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ABSTRACT With the advent of big data era, clients lack of computational and storage resources tends to
outsource data mining tasks to cloud computing providers in order to improve efficiency and save costs.
Generally, different clients choose different cloud companies for the sake of security, business cooperation,
location, and so on. However, due to the rise of privacy leakage issues, the data contributed by clients should
be encrypted under their own keys. This paper focuses on privacy-preserving k-nearest neighbor (kNN)
computation over the databases distributed among multiple cloud environments. Unfortunately, existing
secure outsourcing protocols are either restricted to a single key setting or quite inefficient because of
frequent client-to-server interactions, making it impractical for wide application. To address these issues,
we propose a set of secure building blocks and outsourced collaborative kNN protocol. Theoretical analysis
shows that our scheme not only preserves the privacy of distributed databases and kNN query but also hides
access patterns in the semi-honest model. Experimental evaluation demonstrates its significant efficiency
improvements compared with existing methods.

INDEX TERMS Big data, privacy-preserving data mining, k-nearest neighbor, multiple keys, multiple
clouds.

I. INTRODUCTION
As the volume and variety of data captured by organizations
or companies are growing more rapidly than ever, resource
constrained clients tend to outsource both data and data
mining tasks to cloud service providers (CSP) to improve effi-
ciency and save costs. Generally speaking, different clients
choose different CSPs because of various considerations
on security level, geographical location, budget, etc. Nowa-
days, there’s a growing trend for collaborative data mining,
that is, clients who have a common goal to make use of
shared information are likely to cooperate in computation
over their databases vertically or horizontally partitioned and
distributed among multiple clouds. Evidences have shown
that this kind of cooperation can improve the accuracy of
mining results [1]. For example, aggregating and analyzing
e-health records contributed from different hospitals may
improve mankind’s understanding of certain disease and its
treatment methods.

Unfortunately, due to the continuous occurrences of pri-
vacy breach in cloud computing [2], [3], concerns about
security have significantly impeded the wide adoption of out-
sourced data mining. To protect confidentiality of data from
unauthorized access, sensitive data are usually encrypted

by clients before outsourcing. Generally, they tend to use
their own keys for encryption, since there’s little mutual
trust among different parties, and applying independent keys
enhances security protection.

In this paper, we focus on the problem of k-Nearest
Neighbor (kNN) computation in the multi-cloud
environments. The outsourcing protocol identifies the k
points nearest to a given query over encrypted databases
according to distance measurements like Minkowski or
Euclidean distance, and returns an encrypted class based on
the majority of the neighboring points. However, the cloud
can still deduce sensitive information by observing the data
access patterns even if the data are encrypted [4]. Therefore,
the kNN protocol should not only guarantee the computation
correctness, but also preserve privacy of clients’ data, query,
result, as well as access patterns.

This outsourced model is similar with distributed
privacy-preserving data mining using SMC (Secure Multi-
party Computation) technique [5]. But we claim that our
problem cannot be solved in that SMC assumes data are
not encrypted among multiple parties and results are also
revealed. Most recent works [6]–[9] on outsouced kNN
computation were based on a single data owner situation. The
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work in [10] considered multiple distrusted owners and used
kernel density estimation instead of kNN to prevent distance-
learning attacks. However, all participants employ the same
key in this scheme. To conclude, the single key setting faces
two problems in multi-cloud scenario: 1) The possible key
leakage may jeopardize the privacy of all owners’ data. For
example, we assume that all data owners share the same key
suite for encryption as well as decryption, and outsource
the encrypted datasets to the cloud. Suppose one client is
corrupted by an adversary, then the adversary is able to
decrypt other owners’ data by using the shared key if he
has intercepted their uploading packets or compromised the
storage server. 2) Data owners can’t even decrypt their own
data downloaded from cloud storage if they encrypt their
dataset via the public key generated by cloud, as work in [6].
Hence, it’s quite necessary for cloud clients to generate their
own public/private keys for privacy protection.

A recent work [11] proposed general-purpose construction
by leveraging the two independent decryption mechanisms
of BCP cryptosystem to convert ciphertexts under differ-
ent keys into ciphertexts under single key for arithmetic
operations, which yet incurs heavy interactions between
servers. To reduce the costs, two schemes were proposed
for outsourced computation based on ElGamal encryption
and its variation [12], [13]. But its additively homomorphic
scheme needs solving discrete logarithm which is considered
to be computationally intractable, while its multiplicatively
homomorphic scheme may reveal partial privacy under the
two-server model. Frameworks in [14] address the collabora-
tive mining in multi-key setting considering different security
requirements, but their schemes disclose data owners’ sym-
metric keys explicitly and are not semantic secure. Conse-
quently, current solutions are not secure and efficient enough
for collaborative kNN tasks over distributed datasets from
multiple clouds.
Main Contributions: In this paper, we propose a set

of privacy-preserving building blocks and Outsourced
Collaborative kNN (OCkNN) protocol that allows data own-
ers to encrypt data with their own keys while the correspond-
ing clouds can perform kNN over the distributed encrypted
database. To the best of our knowledge, there’s no prior work
that addresses outsourced kNN problem under multi-cloud
and multi-key setting. The main contributions of this work
are three-fold:
• Our scheme is able to process ciphertexts under multiple
keys by re-encryption technique, and returns the correct
kNN class label for a given query. Compared with meth-
ods in [7], [8], and [14], our solution achieves a higher
security level, for it not only ensures the privacy of
database, kNN query, mining result, and access patterns
not to be revealed to the cloud servers or other parties,
but also reduces the risks of key leakage and snooping
attacks by adopting separate encryption keys.

• This paper proposes efficient generic privacy-preserving
building blocks, including addition, comparison, major-
ity class computation, etc, under two-server model.

The proposed secure comparison scheme does not reveal
the access patterns (i.e., encrypted records) to cloud
server, and it’s designed without bit-decomposition,
making it faster than the scheme in [6]. We emphasize
that our solution does not require the data owners or
querists to involve in any kNN computation after upload-
ing their encrypted datasets or query to the cloud. They
are allowed to retrieve the data from cloud storage and
decrypt them with private keys, which is common for
most cloud application. These building blocks are not
just fit for this paper, but can be widely adopted in other
privacy-preserving data mining protocols.

• The outsourced kNN protocol is constructed based on
those building blocks, accelerated by parallel process-
ing framework. We also propose special techniques to
optimize the scheme. Theoretical analysis demonstrates
that the proposed schemes execute kNN computation
correctly, and they’re secure under the standard semi-
honest model with relatively low computational com-
plexity. Additionally, the communication costs across
clouds are minimized. Extensive experiments on real
dataset also show significant improvements in efficiency
and overhead of our schemes compared with similar
works.

The rest of the paper is organized as follows. Our sys-
tem model and threat model are described in Section II.
In Section III, we briefly introduce proxy re-encryption
technique. The design details of privacy-preserving building
blocks and corresponding OCkNN protocol are presented
in Section IV. Then, we evaluate the performance of our
schemes in Section V, and we review the related work
regarding outsourced privacy-preserving kNN in Section VI.
Finally, we summarize the paper and outline future work in
Section VII.

II. PROBLEM STATEMENT
In this section, we formally describe our systemmodel, threat
model and design objectives.

FIGURE 1. System Model.

A. SYSTEM MODEL
In our system model depicted in Fig.1, there are n
cloud environments Cloud1, . . . ,Cloudn, and n data owners
U1, . . . ,Un who hold their own databases D1, . . . ,Dn along
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with their respective public/private key pairs, denoted as
pkU1/skU1 , . . . , pkUn/skUn . The database Di has Li records
with m + 1 attributes for i ∈ [1, n], in which the (m + 1)th

attribute contains corresponding class label of that record.
In reality, there may be more than one clients for a cloud
provider. For simplicity, we assume each cloud has only one
data owner, and Li is equal to L. There’s also an authorized
querist Q with a kNN query q =< q1, . . . , qm > and its
corresponding key pair pkQ/skQ. Each cloud environment is
composed of two servers, namelyCA

i andCB
i . The database is

stored on CA
i who also performs homomorphic computation

and acts as a delegate to interact with other clouds. CB
i is

used to assist CA
i with complex operations over ciphertexts.

