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ABSTRACT In this paper, a new reaching law for uncertain discrete time systems is presented. The
proposed reaching law is designed to ensure a limited sliding variable rate of change and at least asymptotic
convergence of the variable to zero. The law is utilized to design a control strategy, which is then applied
to an inventory management system with multiple suppliers and limited warehouse capacity. The strategy is
proved to ensure all the desirable properties of the system. On the one hand, it guarantees that the suppliers
are never forced to send more goods than they are capable of and that warehouse capacity is never exceeded.
On the other hand, it ensures that the consumers’ demand is always fully satisfied.

INDEX TERMS Discrete time slidingmode control, reaching law approach, inventorymanagement systems.

I. INTRODUCTION
Sliding mode control of continuous time systems is an area
of research with roots in late 1950s in Russia [1], [2].
Control algorithms it provides are characterized by high
computational efficiency and complete rejection of matched
disturbance [3]. However, the application of continuous time
sliding mode controllers can result in an undesirable phe-
nomenon called chattering, which can potentially damage the
plant or cause energy loss [4]. The implementation of the
aforementioned controllers was elaborated upon by various
authors [5]–[8]. Since continuous states cannot be perfectly
represented in digital environments, a natural development
was the introduction of discrete time sliding mode con-
trol [9], [10]. Although they are not completely insensitive
to disturbance, discrete time sliding mode controllers became
attractive to the control engineering community [11]–[15] as
they offer good robustness without requiring high frequency
switching in the sliding phase.

The classic approach to sliding mode controller design
involves stating the control law and then proving via
Lyapunov analysis that it ensures stability of the sliding
motion. However, in this paper an alternative method called
the reaching law approach will be utilized. This method was
first introduced for continuous time systems in [8] and for
discrete time ones in [11], with further comments in [12].
Reaching law approach is based on stating the desired evolu-
tion of the sliding variable and then utilizing the evolution to
derive the control law, thus bypassing the complex Lyapunov-
based proof of stability. Various authors have proposed

new reaching laws [16]–[22], which improve on the classic
formula introduced by Gao et al.

In this paper, a new discrete time reaching law based
control strategy will be presented and applied to an inven-
tory management system [23]–[27] with multiple suppliers,
limited warehouse capacity and an a priori unknown con-
sumers’ demand. For such a system, it is necessary for the
strategy to ensure non-negative and upper bounded values of
control signal, which denotes the amount of goods sent in
each sampling period by all suppliers. Furthermore, system
output representing the amount of merchandise stored in the
warehouse has to be upper bounded due to limited storage
space, and strictly positive to ensure that consumers’ demand
is fully satisfied. All of these properties are guaranteed by the
proposed strategy and will be formally proven in this paper.

The remainder of the paper is organized in the follow-
ing way. Section 2 describes the reaching law based sliding
mode control strategy and demonstrates properties related to
the sliding variable. In section 3, the inventory management
system is presented and expressed with a delay free model
in the extended state space. In the same section, all of the
favorable properties described in the previous paragraph are
formally proven. Section 4 contains simulation results, which
illustrate the effectiveness of the proposed method. Section 5
gives concluding remarks.

II. CONTROL STRATEGY
In this paper, we propose a reaching law based sliding mode
control strategy for a class of discrete time systems expressed
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in the state space as

x[(k + 1)T ] = Ax(kT )+ Ã(kT )x(kT )

+ bu(kT )+ pd(kT )

y(kT ) = qTx(kT ), (1)

where A is the n × n dimensional state matrix, Ã(kT ) is the
matrix representing internal parameter uncertainties, u(kT )
and d(kT ) are scalars representing control signal and distur-
bance respectively and b, p, q are n× 1 dimensional vectors.
Since vectors b and p are not necessarily equal, the distur-
bance d(kT ) is not matched. First, the sliding variable is
defined as

s(kT ) = cTxd − cTx(kT ), (2)

where c is a real vector such that cTb 6= 0 selected to
ensure the stability of the system and xd is the desired state
of the system. In order to make the sliding mode control
strategy applicable, it is assumed that there exist constants
Dmin and Dmax such that for all k

