-order derivatives of g(t), which

are given by g′(t) = −
(σ 2r t+σ

2
r σ

2
d+Erγ

2
rdσ

2
r )f
′(t)

f 2(t)
+

σ 2r
f (t) + 1

and g′′(t) =
2(σ 2r t+σ

2
r σ

2
d+Erγ

2
rdσ

2
r )(f

′(t))2−2σ 2r f (t)f
′(t)

f 3(t)
−

(σ 2r t+σ
2
r σ

2
d+Erγ

2
rdσ

2
r )f
′′(t)

f 2(t)
, respectively. Assuming that

g′(t0) = 0, we accordingly have

(σ 2
r t + σ

2
r σ

2
d + Erγ

2
rdσ

2
r )f
′(t0) = f 2(t0)+ σ 2

r f (t0). (22)

2We implicitly assume that hHsd is linearly independent of at least one row
of Hsr , which is a reasonable assumption for random wireless channels.
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Furthermore, by substituting (22) into g′′(t0), we obtain

g′′(t0) =
2f ′(t0)
f (t0)

−
(σ 2
r t + σ

2
r σ

2
d + Erγ

2
rdσ

2
r )f
′′(t0)

f 2(t0)
. (23)

Since f (t0) ≥ 0, it follows from (22) that f ′(t0) ≥ 0.
Moreover, based on the fact that f (t) is concave, we deduce
that f ′′(t0) ≤ 0 holds. Consequently, we know that g′′(t0) ≥ 0
from (23). According to the second-order conditions for qua-
siconvexity [26, Sec. 3.4.3], g(t) is a quasiconvex function
and thus problem (21) (or problem (15)) is also quasiconvex.

APPENDIX D
PROOF OF PROPOSITION 3
It can be readily confirmed via contradiction that the con-
straint must be activated at optimality. Then, according
to [28], we arrive at the conclusion that the optimal v∗ is the
dominant generalized eigenvector of matrix pencil

(
PhsdH

H
sr

HsrPhsd ,Phsd
)
. Now we are ready to verify (18). Suppose

that vi and µi are the i-th eigenvector and eigenvalue of
matrixPhsdH

H
srHsrPhsd , i.e.,PhsdH

H
srHsrPhsd vi = µivi. Then,

we have PhsdPhsdH
H
srHsrPhsd vi

(a)
= PhsdH

H
srHsrPhsd vi =

µiPhsd vi, where (a) is due to the idempotent property of
the projection matrix Phsd . Hence, vi and µi are also the
i-th generalized eigenvector and eigenvalue of matrix pen-
cil (PhsdH

H
srHsrPhsd ,Phsd ). Therefore, by further taking into

account the equality (v∗)HPhsd v
∗
= Ps, we obtain (18).

Note that we cannot simply apply Rayleigh quotient [28]
to achieve (18) since the constraint of problem (17) is not
‖v‖2 ≤ Ps.
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