Let t ij,h denote the hth attribute value of record t ij of Di for
h ∈ [1,m + 1] and j ∈ [1,L]. Initially, Ui encrypts each
attribute t ij,h with pkUi and acquires the encrypted database
EncpkUi (Di) denoted by D′i as well, which is then uploaded
to CA

i for storage and kNN classification. Q uses pkQ to
compute EncpkQ (q) denoted by q′, which is then submit-
ted to its preferred CSP server, e.g., CA

1 . After all clouds
obtain the horizontally partitioned encrypted databases, they
begin to evaluate the kNN function f (D′1, . . . ,D

′
n, q
′) = c′q

together through cryptographic protocols, where c′q denotes
the encrypted class label for q. The final result is returned to
Q under its public key.
Our system model is appropriate and applicable for the

following two reasons. On one hand, to protect confidentiality
of databases and query, it is essential for data owners and
querists to encrypt their data before outsourcing. Besides,
the encryptions are conducted by using their own keys,
hence reducing the risks of secret key disclosure or being
intercepted by other owners or compromised cloud servers
(e.g., private key leakage in single-key model may endanger
data privacy of all participants [15]). This is also consistent
with the security demands of real-world application. On the
other hand, the previous work [16] has illustrated that a non-
interactive solution is impossible to implement under tradi-
tional single-server model, and adopting two non-colluding
servers to perform privacy-preserving computation is com-
monly used to eliminate users’ interactions [17]. Data owners
take many aspects into account before data outsourcing, such
as trustworthiness, economy, bandwidth, etc, so their CSPs
are not likely to be the same. Furthermore, since different
providers are generally driven by different business model
and competing relationship (e.g., Google Compute Engine
[23] and Amazon EC2 [24]), the possibility of launching
collusion attacks is lowered down.

B. THREAT MODEL
As Fig.1 shows, our threat model primarily includes cloud
servers, data owners and querist, communication channel.

1) Cloud Servers: All cloud servers are assumed to be
semi-honest (i.e., honest-but-curious), which means that each
server strictly follows the protocol, but may try to analyze
user’s inputs, intermediate results, as well as outputs in order

to infer sensitive information. They have no background
knowledge of clients’ data distribution. In addition, there is no
collusion between the two servers within one cloud or among
different clouds.
2) Data owners and querist: They are assumed to be semi-

honest clients of outsourced kNN service. They can cooperate
with other participants for the sake of collaborative data
mining, meanwhile they may attempt to gather others’ private
information. Besides, their online periods are relatively short
and non-deterministic. We do not assume any data owner to
collude with the cloud.
3) Channel: Communication channel is supposed to be

open and insecure. Hence, all transmitted data between
servers and clients are likely to be intercepted and analyzed
by other parties.

C. DESIGN OBJECTIVES
Given the model above, our design should achieve the
following objectives:
• Correctness. If the clients and cloud servers both
follow the designed protocol, the returned result should
be decrypted to a correct class label for the specific kNN
query.

• Confidentiality. During the outsourcing process,
nothing regarding the content of data owners’ datasets,
query record, mining result, or access patterns should be
revealed and inferred by the cloud servers, or other par-
ties. Access pattern is defined as the original encrypted
input corresponding to the computed value, e.g., the
minimum distance, the most frequent class label, etc.

• Efficiency. Due to the users’ limited computational
resources, their participation should be minimized,
while the major workload should be managed by
cloud servers efficiently. Meanwhile, the communica-
tion across clouds should also be reduced.

III. PRELIMINARIES
Proxy Re-Encryption (PRE) is a useful primitive introduced
by Blaze, Bleumer and Strauss [19]. In a PRE system, a proxy
is given a re-encryption key rki→j so that it can transform
a ciphertext under public key pki into a ciphertext of the
same plaintext under another user’s public key pkj. The
proxy, however, learns nothing in terms of the corresponding
plaintext. In this work, only by converting those ciphertexts
into ones under a unified key can the cloud servers conduct
homomorphic operations over the ciphertexts.

We use the classic bidirectional PRE scheme in [19]
because ciphertext conversion from two directions (i.e., from
user to server and from server to user) is required. The
scheme is constructed on ElGamal cryptosystem, which is
secure against chosen-plaintext attacks (CPA). It consists of
the following five algorithms [20], [21]:
• KeyGen(G, p, g)→ {pki, ski}: LetG be amultiplicative
cyclic group of an order of p, and g be a generator of G.
Ui uses this key generation algorithm to generate a key
pair ski = a ∈ Z∗p and pki = ga ∈ G.
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• ReKeyGen(ski, skj) → {rki↔j}: The re-encryption key
generation algorithm takes two private keys ski and skj
as inputs, and outputs a re-encryption key rki↔j =

skj/ski ∈ Z∗p. Here, it is required that i 6= j in that there’s
no point to re-encrypt oneself’s ciphertext.

• Enc(pki, b)→ {CTi}: The encryption algorithm takes a
public key pki and amessage b ∈M as inputs. It outputs
an ciphertext CTi = (b · gr , pkri ) under pki. Here, M
denotes the message space, and r is a random number
generated from Z∗p. Let the notion r ∈R Z∗p denote the
random number generation hereafter.

• ReEnc(rki↔j,CTi) → {CTj}: The re-encryption algo-
rithm takes a re-encryption key rki↔j and an original
ciphertext CTi as inputs, and outputs a transformed
ciphertext CTj = (b · gr , (pkri )

rki↔j ) under pkj.
• Dec(ski,CTi) → {m}: The decryption algorithm takes
a private key ski and an original or converted ciphertext
CTi under public key pki. It outputs a plaintext message
b← b · gr/((pkri )

1/ski ).
Moreover, ElGamal encryption has multiplicatively

homomorphic property over ciphertexts. More specifically,
we have

Encpk (b1)× Encpk (b2) = Encpk (b1 · b2), (1)

Here, ‘‘·’’ denotes themultiplication operation in the plaintext
domainwhile ‘‘×’’ denotes themultiplication operation in the
ciphertext domain.

IV. PROPOSED OUTSOURCED COLLABORATIVE
kNN SCHEME
In this section, we first present the design details of secure
building blocks. Then, the complete outsourcing protocol
based on these build blocks is illustrated. The security and
complexity of the proposed scheme are further analyzed.

A. OVERVIEW
With the assumption of semi-honest, but non-colluding cloud
environments, CA

i for 1 ≤ i ≤ n in all clouds starts
to negotiate the public system parameters, based on which
Ui, Q and CB

i generate their respective public and private
key pairs. After that, servers and clients jointly compute the
re-encryption keys via key distribution protocol. CA

i also
generates re-encryption keys for B-servers from other clouds.
After Ui’s encrypted database under pki is uploaded to
its corresponding CSP, CA

i transforms all the ciphertexts
into encryptions under a unified key (CB

i ’s key) using the
property of PRE scheme. Let D′dis denote the distributed
encrypted databases under multiple keys. After Q submits its
encrypted query q′ to its trustworthy cloud denoted by Cloudj
(j ∈ [1, n]), this cloud performs as primary node temporarily
in the distributed computing model while others act as slave
nodes. Cloudj first delivers the query to other cloud servers,
and then all clouds execute the kNN computation locally
through a set of our proposed cryptographic building blocks.
The intermediate results from all nodes are converged and
processed at Cloudj to calculate the k globally nearest points

overD′dis. The final class label under the unified key should be
converted back to the ciphertext underQ’s public key. Finally,
Q retrieves the encrypted output with its private key. Note that
the outsourced kNN computation part is performed with no
participations of data owners and querist whatsoever.

B. PRIVACY-PRESERVING BUILDING BLOCKS
In this part, we propose a set of privacy-preserving building
blocks, including key distribution, addition, comparison, and
majority class computation. They serve as the basic construc-
tions of the collaborative outsourced kNN solution.

1) THE KEY DISTRIBUTION (KD) PROTOCOL
At first, all clouds run together a setup process that initializes
the ElGamal cryptosystem to generate system parameters
{G, p, g}, and distribute them to their clients. By computing
KeyGen(G, p, g), all kNN parties generate their own key
pairs, including Ui’s {pkUi , skUi}, Q’s {pkQ, skQ} and unified
key {pkCi , skCi} of server C

B
i .

There are three kinds of re-encryption keys in our system,
the first is used for ciphertexts transformation between Ui
and CB

i for i ∈ [1, n]; the second is for conversion between
Q and CB

i ; while the third is used between different clouds,
namely, CB

i and CB
j , in which i 6= j. Let rkUi↔Ci , rkQ↔Ci ,

rkCi↔Cj denote these three keys, respectively. Even though
the process of key generation may require interactions either
within the local cloud or across distinct clouds, the methods
to generate re-encryption keys are basically the same. Let’s
take re-encryption key between Ui and CB

i as an example,
CA
i first generates ri ∈R Z∗p, and distributes it to Ui; after

that, Ui computes ri/skUi and sends it to CB
i who obtains

skCi · ri/skUi and returns it to CA
i ; thus, C

A
i gets rkUi↔Ci by

computing r−1i · skCi · ri/skUi . Note that CA
i merely knows

the re-encryption keys, and CB
i knows nothing regarding

the private keys of other parties during execution of this
protocol, because intermediate results are blinded by random
number ri. Besides, the overall communication is protected
by secure protocol like SSL.