Dmin ≤ cTÃ(kT )x(kT )+ cTpd(kT ) ≤ Dmax . (3)

For the sake of convenience, constants representing the aver-
age perturbations and their maximum admissible deviation
from the average are defined as

Davg =
Dmax + Dmin

2
, Dδ =

Dmax − Dmin
2

. (4)

The reaching law for the class of systems (1) is now
introduced as

s[(k + 1)T ] = s(kT )− s0 f [s(kT )]sgn[s(kT )]+ Davg
− cTÃ(kT )x(kT )− cTpd(kT ), (5)

where f is a function

f [s(kT )] = 1− exp

[
−
s(kT )2

s20

]
(6)

with values from the interval [0, 1) and s0 is the design
parameter. The reaching law designed in such a way ensures
that the sliding variable converges to a certain vicinity of
zero at least asymptotically and that its rate of change is
bounded by s0 plus the maximum influence of uncertainties.
The reaching law will now be utilized to obtain a sliding
mode control strategy. First s[(k + 1)T ] is substituted from
(2) into (5) and x[(k + 1)T ] is further substituted from (1)
into (5) resulting in

cTxd − cTAx(kT )− cTbu(kT )

= s(kT )− s0 f [s(kT )]sgn[s(kT )]+ Davg. (7)

Then, (7) is solved for u(kT ) giving the control strategy

u(kT ) = −(cTb)−1{s(kT )− s0 f [s(kT )]sgn[s(kT )]

+Davg + cTAx(kT )− cTxd }. (8)

Remark 1: It is easy to verify that the expression
s(kT ) − s0 f [s(kT )]sgn[s(kT )] in the reaching law (5) is

strictly increasing for all real values of the sliding variable.
Therefore, for any real R1 and R2 such that R1 < R2, we have

R1 − s0 f (R1)sgn(R1) < R2 − s0 f (R2)sgn(R2). (9)

A. PROPERTIES OF THE PROPOSED STRATEGY
It will now be demonstrated that the reaching law (5) drives
the sliding variable into a band

B =

{
x : |cTxd − cTx| ≤ β = s0

√
ln
(

s0
s0 − Dδ

)}
(10)

around the sliding surface s(kT ) = 0 and ensures that the
variable is confined to the band (10) in all future steps.
To that end, the following two theorems will be proven.
Theorem 1: If s0 > Dδ and x(kT ) is out of the band (10),

then the system representative point will approach the band
at least asymptotically.

Proof: Let us consider any state x(kT ) out of the
band (10). The proof will only be conducted for the case
where s(kT ) = cTxd − cTx(0) ≥ β, since the analysis for
the case s(kT ) ≤ −β is almost identical. First, we substitute
β from (10) into (6) and get

s0 f (β) = s0

[
1−exp

(
−
β2

s20

)]
= s0

[
1−

s0 − Dδ
s0

]
= Dδ.

(11)

Since s(kT ) ≥ β, then relation (9) gives f [s(kT )] ≥ f (β).
Consequently, relations (5) and (11) imply

s[(k + 1)T ] ≤ s(kT )− s0 f (β)− cTÃ(kT )x(kT )

+Davg − cTpd(kT )

≤ s(kT )− Dδ + Davg − Dmin
= s(kT )− Dδ + Dδ = s(kT ). (12)

Therefore, the sliding variable will either become smaller
than β in finite time or approach a certain positive value s+
asymptotically. In the former case, the system representative
point enters the quasi-sliding mode band (10). Let us now
consider the case where the sliding variable approaches s+
as k tends to infinity. We have

lim
k→∞

s[(k + 1)T ] ≤ lim
k→∞
{s(kT )− s0 f [s(kT )]+ Dδ}

= s+ − s0 f (s+)+ Dδ. (13)

Since s[(k + 1)T ] also converges to s+, relation (13) implies

s+ ≤ s+ − s0 f (s+)+ Dδ. (14)

By solving (14) for s+, we obtain s+ ≤ β, which means that
the sliding variable can only converge to a value inside the
band (10). In conclusion, for any initial state the system
representative point will either enter the aforementioned band
or approach it asymptotically.