2) THE SECURE ADDITION (SA) PROTOCOL
Assume thatCA

i holds private inputs {EncpkCi (a), EncpkCi (b)},
and CB

i holds skCi . The goal of this protocol is to compute the
encrypted addition of a and b, i.e., EncpkCi (a + b) as output
to CA

i . As the encryption system is not additively homomor-
phic, it requires interactions between the two cloud servers.
Nevertheless, it has been proven that the two-server setting
may disclose private information about inputs [12]. If we
send EncpkCi (ra) and EncpkCi (rb) to C

B
i , the blinding factor r

can be removed by computing ra/rb → a/b, even if the
exact inputs are unknown to CB

i . Thereby, the compromised
CB
i is able to identify the inputs if it possesses background

knowledge of raw data distribution.
In this paper, we still consider the two semi-honest servers

model while try to lower down the opportunities that the
corrupted server can recover true proportional relationship of
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inputs to enhance data privacy. The overall steps of SA are
presented in Algorithm 1.

Algorithm 1 SA(EncpkCi (a),EncpkCi (b))→ EncpkCi (a+ b)

Require: CA
i has EncpkCi (a) and EncpkCi (b); C

B
i has skCi ,

where i ∈ [1, n]. Initialize k ← 1.
CA
i :
1) Generate random values α, β, r1, r2, ω1, . . . , ωf ∈R

G;
2) Compute encrypted elements in a vector, denoted by

Lj (j = 1, 2, . . . , 4+ f ):
• EncpkCi (r1βa)← Blind(EncpkCi (a), r1β);
• EncpkCi (r1α)← Enc(pkCi , r1α);
• EncpkCi (r2βb)← Blind(EncpkCi (b), r2β);
• EncpkCi (−r2α)← Enc(pkCi ,−r2α);
• EncpkCi (ω1), . . . ,EncpkCi (ωf );
• 0← {Lj|j = 1, 2, . . . , 4+ f };
• I ← {1, 2, . . . , 4+ f };

3) Generate a random permutation function π ;
0′← π (0) and I ′← π (I );

4) Send 0′ above to CB
i ;

CB
i :
1) Receive encrypted results 0′ from CA

i ;
2) Decryption: L ′j ← Dec(skCi , 0′[j]), for 1 ≤ j ≤ 4 +

f ;
3) for l = 1 to |0′| − 1 do:
• for j = l + 1 to |0| do:
– Sk ← L ′l + L

′
j ; k ← k + 1;

4) Encryption: S ′j ← Enc(pkCi , Sj), for 1 ≤ j ≤ k;
5) Send S ′ to CA

i ;
CA
i :
1) Receive encrypted set S ′ from CB

i ;
2) index1← FindSumIndex(I ′, {1, 2});
γ1← Blind(S ′[index1], r−11 );

3) index2← FindSumIndex(I ′, {3, 4});
γ2← Blind(S ′[index2], r−12 );

4) Send γ1, γ2 to CB
i ;

CB
i :
1) Receive γ1, γ2 from CA

i ;
2) Decryption: γ ′j ← Dec(skCi , γj), for j = 1, 2;
3) λ← γ ′1 + γ

′

2;
Encryption: λ′← Enc(pkCi , λ);

4) Send λ′ to CA
i ;

CA
i :
1) Receive λ′ from CB

i ;
2) EncpkCi (a+ b)← Blind(λ′, β−1);

First, CA
i generates random numbers: α, β, r1, r2, ωf

from G, and computes multiplications: r1β, r1α, r2β, −r2α.
Then, CA

i computes a vector 0 containing EncpkCi (r1βa),
EncpkCi (r1α), EncpkCi (r2βb), EncpkCi (−r2α), as well as
EncpkCi (ωf ) by using ElGamal encryption and

Blind operation. Blind(CT , r) is an operation that random-
izes ct1 of ciphertext CT by multiplying a random value r so
that the plaintext b is randomized by r , whereCT = (ct1, ct2),
ct1 = bgr

′

, r, b ∈ G, and r ′ ∈ Z∗p . This operation only
requires one modular multiplication over G.
After that, the vector 0 is permuted into 0′ using ran-

dom permutation function π and sent to CB
i . Upon receiving

0′, CB
i begins to decrypt the vector elements by its private

key skCi . C
B
i then calculates the sums between any two

blinded values according to a negotiated fashion, and encrypts
each sum Sk under pkCi by a given order. The encrypted sum
set S ′ is returned toCA

i . After receiving S
′,CA

i is able to locate
the required encrypted sum, namely, EncpkCi (r1βa + r1α)
and EncpkCi (r2βb − r2α) by FindSumIndex. As shown in
Algorithm 2, the function ‘‘FindSumIndex’’ aims at finding
the position of a specific sum in disordered dataset according
to the permuted index set I ′ and subscripts of the required
sum. The blinding values r1, r2 are removed from two sums
by homomorphic multiplication, resulting in EncpkCi (βa+α)
and EncpkCi (βb − α), denoted by γ1, γ2, respectively. They
are transferred to CB

i . After decrypting the received γ1, γ2,
CB
i computes βa + βb by addition and delivers its encryp-

tion to CA
i .

In the end, CA
i can recover the encrypted value of a+ b by

Blind with the multiplicative inverse of β.

Algorithm 2 FindSumIndex(I , {a, b})→ index

Require: CA
i has permuted index set I and original subscript

set {a, b}, where i ∈ [1, n].
CA
i , for k = 1 to |I | − 1 do:
1) for j = k + 1 to |I | do:
• if (I [k] = a ∧ I [j] = b) ∨ (I [k] = b ∧ I [j] = a)
then:
– index ← (k − 1)|I | − k(k − 1)/2+ j− k;
– break;

Security Analysis of SA: The security of SA protocol is
discussed based on "Real-vs.-Ideal" framework [22]. By this
framework, we need to show that SA is secure against both
adversaryAA corruptingCA

i andAB corruptingCB
i in the real

world under the semi-honest model.
1) Security Against Cloud Server CA

i : During SA protocol,
the view of semi-honest adversary AA includes the inputs
{EncpkCi (a), EncpkCi (b), S

′, λ′} and output EncpkCi (a + b),
all of which are encrypted under pkCi .
We build a simulator F computes EncpkCi (a

′), EncpkCi (b
′),

assuming that a′ = 1 and b′ = 2 without loss of generality.
Then, it generates random numbers α′, β ′, r ′1, r

′

2, ω
′

1, . . . , ω
′
f ,

and computes sums like the algorithm: EncpkCi (r
′

1β
′
·1+r ′1α

′),
EncpkCi (r

′

2β
′
· 2− r ′2α

′), etc. It also evaluates EncpkCi (β
′
· 1+

β ′ ·2) and EncpkCi (1+2). Finally,F returns those ciphertexts
and random values to CA

i .
Since CA

i has no knowledge of skCi , it’s computationally
hard for AA to distinguish the ciphertexts in the views of
real world and ideal world by the semantic security of the
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encryption scheme. Therefore, we have

Idealf ,F (EncpkCi (bi))
c
≈ RealSA,AA (EncpkCi (bi)) (2)

where i ∈ {1, 2}.
2) Security Against Cloud Server CB

i : The computation
task assigned to CB

i can be divided into two rounds. In the
first round, the view of AB includes input {EncpkCi (r1βa),
EncpkCi (r1α), EncpkCi (r2βb), EncpkCi (−r2α), EncpkCi (ωf )},
blindedmessages {r1βa, r2βb,−r2α, r1α,ωf }, and output S ′.
Intuitively, AB cannot obtain either a, b or the ratio a/b
directly, because they are randomized by the CA

i ’s generated
random numbers α, β, r1, r2, ωf . But there still exists some
correlations among these blinded values, possibly leading to
leakage of a/b, which can be computed by the following

a
b
= −

r1βa · (−r2α)
r2βb · r1α

. (3)

From Eq.(3),AB canmake a guess by picking random combi-
nations from the blinded messages. During the second round,
the view of AB comprises input {γ1, γ2}, blinded messages
{βa+ α,βb− α}, output λ′. Although AB is able to decrypt
the ciphertexts in its view with skCi , the decrypted messages
are still blinded by random numbers.

Note that the ratio of inputs can only be deduced by AB
in an oblivious way. However, AB is not able to distinguish
the real world from the ideal world on condition that he does
not know the input distribution, even if the ratio is obtained.
We can build a simulatorF in the ideal world that uses a′ = 1
and b′ = 2 as plaintexts, and generates randomized values
similar with the algorithm, and returns them toAB. Therefore,
we have the following

Idealf ,F (EncpkCi (ribi))
c
≈ RealSA,AB (EncpkCi (ribi)) (4)

where i ∈ {1, 2}, ri ∈R G, bi is the plaintext.
Discussions: It’s evident that the security level of SA

depends on howmany random numbers likeωf are inserted in
the set0. Suppose thatCA

i generates f random values fromG,
then the possibility of a successful guess is

ε =
1

C4
f+4 · C

2
4

=
4

f 4 + 10f 3 + 35f 2 + 50f + 24
(5)

based on Eq.(3). It can be easily seen that the difficulty forAB
to get the ratio corresponds to 4 power of f . However, along
with the growing f , the costs to process these ciphertexts are
also on the rise quadratically. Thus, it is critical to make a
tradeoff between outsourcing efficiency and data security to
suffice different objectives.

3) THE SECURE SQUARED DISTANCE (SSD) PROTOCOL
Given that CA

i holds A′ =< EncpkCi (a1), . . . ,
EncpkCi (am) > and B′ =< EncpkCi (b1), . . . , EncpkCi (bm) >,
while CB

i holds the secret key skCi , the output is the encryp-
tion of squared Euclidean distance EncpkCi (

∑m
l=1(al − bl)

2).
First, the servers compute the differences between elements

Algorithm 3 SSD(A′,B′)→ E ′A,B
Require: CA

i has A′ =< EncpkCi (a1), . . . ,EncpkCi (am) >
and B′ =< EncpkCi (b1), . . . ,EncpkCi (bm) >; C

B
i has skCi ,

where i ∈ [1, n].
CA
i and CB

i :
1) for l = 1 to m do:
• b′l ← Blind(EncpkCi (bl),−1);
• EncpkCi (al − bl)← SA(EncpkCi (al), b

′
l);

CA
i :
1) for l = 1 to m do:
• λl ← EncpkCi (al − bl)× EncpkCi (al − bl);

CA
i and CB

i :
1) Initialize E ′A,B← EncpkCi (0);
2) for l = 1 to m do:
• E ′A,B← SA(E ′A,B, λl);

of the two encrypted vectors by SA protocol. Then the dif-
ferences are squared by CA

i invoking multiplicatively homo-
morphic scheme. The final result is calculated by adding the
squared differences via SA. The detailed steps are shown in
Algorithm 3. According to the Composition Theorem [22],
this protocol does not reveal any privacy about inputs and
outputs as long as SA protocol is secure, which has been
illustrated in previous sub-protocol.

4) THE SECURE MINIMUM BETWEEN TWO NUMBERS
(SM2N) PROTOCOL
Given that CA

i holds two private input {A′,B′}, and CB
i holds

the secret key skCi , where A
′,B′ are encrypted pairs like A′ =

(EncpkCi (a), EncpkCi (sa)), B
′
= (EncpkCi (b), EncpkCi (sb)), the

output is the encryption of the encrypted minimum between
input values. Here, sa and sa denote the secrets associated
with a and bwhich are to be compared. A good case in point is
the encrypted class label. The main idea of this protocol is to
utilize oblivious mechanisms to judge the sign of difference
between inputs. At the end of the execution, CA

i obtains
the ciphertext of the smallest value and its secret while two
servers learn nothing about input privacy, and access patterns,
including the difference.
The complete steps are presented in Algorithm 4. At first,

CA
i generates a random number λ and computes the encrypted

input difference EncpkCi (a − b), denoted by α, if λ is odd;
otherwise, it computes EncpkCi (b − a). Then, α is further
blinded with a positive random value r which is not so large
to make integer overflow, and α′ is sent to CB

i for judgement.
CB
i initially decrypts α′ with its private key. If the decrypted

value is positive, whichmeans theminuend is larger, it returns
EncpkCi (1) as comparison outcome denoted by σ ; and returns
EncpkCi (2) otherwise. Depending on σ and λ, CA

i is able to
compute encrypted minimum as follows: If λ is odd, compute
the encrypted minimum denoted by min′(a, b), which is

EncpkCi ((ϕ − 1) · a+ (1− (ϕ − 1)) · b)

= EncpkCi (ϕ · a− ϕ · b+ 2 · b− a); (6)

9594 VOLUME 4, 2016



H. Rong et al.: Privacy-Preserving KNN Computation

Algorithm 4 SM2N(A′,B′)→ (min′(a, b), s′min(a,b))

Require: CA
i has A′ = (EncpkCi (a),EncpkCi (sa)), B

′
=

(EncpkCi (b),EncpkCi (sb)); C
B
i has skCi , where i ∈ [1, n].

CA
i :
1) Generate a random number λ ∈R G;
2) if λ is odd then:
• α← SA(EncpkCi (a),EncpkCi (−b)) with C

B
i ;

3) else
• α← SA(EncpkCi (b),EncpkCi (−a)) with C

B
i ;

4) Generate a small random number r > 0, r ∈R G;
5) α′← Blind(α, r); Send α′ to CB

i ;
CB
i :
1) Receive α′ from CA

i , and initialize σ
′
← EncpkCi (2);

2) if Dec(skCi , α′) > 0 then σ ′← EncpkCi (1);
Send σ ′ to CA

i ;
CA
i :
1) Receive σ from CB

i ;
2) if λ is odd then:
• min′(a, b)← ComputeMinValue(a′, b′, σ ′);
• s′min(a,b)← ComputeMinValue(s′a, s

′
b, σ
′);

3) else
• min′(a, b)← ComputeMinValue(b′, a′, σ ′);
• s′min(a,b)← ComputeMinValue(s′b, s

′
a, σ
′);

ComputeMinValue (EncpkCi (u),EncpkCi (v),EncpkCi (ϕ))
CA
i and CB

i :
• EncpkCi (ϕ · u)← EncpkCi (ϕ)× EncpkCi (u);
• EncpkCi (ϕ · v)← EncpkCi (ϕ)× EncpkCi (v);
• EncpkCi (ϕu−ϕv)← SA(EncpkCi (ϕ · u),EncpkCi (−ϕ ·
v));

• EncpkCi (2v− u)← SA(EncpkCi (2v),EncpkCi (−u));
• EncpkCi (ϕ · u− ϕ · v+ 2v− u)← SA(EncpkCi (ϕ · u−
ϕ · v),EncpkCi (2v− u);

• Return EncpkCi (ϕ · u− ϕ · v+ 2v− u);

Otherwise, min′(a, b)← EncpkCi ((ϕ− 1) · b+ (1− (ϕ− 1)) ·
a). Here, ϕ is the plaintext of σ . The above computation is
expressed as a function called Compute MinValue, shown at
the bottom of Algorithm 4. For example, if ϕ = 1 and λ%2 =
1, min′(a, b) = EncpkCi (0·a+1·b) = EncpkCi (b). It’s obvious
that the observation is correct, because ϕ = 1 indicates b
is the minimum value. Let s′min(a,b) be the encrypted secret.
Similarly, s′min(a,b) corresponding to the smaller input can also
be computed following this manner.
Security Analysis of SM2N: This protocol utilizes SA

scheme to compute the difference of inputs, which is blinded
by a positive random number r . Hence, CB

i cannot know
the exact difference of inputs except its sign. As the order
of subtraction inputs varies with λ’s parity, it’s rather dif-
ficult for CB

i to speculate the relationship between inputs.
Remark that CA

i cannot distinguish EncpkCi (1) and EncpkCi (2)
because of probabilistic property of the encryption scheme.

Other intermediate results and outputs are also preserved
as long as SA and multiplicative homomorphism are secure
in the semi-honest model. Additionally, CA

i does not know
which encrypted data corresponds to the smallest value, since
min′(a, b), s′min(a,b) are freshly computed ciphertexts, differ-
ing from encrypted inputs for every comparison operation.
Therefore, combined with security discussion mentioned ear-
lier, SM2N does not disclose any privacy of user’s data or
access pattern.

5) THE SECURE MINIMUM IN n NUMBERS (SMnN)
PROTOCOL
Assume that CA

i with inputs {A′1,A
′

2, . . . ,A
′
n} interacts with

CB
i securely to compute minimum from n inputs, where Aj =

(EncpkCi (aj), EncpkCi (sj)) and j ∈ [1, n]. The main goal of the
SMnN protocol is to compute the encryption of the minimum
value and its associated secret, i.e., min′(a1, . . . , an) and
s′min(a1,...,an)

, without revealing any information about aj and
sj to CA

i and CB
i . SMnN is designed based on SM2N as the

secure building block, and any generic sort algorithms can
be applied to SMnN. We leverage heap sort algorithm in
comparing operations to improve efficiency, the complexity
of which is O(log n). Due to space limitations, the complete
presentation of SMnN is omitted. Furthermore, no privacy or
access patterns of input data is revealed to any two cloud
servers during execution of SMnN, since the security of
SMnN relies on SM2N, which has been proven secure.