It will now be demonstrated that once the system represen-
tative point enters the quasi-sliding mode band (10), it will
remain inside the band for all future sampling instants. This
property will be proven in the following theorem.
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Theorem 2: If s0 > Dδ and x(kT ) is inside the band (10),
then x[(k + 1)T ] will also be confined to that band.

Proof: Let x(kT ) be such a state that −β ≤

s(kT ) ≤ β. It will be shown that s[(k + 1)T ] also belongs
to that interval. Since Remark 1 states that the expression
s(kT ) − s0 f [s(kT )]sgn[s(kT )] in the reaching law (5) is
strictly increasing, only the cases of s(kT ) = ±β will be
considered. First, for s(kT ) = β substitution of (11) into (5)
yields

s[(k + 1)T ] = β − s0 f [s(β)]sgn[s(β)]+ Davg
− cTÃ(kT )x(kT )− cTpd(kT )

≤β − s0 f [s(β)]sgn[s(β)]+ Davg − Dmin
=β − Dδ + Dδ = β. (15)

Now let s(kT ) = −β. Since f is an even function, relations
(5) and (11) give

s[(k + 1)T ] = −β − s0 f [s(−β)]sgn[s(−β)]+ Davg
− cTÃ(kT )x(kT )− cTpd(kT )

≥ −β + s0 f [s(−β)]sgn[s(β)]+ Davg − Dmax
= −β + Dδ − Dδ = −β. (16)

Since the expression s(kT )− s0 f [s(kT )]sgn[s(kT )] is strictly
increasing in the interval [−β, β], relations (15) and (16)
imply that s[(k + 1)T ] is always confined to that interval.

Taking Theorems 1 and 2 into account, we conclude that
the proposed reaching law ensures at least asymptotic conver-
gence of the sliding variable to a band around the switching
plane and guarantees that once the variable enters the band,
it will remain inside for all subsequent sampling instants.

III. INVENTORY SUPPLY MODEL
The reaching law proposed in the previous section will now
be applied to a specific plant with input and output constraints
and its properties in this context will be further analyzed.
Let us consider an inventory management system with
a priori unknown consumers’ demand and limited warehouse
capacity. The current amount of goods stored at the ware-
house is expressed by y(kT ), where T is the sampling period.
Shipments are delivered to the warehouse by m providers
with an assumption that a certain amount of goods is dam-
aged during transport. Therefore, a commodity loss factor is
denoted by fi(kT ) for shipment sent by the i-th provider and
delivered at time instant kT . Consequently, out of the original
shipment, only the amount multiplied by fi(kT ) will arrive at
its destination. For each i, fi(kT ) is always lower and upper
bounded by f imin > 0 and f imax ≤ 1.

The amount of goods the i-th provider can send at any
moment is assumed to be upper bounded by constant uimax
and the sum of uimax for all i is denoted as umax . The time it
takes for i-th supplier’s shipments to arrive at the warehouse
is expressed by Ti. The discretization period T is selected to
ensure that every Ti is a multiple of it, i.e. for each i there
exists a natural µi such that Ti = µiT . The control signal
u(kT ) determines the amount of goods that need to be sent

at the moment kT and is distributed among the providers
proportionally to their capabilities. Consequently, the i-th
provider will be required to send the shipment equal to

ui(kT ) = u(kT )
uimax
umax

. (17)

The consumers’ demand at each time instant kT is denoted by
an a priori unknown function d∗(kT ). The amount of goods
d(kT ) that are actually sold is equal to d∗(kT ) unless the stock
at instant kT is insufficient to meet the demand, in which
case d(kT ) is just large enough to empty the warehouse. The
following relation holds

0 ≤ d(kT ) ≤ d∗(kT ) ≤ dmax . (18)