6) THE SECURE MAJORITY CLASS COMPUTATION (SMCC)
PROTOCOL
CA
i and CB

i jointly compute encrypted majority class
label based on the encrypted kNN class sets, where
2′ =< EncpkCi (c

′

1), EncpkCi (c
′

2), . . . , EncpkCi (c
′
k ) >. We

also assume that CA
i knows the encrypted vector of

each class label as background knowledge, i.e., 2 =<

EncpkCi (c1), . . . , EncpkCi (cθ ) > in advance. Here, c′l denotes
the class label of l th closest neighbor to query q, for 1 ≤ l ≤ k
while cj denotes the unique class label in the joint database
for 1 ≤ j ≤ θ . For simplicity, c′l and cj are numeric values. To
avoid encryption of zero in frequency counting phase, cj is
added with an offset φ beforehand which is merely known
to CB

i . Obviously, (c
′
l +φ) ∈ {c1, . . . , cθ }. During the SMCC

protocol, the encrypted class label as output denoted by c′maj
is revealed only to CA

i whereas neither c′l nor cj is revealed
to CA

i and CB
i . Besides, C

A
i does not know which data record

corresponds to c′maj in order to conceal access patterns.
The overall steps involved in the SMCCprotocol are shown

in Algorithm 5. In the beginning, CA
i generates a permuta-

tion function π , which is used to disorder the arrangement
of 2 into another vector 3. Then, CA

i and CB
i cooperate

to compute such matrix S that each element is encrypted
difference between 3 and 2′, i.e., Sl,j = EncpkCi (c

′
l − cj),

for 1 ≤ l ≤ k and 1 ≤ j ≤ θ . The matrix S is then
sent to CB

i . After receiving S, CB
i decrypts every component

of S and computes the appearance frequency for each class.
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Algorithm 5 SMCC(2,2′)→ c′maj

Require: CA
i has 2 =< EncpkCi (c1), . . . ,EncpkCi (cθ ) >

and 2′ =< EncpkCi (c
′

1), . . . ,EncpkCi (c
′
k ) >; C

B
i has skCi ,

where i ∈ [1, n]. Initialize η1, η2, fr ← 0.
CA
i :
1) for l = 1 to θ do:
• 2l ← SA(2l,EncpkCi (φ)) with C

B
i ;

2) Generate a permutation function π ;
3) 3← π (2);
4) for l = 1 to k do:
• ε← Blind(EncpkCi (c

′
l),−1);

• for j = 1 to θ do:
– Sl,j← SA(3j, ε) with CB

i ;
5) Send S to CB

i ;
CB
i :
1) for j = 1 to θ do:
• for l = 1 to k do:
– if Dec(skCi , Sl,j) = φ then frj← frj + 1;

2) for j = 2 to θ do:
• if frmax < frj then:
– ρ ← j; frmax ← frj;

3) Vl ← EncpkCi (2), for l = ρ; otherwise, Vl ←
EncpkCi (1), for l 6= ρ and 1 ≤ l ≤ θ ;

4) Send V to CA
i ;

CA
i :
1) V ′← π−1(V ), where V ′ = {EncpkCi (τl)|1 ≤ l ≤ θ};

EncpkCi (τl · cl)← EncpkCi (τl)× EncpkCi (cl), for 1 ≤
l ≤ θ ;

2) EncpkCi (η1)← SA(EncpkCi (τl ·cl),EncpkCi (η1)) with
CB
i , for 1 ≤ l ≤ θ ;

3) EncpkCi (η2) ← SA(EncpkCi (cl),EncpkCi (η2)) with
CB
i , for 1 ≤ l ≤ θ ;

4) c′maj← SA(EncpkCi (η1),EncpkCi (−η2)) with C
B
i ;

It can be easily observed that each row of Si must contains
merely one encryption of φ, and θ−1 encryptions of random
values based on the fact (c′l + φ) ∈ {c1, . . . , cθ }. Therefore,
CB
i is able to calculate a frequency vector fr , the element

of which corresponds to the frequency of that class. After
that, the index of most frequent class in 3 is computed, and
CB
i returns CA

i an encrypted vector V in which the frequent
index is the ciphertext of 2 and the rest are ciphertexts of 1.
Upon receiving V ,CA

i reorders it through the inverse of π and
computes the following formula:

EncpkCi (cmaj) = EncpkCi (
θ∑
l=1

cl · (τl − 1))

= EncpkCi (
θ∑
l=1

cl · τl −
θ∑
l=1

cl). (7)

The scalar product between < c1, . . . , cθ > and < τ1 − 1,
. . . , τθ − 1 > is the majority class label, because there’s only
one position of 1 in < τ1 − 1, . . . , τθ − 1 > which indicates
the most frequent class and the rest is 0. So the multiplication
preserves the majority class. Eq.(7) can be divided into three
parts, i.e.,6θl=1cl ·τl ,6

θ
l=1cl , and their subtraction, which are

computed separately to prevent encryption of zero.
Security Analysis of SMCC:During the first round compu-

tation of CA
i , its inputs {2,2

′
} and processed results {3, S}

are all encrypted under CB
i ’s private key. During the sec-

ond round computation of CA
i , the input V and final result

EncpkCi (cmaj) are also encrypted values. Due to security of
ElGamal and SA scheme, these ciphertexts are computation-
ally indistinguishable from random numbers in G. As for
security against corrupted CB

i , even though C
B
i can attain the

frequencies of each class label, it infers neither the exact class
label values nor the index corresponds to that class, in that
the original order of 2 is altered by π . Therefore, we can
build a simulator in the ideal world that is computationally
indistinguishable from real world based on [22]. In other
words, SMCC does not disclose anything about the class
labels. Besides, since fr is only known to CB

i , the record of
actual majority class is oblivious to CA

i . That’s how the query
access patterns are hidden.

C. THE COMPLETE PROTOCOLS OF OUTSOURCED
COLLABORATIVE kNN
In this part, we present our privacy-preserving kNN
outsourcing protocols in multi-cloud environments using
secure schemes of addition, comparison, etc. proposed in
Section IV-B as building blocks.

1) MAIN IDEA
There’re many ways to compute kNN over the distributed
databases. A straightforward solution is to converge the
datasets from all other clouds at one spot so that the pri-
mary cloud can complete kNN over the unified database.
No doubt that this method incurs significant communication
overhead (i.e., O(nmL), where n,m,L denote the number of
clouds, database dimension, and database size, respectively)
and cloud resources are not fully utilized. Another solution
requires each cloud to compute the distances between query
and data tuples. After that, all the distances are transmitted to
a single cloud for comparison. However, the communication
complexity isO(nL), which is still heavy when L is large. It’s
a commonsense that the latency within the cloud provider is
normally low due to using high performance switchers and
relatively simple network, while the network connected to
different clouds may be unstable and slow for many reasons,
e.g., Internet traffic jam. So the interactions between clouds
should be as few as possible.

To solve these issues, we propose a set of protocols by
leveraging parallel property of distributed cloud environ-
ments. The process includes two parts: one is kNN com-
putation for intra-cloud; the other is kNN classification for
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inter-clouds. In the following, we name the protocol for intra-
cloud as Local-OCkNN and the protocol for inter-cloud as
Global-OCkNN. Local-OCkNN is mainly responsible for
the locally top k tuples computation, while Global-OCkNN
locates the globally nearest points. More specifically, during
Local-OCkNN execution, with given q′,CA

i andCB
i computes

the k nearest encrypted records together over its database D′i.
Then, the encrypted distances together with class labels of
top k are transmitted to the primary cloud, say Cloudp, who
performs Global-OCkNN to compare kn distances via SMnN
and returns the encrypted class to the querist. In this way, the
complexity for communication across clouds isO(nk), which
is far smaller than above two schemes for n� L and k � L.

2) LOCAL-OCkNN
This protocol requires each CSP to handle kNN queries inde-
pendently in a privacy-preserving manner while still guar-
anteeing its data owner Ui’s rights to retrieve and decrypt
encrypted data locally like using cloud storage service.
Specifically, the entire process of Local-OCkNN comprises
of three phases, that is, Data Uploading Phase, kNN Query
Phase, Outsourced kNN Computation Phase, the major steps
of which are shown in Algorithm 6.

During Data Uploading Phase, Ui encrypts its database
Di with pkUi by running D′i = {Enc(pkUi , t

i
j,h)|j ∈ [1,L],

h ∈ [1,m + 1]}, where t ij,m+1 denotes the class label for jth

record, and uploads them to CA
i ’s storage. Upon receiving

D′i, C
A
i re-encrypts the ciphertexts under owners’ keys by

leveraging PRE technique long with rkUi↔Ci . At the end
of the execution, CA

i gets the re-encrypted database D′re
under pkCi .