To make sure that it is possible for suppliers to satisfy the
demand at any moment, the following assumption is made

m∑
i=1

f iminu
i
max > dmax . (19)

In conclusion, since the warehouse is assumed to be empty
at the beginning of the control process, the amount of stored
goods at any moment can be expressed as

y(kT ) =
k−1∑
j=0

m∑
i=1

fi(jT )ui(jT − Ti)−
k−1∑
j=0

d(jT ). (20)

Real life application of the proposed sliding mode control
strategy to the inventorymanagement system described above
must adhere to several constraints. Since warehouse capacity
is limited, the strategy must ensure that the system output
y(kT ) is upper bounded for all time instants. Furthermore, the
control signal should not require the suppliers to send more
goods than they are capable of. Finally, to ensure that the
consumers’ demand is always satisfied, we require the strat-
egy to maintain strictly positive stock levels after max(Ti/T )
initial steps. In the following subsections the model of the
inventory management system will be presented, after which
the aforementioned properties will be formally proven.

A. SIMPLIFICATION OF THE MODEL
In order to simplify the controller design procedure, an
n-dimensional delay-free model of the supply chain will be
introduced, where n =max(Ti/T )+1. The current amount of
stored goods (20) will be expressed by the first state variable
of this model, while the remaining variables will represent
the shipments that are already underway. It is further assumed
that the amount of goods that reach their destination is always
equal to f imax and any deviation from the maximum will
be modeled via internal parameter uncertainties. The unpre-
dictable consumers’ demand will be expressed as external
disturbance affecting the first state variable. First, the amount
of goods arriving at the warehouse from all providers at
the moment kT is denoted by Fr (kT )u(kT − rT ), where
r = 1, . . . , n− 1 and

Fr (kT ) =
∑

i:Ti=rT

fi(kT )
uimax
umax

. (21)
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Then, the amount of stored goods (20) can be expressed as

y(kT ) =
k−1∑
j=0

n−1∑
r=1

Fr (jT )ui(jT − rT )−
k−1∑
j=0

d(jT ) (22)

and consequently

y[(k + 1)T ] = y(kT )+
n−1∑
r=1

Fr (kT )ui(kT − rT )− d(kT ).

(23)

Next, F rmin and F
r
max are defined in the following way

F rmin =
∑

i:Ti=rT

f imin
uimax
umax

, F rmax =
∑

i:Ti=rT

f imax
uimax
umax

. (24)

With this in mind, the inventory management system can now
be expressed as the plant (1), where the first state variable
denotes the current stock level while the remaining ones
represent shipments that are already underway. Consequently,
state variables xi for i = 2, . . . , n are lower bounded by
zero and upper bounded by umax , since suppliers can only
send the amount of goods from that interval. Furthermore,
d(kT ) ∈ [0, dmax] is the satisfied consumers’ demand, the
n× n dimensional state matrix

A =


1 Fn−1max Fn−2max · · · F1

max
0 0 1 0
...

. . .
...

0 0 0 1
0 0 0 · · · 0

, (25)

matrix representing parameter uncertainties

Ã(kT ) =


1 F∗n−1(kT ) · · · F∗1 (kT )
0 0 0
...

. . .
...

0 0 · · · 0

, (26)

where F∗r (kT ) = Fr (kT ) − F rmax for all r , and n × 1
dimensional vectors

b =


0
...

0
1

, p =


−1
0
...

0

, q =


1
0
...

0

. (27)

Taking the known system parameters into account, from
relations (3) and (4), we obtain

Dmin = −dmax − umax
n−1∑
r=1

(F rmax − F
r
min), Dmax = 0,

Davg = −Dδ = −
dmax
2
−
umax
2

n−1∑
r=1

(F rmax − F
r
min). (28)

In the next section, a control strategy for the inventory
management system defined in such a way will be presented
and several of its advantageous properties will be proven.