During Query Authentication Phase, CA
i first checks

whether Q is an authorized party. After successful identifica-
tion, q′ is then transformed into encryption under pkCi using
its re-encryption key. Here, q′ = EncpkQ (q), and q′Ci denote
the transformed ciphertexts for q under pkCi . Afterwards, C

A
i

activates the local kNN computation process.
During kNN Computation Phase, first of all, CA

i and CB
i

compute the encryptions of squared distances between all
records ofDre and q via SSD protocol. LetM be an encrypted
vector, where Mj =< ed ′j , t

′

j,m+1, EncpkCi (j) >, ed ′j =
EncpkCi (||tj − q||), for 1 ≤ j ≤ L, and the last two are
encryptions of class label and index, respectively. After that,
the recordwho has the smallest distance is selected fromM by
conducting SMnN. The outputs are the encrypted minimum
distance, its corresponding secrets: class label and index,
denoted by ed ′min, c

′

min, and I
′

min respectively. Since SMnN
computes the minimum in an oblivious way, the index of the
minimum record is unknown, which prevents from calculat-
ing successive smallest distances. To address this problem,
we design a function called ConvertMinToMax to make the
current smallest distance become the largest in the encrypted
set so as to avoid getting the repeated value.

Let d ′max be the ciphertext of the largest signed integer
and φ be the non-zero offset known only to CB

i . First, C
A
i

Algorithm 6 Local-OCkNN(Di, q′, k)→ {τi,1, . . . , τi,k}

Require: Ui holds its dataset Di and key pair pkUi/skUi ; C
A
i

knows the count of neighbors (k), rkUi↔Ci , rkQ↔Ci , and
encrypted query q′; CB

i has key pair pkCi/skCi .
{Data Uploading Phase}
Ui: D′i← {EncpkUi (t

i
j,h)|j ∈ [1, l], h ∈ [1,m+ 1]}; Upload

D′i to C
A
i ;

CA
i : D

′
re← {ReEnc(rkUi↔Ci ,D

′
i)|i ∈ [1, n]};

{Query Authentication Phase}
CA
i :
1) Authenticate Q’s identity, if Q is not authorized then

abort;
2) q′Ci ← ReEnc(rkQ↔Ci , q

′), where q′ = EncpkQ (q);
{Outsourced kNN Computation Phase}
CA
i and CB

i :
1) for j = 1 to L do:
• ed ′j ← SSD(D′re[j], q

′
Ci );

• Mj←< ed ′j , t
′

j,m+1,EncpkCi (j) >;
2) for j = 1 to k do:
• {ed ′min, c

′

min, I
′

min} ← SMnN(M );
• τi,j← {ed ′min, c

′

min};
• ConvertMinToMax(ed ′, ed ′min, I

′

min, d
′
max);

ConvertMinToMax (ed ′, d ′min, I
′

min, d
′
max)

CA
i , for l = 1 to L do:
• µl ← SA(EncpkCi (l),EncpkCi (φ));
• µl ← SA(µl,EncpkCi (−Imin));
• δ← SA(d ′max,EncpkCi (−dmin));
• δ′← Blind(δ,−1);
• Generate a permutation function π ; µ′← π ( Eµ);
• Send µ′ to CB

i ;
CB
i , for l = 1 to L do:
• if Dec(skCi , µ′l) = φ, then ν

′
l ← EncpkCi (2);

else, ν′l ← EncpkCi (1);
• Send ν′ to CA

i ;
CA
i :
• ψ ← π−1(ν′);
• for l = 1 to L do:
– χl ← ψl × δ;
– ed ′l ← SA(ed ′l , δ

′);
– ed ′l ← SA(χl, ed ′l );

applies SA to compute the difference (denoted asµl) between
the index of minimum and each offset index, as well as
encryption of dmax − dmin, denoted by δ. The order of vector
µ is further permuted before transmitted. CB

i decrypts µ′ and
returns a vector encrypted ν′ as follows. If the decrypted
element is φ, ν′l = EncpkCi (2); otherwise, ν

′
l = EncpkCi (1).

Obviously, there’s only one 2 in ν, whose location indicates
the minimum distance position. CA

i recovers the original
order of ν′, and then updates every encrypted distance by
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evaluating

ed ′l = EncpkCi (1 · (νl − 1)+ ed ′l )

= EncpkCi (1 · νl + ed
′
l −1), (8)

where ν′l = EncpkCi (νl), 1 = dmax − dmin. Based on Eq.(8),
CA
i computes encryption of1νl+ed ′l first, and then subtracts
δ. For νl = 1, the value remains unchanged, whereas the
encrypted smallest distance of M is converted to maximum
when νl = 2. At the end of Local-OCkNN execution, the
output is a collection of k tuples, in which each tuple contains
the ciphertexts of Euclidean distance and its corresponding
label, meanwhile no privacy regarding client’s database and
query is revealed to cloud servers.

3) GLOBAL-OCkNN
This protocol enables multiple clouds to cooperate in
outsourced kNN classification. It computes the globally k
nearest points over the distributed databases. There are four
steps of Global-OCkNN, namely, Key Distribution Phase,
kNN Query Phase, Collaborative kNN Classification Phase,
and Result Retrieval Phase. Algorithm 7 presents the design
details.

During Key Distribution Phase, all participating parties,
including data owners, querists, and cloud servers, run
KD protocol interactively to generate their own key pairs.
In the end,Ui has pkUi/skUi , and Q has pkQ/skQ, while cloud
server CB

i holds pkCi/skCi with CA
i holding corresponding

re-encryption keys.
During kNN Query Phase, Q encrypts q component-wise

and submits to the preferred cloud server, denoted byCA
p . The

chosen cloud acts as master node by undertaking the most
workload and controlling the entire procedures while other
clouds work as slave nodes. Upon receiving q′, CA

p replicates
and distributes it to other cloud servers.

During Collaborative kNN Classification Phase, each
cloud invokes Local-OCkNN protocol to obtain locally clos-
est points to q, but it does not mean they’re globally nearest.
So CA

i sends its local results to CA
p for further processing.

Here, Ti contains Cloudi’s k encrypted nearest tuples and
class labels. Once receiving vector T , CA

p transforms all
ciphertexts into ones under pkCp . Another vector E

′ is calcu-
lated by combining T ′ and encrypted indices, the element of
which is (τ ′[j/k + 1, j%k], EncpkCp (j)), for j ∈ [1, nk]. ‘‘%’’
denotes modular operation. As has been mentioned before, τ ′

contains the ciphertexts of distance and class label as secret.
With E ′, the primary node is able to perform SMnN to get
the current smallest tuple. We also use ConvertMinToMax
function to update distances obliviously. After k iterations,
CA
p gets the encrypted vector of class labels, denoted by
2′ =< EncpkCi (c

′

1), . . . , EncpkCi (c
′
k ) >. Without loss of

generality, we assume that the distributed database consists
of θ unique classes, denoted by < c1, . . . , cθ >. CA

p has 2
as background knowledge. At last, cloud servers compute the
encrypted majority class via SMCC protocol, and the result
is converted into c′q under pkQ.

Algorithm 7 Global-OCkNN(Di, q, k,2)→ cq
Require: Ui holds its databaseDi;Q holds its query q; Cloud
servers know the count of neighbors (k) and encryptions of
class labels 2.
{Key Distribution Phase}
Cloudi, Ui, and Q:
1) Jointly compute � ← KD, where i, j ∈ [1, n], � is

the set of key pairs for kNN participants;
{kNN Query Phase}
Q:
1) q′← {EncpkQ (qj)|j ∈ [1,m]};
2) Submit q′ to CA

p ;

CA
p :
1) Replicate q′ and distribute it to other federal clouds

CA
i , where i 6= p and i, p ∈ [1, n];

{Collaborative kNN Classification Phase}
Cloudi, for i = 1 to n do:
1) Compute Ti ← Local-OCkNN(Di, q′, k), where

Ti = {τi,1, . . . , τi,k};
2) Send Ti to CA

p ;

CA
p and CB

p :
1) T ′i ← ReEnc(rkCi↔Cp ,EncpkCp (Ti)), where i 6= p

and i, p ∈ [1, n];
2) E ′j ← {τ

′[j/k+1, j%k],EncpkCp (j)}, where j ∈ [1, n∗
k], τ ′[j/k + 1, j%k] ∈ {T ′1, . . . ,T

′
n};

3) for j = 1 to k do:
• (gd ′min, gc

′

min, gI
′

min)← SMnN(E ′);
• 2′j← gc′min;
• ConvertMinToMax(E ′, gd ′min, gI

′

min, d
′
max);

4) EncpkCp (cq)← SMCC(2,2′);
5) c′q← ReEnc(rk−1Q↔Cp ,EncpkCp (cq));
6) Send c′q to Q;

{Result Retrieval Phase}
Q:
1) Receive c′q from CA

p ;
2) cq← Dec(skQ, c′q);

During Result Retrieval Phase,Q retrieves the desired class
label by decrypting c′q using its private key skQ.

4) SECURITY ANALYSIS OF OCkNN
According to Composition Theorem [22], if every step of
Global-OCkNN is secure, then we can prove that the com-
plete protocol is secure. The security of OCkNN under semi-
honest model is defined as follows.
Theorem 1: During the execution of the OCkNN protocol,

no privacy regarding the inputs of data owners and querist,
the final output or the access patterns are revealed to cloud
servers or other participants as long as ElGamal cryptosys-
tem is semantically secure, and blinding factors are randomly
selected.
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Proof: To prove the security, we need to demonstrate
each phase of Global-OCkNN is secure. First, the KD proto-
col ensures every party has its own key without being known
by anyone else. Due to the semantic security of the ElGamal
cryptosystem, q′ and D′i are unknown to all the other parities
during the outsourcing period. Cloudi then invokes Local-
OCkNN to compute the locally nearest neighbors over D′i.

As for Local-OCkNN, we stress that CA
i cannot derive

any privacy regarding datasets and query through the
re-encryption process. The SSD sub-protocol used to com-
pute the encryptions of the squared Euclidean distances has
been proven secure in Section IV-B. The current smallest
distance value (ed ′min) is selected using SMnN protocol based
on set E containing encrypted distance, class label, and index.
The output also includes the corresponding label (c′min) and
index (I ′min). Since ed

′

min, c
′

min, I
′

min are updated obliviously
in each iteration, CA

i is not able to know which record corre-
sponds to ed ′min. So the access pattern in comparison oper-
ation is hidden. In ConvertMinToMax, nothing is revealed
to CA

i , because its inputs I ′min, d
′

min, ν
′ are ciphertexts. CB

i
may decryptµ′, but the decryptions are either random values,
or predefined offset, while the order of original difference
vector µ is permutated by π . Thus, CB

i does not know the
access pattern, either.

The re-encryption technique is also used to unify cipher-
texts of locally k encrypted tuples under pkCp . The final class
label (c′q) is computed by SMCC which preserves not only
the confidentiality of class labels and frequencies, but the
access pattern for the given query. Since we assume there’s
no collusion among the cloud servers and clients, nothing
about the query and database is revealed to other parties by the
security and property of the underlying encryption scheme.

Based on the above discussions, we can build a simulator
F in the ideal world that executes the protocol by using
random numbers as inputs and returns outputs to adversary.
The adversaryA corrupting either cloud server cannot distin-
guish the view of real world and simulated world. Thus, the
proposed OCkNN protocol achieves its security goals.
Remark: Using ElGamal cryptosystem to encrypt zero

definitely results in part of ciphertext to be zero, because
ct1 = m · gr , where m is the plaintext message and ct1 is the
first part of ciphertext. Therefore, we should avoid encrypting
zero directly to protect confidentiality. As for kNN classifica-
tion, the original dataset which contains zero should be pre-
processed by rotation or shifting transformation, the target of
which is to avoid appearance of zero attributes and to preserve
the Euclidean distance. Apart from this, our proposed scheme
ensures server CA

i cannot deduce privacy from encryption of
zero. In SSD sub-protocol, CA

i may obtain EncpkCi (0) if there
are identical attributes or vectors, but nothing regarding the
actual content of data is revealed. Likewise, in SM2N, CA

i
may get EncpkCi (0) during difference computation if the two
values are the same whereas the data privacy is still protected.
During the execution of SMCC and ConvertMinToMax in
Local-OCkNN and Global-OCkNN, we add the non-zero
offset φ on inputs. Though EncpkCi (0) possibly exists during

TABLE 1. Complexity Comparison between OCkNN and PPkNN [6]
when n = 1.

computation, no private information like the equality of two
class labels or the position of minimum value is disclosed to
CA
i orCB

i , since φ is unknown toCA
i and π is unknown toCB

i .
Thus, due to the semantic security of ElGamal cryptosystem
and blindness of φ, CA

i cannot deduce either the content of
datasets or the access patterns from appearance of ‘‘zero’’
ciphertext.

5) COMPLEXITY ANALYSIS OF OCkNN
LetExp,Mult denote operations of modular exponentiation,
multiplication, respectively. Recall that L denotes the size
of single user’s database, n denotes the number of clouds,
and m is the record dimension. For the basic arithmetic
building blocks, homomorphic multiplication needs servers
to take 2Mult operations while SA needs 24Exp+ 24Mult
operations. The overall computation complexity for cloud
servers is bounded by (48mnL + 51knL + 97kn logL)Exp
while communication complexity is bounded by (52mnL +
104kn logL + 52knL)|G| when f = 0, where |G| is the
encryption key size. Similar work [6] proposed outsourcing
protocol called PPkNN constructed based on Paillier cryp-
tosystem [25] on the assumption of single data owner. PPkNN
achieves the same security level as ours and requires no
participation of clients either. The computation complexity
of PPkNN is bounded by (3Lp + 3Lm + 3Lkp logL)Exp,
where p is referred to as value size in bits while the com-
munication complexity is bounded by (6Lm+ 2L + 10pL +
4Lk + 6pk logL)|G|. Note that L is usually much larger than
m, n, k , and Table 1 shows the complexity of our scheme and
PPkNN when there’s one cloud environment. It’s apparent
that overhead of our scheme incurs O(L), less than that of
PPkNN, mainly because their method invokes complex bit-
decomposition protocol to compare encrypted distances and
twice larger size of modulo of Paillier’s scheme. Furthermore,
PPkNN does not support multi-key scenario as we do.

6) PERFORMANCE OPTIMIZATION OF OCkNN
To boost the performance of our protocol, we propose two
methods: (a) offline computation and (b) ciphertext random-
ization. Let’s take SA scheme as an example in the following.

(a) Offline computation. CA
i may adopt offline computa-

tion as preparation ahead of outsourced computation. First,
CA
i generates a large set of random numbers, denoted by

RN = {rni|rni ∈ G, i = 1, 2, . . . , ρ}. RN then are encrypted
as RN ′ = {EncpkCi (rni)|rni ∈ RN , i = 1, 2, . . . , ρ}. The set
size ρ should be as large as possible to enhance randomness
and security. The random numbers required in our methods
can be selected from RN . And the inverse values such as r−11 ,
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FIGURE 2. Computation time and communication cost for different protocols with varying k when n = 1 and
f = 0.

r−12 in SA can be pre-computed. The encrypted combinations
like EncpkCi (r1α) et.al., can also be calculated beforehand.
(b) Ciphertext randomization. Since encryptions of

random numbers like EncpkCi (r1α) and EncpkCi (−r2α) are
pre-computed, they may be easily identified by server
CB
i based on inspections, thus lowering down the diffi-

culty to guess the fraction of inputs. So EncpkCi (r1α) and
EncpkCi (−r2α) are further randomized during SA execution.
These encrypted values are multiplied with EncpkCi (r

′) ∈R
RN ′. Finally, CA

i obtains EncpkCi (r1αr
′), EncpkCi (−r2αr

′),
while the correctness of the optimized protocol still holds.

By the above boosting mechanisms, CA
i saves 2 encryp-

tions, 4 modular multiplications, 3 modular inverses as well
as random number generation operations.

V. EXPERIMENTAL RESULTS
In this section, we evaluate and analyze the performance of
our schemes for outsourced kNN classification under multi-
keys in multi-cloud environments and compare our work with
similar methods.

A. SETTINGS AND IMPLEMENTATION
The experiments of outsourcing protocols are performed on
our local cluster, in which servers have identical configura-
tions which are Intel Xeon E5-2620 @ 2.10 GHz with 12 GB
RAM running CentOS 6.5.We implement a proof-of-concept
version of the proposed protocol and PPkNN [6] in C++ using
the Crypto++5.6.3 library.

All experiments are simulated over the real dataset–Wine
Quality dataset from the UCI Machine Learning Reposi-
tory [26], consisting of 4898 instances, 12 attributes, and
11 class labels. The dataset is horizontally partitioned and
distributed to data owners. The key size of the encryption
scheme is chosen to be 1024 bits, which is a commonly
acceptable size.

B. EMPIRICAL ANALYSIS
We evaluate the performance of our protocols based on the
parameters: the count of nearest neighbors (k), the count of
clouds (n), and the count of noise (f ). k varies from 5 to 25
and f changes from 0 to 4. Every data owner’s encrypted
database is outsourced to its corresponding cloud server for

collaborative kNN classification. The query is selected from
the distributed databases randomly for each test. Then, we
consider to evaluate the overhead caused by database encryp-
tion and outsourced computation. The results presented in the
following are averaged over ten test samples.

First, we compare the computation and communication
overhead with similar protocol with varying number of near-
est neighbors, and assume n = 1 in the system since PPkNN
can only work in centralized model. From Fig.2(a), it can
be clearly observed that the computation time of PPkNN
grows sharply with the increase of k while our approach’s
(OCkNN) grows much more slightly. For example, when
k = 5, it takes PPkNN 610.2min to process encrypted data
while it only requires 35.59min for OCkNN. The time gap
scales up with k , so our speedup rate is at least 17 times. This
is mainly caused by expensive bit-decomposition and encryp-
tions of comparison processes in PPkNN, which degrades
performance whereas we apply blinding technique in SM2N
to boost and achieve the same security.