B. PROPERTIES OF THE INVENTORY
MANAGEMENT STRATEGY
The reaching law based control strategy will now be applied
to the inventory management system described above. The
strategy will lead the system state x(kT ) to a desired value
xd = [yd 0 . . . 0]T, where yd is a positive constant selected
by the designer. Thus, the sliding variable becomes

s(kT ) = cT[xd − x(kT )] = c1yd − cTx(kT ). (29)

Vector c is selected to ensure a dead-beat response of the
system [19]. Therefore, it must satisfy the following equation

det{λIn − A+ b(cTb)−1cTA} = λn, (30)

where cTb 6= 0. Considering relations (25) and (30), elements
of vector c are obtained as

ci =

{
1 for i = 1∑i−1

r=1
Fn−rmax for i = 2, . . . , n.

(31)

The control signal (8) can now be simplified taking the known
system parameters into account. First, relation (25) implies
that

cT(A− In) = [0 c1Fn−1max − c2 . . . c1F1
max + cn−1−cn]

(32)

and substitution of (31) into (32) yields

cT(A− In) = [0 0 0 . . . 0]. (33)

From (33) we further obtain

cT(A− In)x(kT )+ cTx(kT ) = cTx(kT ). (34)

Taking relations (31) and (34) into account, control law (8)
can be rewritten in a simplified form

u(kT ) =

(
n−1∑
r=1

F rmax

)−1
{s0 f [s(kT )]sgn[s(kT )]− Davg}.

(35)

When applied to the considered inventory management
system, the control signal must always be non-negative and
it should never force the suppliers to exceed their total capa-
bilities umax . These properties will be proven in the following
theorems.
Theorem 3: Control signal (35) is always non-negative.
Proof: It is known that the state vector x is equal to zero

at the beginning of the control process, c1 = 1 and yd > 0.
Consequently s(0) = c1yd − cTx(0) > 0. If s(0) > β,
then Theorem 1 states that the sliding variable will either
arrive inside the interval [−β, β] in finite time or approach
β asymptotically. On the other hand, if the considered state
belongs to the band (10), i.e. if the variable belongs to the
interval [−β, β], then Theorem 2 ensures that the state will
remain inside the band in all subsequent sampling instants.
In conclusion, for the considered system the sliding variable
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will never assume values smaller than −β. Since the expres-
sion s0 f (s)sgn(s) in the control law (35) is strictly increasing
with respect to s, we obtain

u(kT ) =

(
n−1∑
r=1

F rmax

)−1
{s0 f [s(kT )]sgn[s(kT )]− Davg}

≥

(
n−1∑
r=1

F rmax

)−1
[−s0 f (−β)− Davg]. (36)

Furthermore, relations (11) and (28) give

u(kT ) ≥

(
n−1∑
r=1

F rmax

)−1
(−Dδ − Davg)

=

(
n−1∑
r=1

F rmax

)−1
(Davg − Davg) = 0 (37)

for every k . Therefore, the control signal for the considered
system is always non-negative.
Next, it will be demonstrated that with the right choice

of parameter s0, the proposed strategy never requires the
suppliers to exceed their manufacturing capabilities.
Theorem 4: If

s0 ≤ umax

(
n−1∑
r=1

F rmax

)
+ Davg, (38)

then for all time instants the control signal is not greater than
umax .

Proof: It is known that f in (35) is a non-negative
function upper bounded by 1. Consequently

u(kT ) =

(
n−1∑
r=1

F rmax

)−1
{s0 f [s(kT )]sgn[s(kT )]− Davg}

≤

(
n−1∑
r=1

F rmax

)−1
(s0 − Davg). (39)

Substitution of (38) into (39) yields

u(kT ) ≤

(
n−1∑
r=1

F rmax

)−1

×

{
umax

(
n−1∑
r=1

F rmax

)
+ Davg − Davg

}
= umax . (40)

In conclusion, the control signal generated by the proposed
strategy satisfies input constraints for the considered inven-
tory management system. However, the inventory manage-
ment system further requires that the consumers’ demand is
always satisfied and that the result is achieved with finite
storage space. These properties will be demonstrated in the
next two theorems.