Fig.2(b) shows the communication cost increases with the
growth of k . The reason is that the larger k is, the more
comparisons over the ciphertexts the outsourced protocols
require, which is an indeed expensive operation. Obviously,
the traffic caused by PPkNN mounts up much more rapidly.
In the worst case, when k = 25, it produces around 2.45 times
flow asmuch as ours. As for computation time at data owner’s
side, Fig.2(c) suggests that OCkNN produces almost half
workloads of clients compared with PPkNN because of the
complexity of the underlying encryption schemes. Besides,
we notice that the burden for data owner is greatly relieved
due to kNN outsourcing, in that the time for owners accounts
for small proportion of total computation (less than 1% for
OCkNN).

Secondly, we evaluate the overhead caused by OCkNN
for cloud servers under different distributed model, where
the real dataset is uniformly distributed among all owners.
From statistics given in Fig.3(a), we can see that the time
cloud servers spend on computation grows with the rise of
k regardless of the number of clouds. This is consistent with
our previous observation. By contrast, the cost decreases with
the growth of n, which mainly results from the fact that the
more clouds are involved, the more jobs can be processed in
parallel. For example, when n = 2, it takes servers 17.86min
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FIGURE 3. Cloud computation time and communication cost with varying k and n when f = 0.

FIGURE 4. Cloud computation time and communication cost with varying f when k = 15 and n = 5.

to compute kNN for k = 5 while the same task for n = 4,
n = 6 require 9.16min and 6.34min, respectively. Thus,
OCkNN can accelerate the outsourced kNN in the multi-
cloud environments. Fig.3(b) and (c) reveal the costs of total
communication and inter-cloud communication, respectively,
which not only grow with the rise of k , but also with the
number of public clouds. However, the traffic between clouds
merely occupies a tiny part within overall communication.
For instance, the highest point of Fig.3(c) is 74.7KB with
k = 25 and n = 6 while that of total cost is 1090MB,
several orders higher than inter-cloud cost. Our scheme min-
imizes external traffic considering that the network channels
among different CSPs are not as stable and fast as in-house
bandwidth. Furthermore, out-band connections are usually
charged by CSP [24].

According to SA protocol proposed in Section IV-B, CA
i

inserts encrypted random numbers (i.e., {EncpkCi (ωj)|0 ≤
j ≤ f }) in 0 in order to enhance security. Next, we evaluate
the performance of cloud servers with varying number of
random noises inserted in 0 when k = 15. Fig.4 shows the
computation time and communication costs of OCkNN and
its optimized version increase with number of f , respectively.
The primary reason for this is that the more noises inserted
in 0, the more intermediate results need to be processed by
CB
i during addition operation. The optimized protocol saves

computation power by at least 20% due to offline preparation,
while the inter-cloud and intra-cloud communication costs
for both schemes are roughly the same. Nevertheless, when
f = 4, the outsourcing time is beyond 45min for both proto-
cols. So it’s essential to make a tradeoff between security and
efficiency. For instance, the probability of guessing correct
input ratio can be as low as 3.33% when f = 1, whereas
the optimized scheme takes 20min to compute kNN with

0.914GB traffic. This kind of cost is acceptable considering
the guess difficulty. Additionally, Fig.4(c) suggests the inter-
cloud traffic is not related to f , because only the locally top k
results are transmitted across clouds.

VI. RELATED WORK
In this section, we review the existing outsourced privacy-
preserving kNN approaches under different models.

A. DATA DISTRIBUTION MODEL
Similarly, this model concerns collaborative mining over
partitioned data, requiring all parties to compute kNN classi-
fication using SMC techniques [27]–[30]. However, we claim
that the outsourced kNN problem cannot be addressed by
SMC, in that in our case the data are encrypted and stored
in cloud instead of being held by data owners meanwhile the
mining results are still needed to be preserved. Besides, the
majority computation workload should be completed by CSP.

B. SINGLE-KEY OUTSOURCED MODEL
This model assumes the data are encrypted and outsourced in
the cloud while all the participants share the same key. Most
recent methods have been proposed based on this assumption.
Distance-Recoverable Encryption (DRE) is the straightfor-
ward solution, but it’s not secure against level-2 or level-3
attacks [7]. Wong et al. [7] proposed an Asymmetric Scalar-
product-Preserving Encryption (ASPE) scheme to defeat sig-
nature linking attack while preserving the order of distance.
They suppose that the query users are fully trusted and thus
the symmetric key is shared among all query users and data
owner, posing great threat to database security if one query
user is compromised by the adversary. Paper [15] solved
this by proposing a new scheme which only reveals partial
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information of data owner’s key to query users. Nevertheless,
we argue that their work is different from ours mainly in the
following aspects: (1) their systemmodel consists of only one
data owner and many query users whereas we assume there
are multiple data owners and query users; (2) encrypting a
query in [15] requires data owner’s participation, while each
party can use its own public key to encrypt data independently
in our proposal; (3) both [7] and [15] do not conceal access
patterns of the given query, since it is necessary for the cloud
server to know the order of distances to return the k closest
tuples; (4) they do not consider parallelization during kNN
outsourcing.

Elmehdwi et al. [9] leveraged Paillier Cryptosystem’s addi-
tively homomorphic property to construct privacy-preserving
primitives, based on which the outsourcing protocol handles
kNN query over encrypted database, and returns the k closest
records to the user. Their approach protects data confiden-
tiality, query privacy, and access patterns. The work is fur-
ther extended in [6], in which they proposed new solutions
for secure minimum (SMIN), secure frequency (SF), etc for
PPkNN, together with formal security analysis. The compu-
tation of majority class is also outsourced in the extended
version. Their work is similar with ours in terms of privacy
and access pattern protection, whereas their method hardly
satisfies some critical requirements of our system model due
to the following reasons. Firstly, the secure primitives in
[9] and [6] do not support that data owners and querists
use their own keys for data encryption. Instead, all data
are encrypted under the server’s public key. Secondly, the
computational and communication cost of PPkNN is too high
for real-world application. To compute the minimum value
during SMIN, secure bit-decomposition protocol is invoked
and most operations are performed on the encrypted bits,
incurring significant overhead on cloud servers. Since SMIN
is essential step to compute kNN, it explains why PPkNN
is not so efficient. On the contrary, our strategy to compare
ciphertexts seems simple but practical as discussed in Algo-
rithm 4. Thirdly, PPkNN is not parallelized under multi-cloud
setting as OCkNN.

Instead of computing distance straightway, Xu et al. [8]
proposed a method combining order preserving encryption,
dimensionality expansion, random noise injection and ran-
dom projection and developed efficient range query services
that achieve sublinear time complexity of processing queries.
But their scheme needs frequent interactions with client,
which deviates from the intention of data mining outsourcing.
Based on practical observations, the single-key model faces
potential security risks: the key leakage problem and snoop-
ing attacks by the corrupted cloud server.

C. MULTI-KEY OUTSOURCED MODEL
This model supposes different parties hold their respective
keys, hence mitigating the single-key risks. A fully homo-
morphic encryption (FHE) scheme under multiple keys was
proposed in [31], but its efficiency is still impractical as
other FHE schemes [32]. Besides, it’s not resoluble to make

comparison over ciphertexts for FHE. Paper [11] utilized the
double decryption mechanisms of BCP cryptosystem [18] to
convert ciphertexts under different keys into ones under a
common key under two non-colluding servers model. Fol-
lowing this, Wang et al. [12], [13] made further improve-
ments in efficiency via PRE, but their additively homomor-
phic scheme merely supports short plaintext due to solving
discrete logarithm problem, while the multiplicatively homo-
morphic scheme discloses ratio of inputs directly in two-
server model. Another recent work [14] studied the collabo-
rative mining under multi-owner setting and proposed several
security enhanced schemes. Though each party owns a exclu-
sive symmetric key, their schemes leak data owners’ keys to
cloud service users to re-encrypt the database. Moreover, the
underlying encryption is deterministic and not secure against
advanced attacks. To the best of our knowledge, none of
existing works address privacy-preserving outsourced kNN
using public key encryption under multi-cloud case.

VII. CONCLUSION
In this paper, we focused on the multi-cloud scenario where
data owners upload the encrypted databases to their cor-
responding public clouds for joint kNN classification. To
protect privacy under this systemmodel, we proposed a series
of efficient secure building blocks and an outsourcing pro-
tocol, named OCkNN for short. Our scheme allows clients
to encrypt data with their own keys while require no user-
server interactions during the outsourcing stage. Theoretical
analysis shows that the proposed scheme ensures the confi-
dentiality of data, kNN query, query result and access patterns
with small computational and communication costs. We also
highlight the practicability of our protocols by performing
experiments on real datasets under different parameter set-
tings in comparison with similar works. Since OCkNN offers
a high probabilistic guarantee on little privacy leakage and is
not rapid enough for large-scale dataset, we plan to investi-
gate more secure and efficient solutions as our future work.
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