Theorem 5: If

yd > β + umax
n∑
i=2

ci, (41)

then for every k >max(Ti/T ) the amount of stored goods
y(kT ) is strictly positive.

Proof: Let k >max(Ti/T ). First let us consider the case
where s(kT ) ≤ β. Relation (29) implies

yd − y(kT )−
n∑
i=2

ciu[(k − n+ i− 1)T ] ≤ β. (42)

Since Theorem 4 ensures that the control signal is upper
bounded by umax , relations (41) and (42) give

y(kT ) ≥ yd −
n∑
i=2

ciu[(k − n+ i− 1)T ]− β

≥ yd − umax
n∑
i=2

ci − β > 0. (43)

Now let us consider the case where s(kT ) > β. Theorems 1
and 2 imply that s(lT ) > β for l smaller than k . Therefore,
for each l = 0, . . . , k − 1

u(lT ) =

(
n−1∑
r=1

F rmax

)−1
{s0 f [s(lT )]− Davg}

>

(
n−1∑
r=1

F rmax

)−1
[s0 f (β)− Davg]

=

(
n−1∑
r=1

F rmax

)−1
2Dδ. (44)

Relation (22), together with (44), gives

y(kT ) = y[(k − 1)T ]− d[(k − 1)T ]

+

n−1∑
r=1

Fr (kT )u(kT − rT )

> y[(k − 1)T ]− d[(k − 1)T ]

+

[
n−1∑
r=1

Fr (kT )

](
n−1∑
r=1

F rmax

)−1
2Dδ. (45)

It is known that the disturbance is upper bounded by dmax ,
the amount of stored goods y[(k − 1)T ] is non-negative and
Fr (kT ) ≥ F rmin for each r . Therefore, relation (45) gives

y(kT ) > −dmax + 2Dδ

(
n−1∑
r=1

F rmin

)(
n−1∑
r=1

F rmax

)−1
. (46)
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Substitution of Dδ from (28) into (46) yields

y(kT ) > −dmax + dmax

(
n−1∑
r=1

F rmin

)(
n−1∑
r=1

F rmax

)−1

+ umax

(
n−1∑
r=1

F rmax − F
r
min

)

×

(
n−1∑
r=1

F rmin

)(
n−1∑
r=1

F rmax

)−1
. (47)

Further substituting F rmin from (24) into (47) gives

y(kT ) > −dmax + dmax

(
n−1∑
r=1

F rmin

)(
n−1∑
r=1

F rmax

)−1

+

(
n−1∑
r=1

f iminu
i
max

)(
n−1∑
r=1

F rmax − F
r
min

)

×

(
n−1∑
r=1

F rmax

)−1
. (48)

Finally, substitution of (19) into (48) results in

y(kT ) > −dmax + dmax

(
n−1∑
r=1

F rmin

)(
n−1∑
r=1

F rmax

)−1

+ dmax

(
n−1∑
r=1

F rmax − F
r
min

)(
n−1∑
r=1

F rmax

)−1

= −dmax + dmax

(
n−1∑
r=1

F rmax

)(
n−1∑
r=1

F rmax

)−1
= 0.

(49)

Therefore, after the initial max(Ti/T ) steps, the amount
of stored goods is strictly positive, which implies that
customers’ demand is fully satisfied.
Finally, it will be demonstrated that the proposed strategy

imposes an upper bound on the system output, thus ensuring
that the result is achieved with limited storage space.
Theorem 6: The amount of stored goods y(kT ) is always

smaller than yd + β.
Proof: Theorems 1 and 2 imply that the variable s(kT )

is always greater than −β. Consequently, relation (29) gives

yd − y(kT )−
n∑
i=2

ciu[(k − n+ i− 1)T ] ≥ −β. (50)

Theorem 3 further states that u(kT ) is always non-negative.
Therefore

y(kT ) ≤ yd + β −
n∑
i=2

ciu[(k − n+ i− 1)T ] ≤ yd + β.

(51)

TABLE 1. Characteristics of the suppliers.

IV. SIMULATION RESULTS
The proposed strategy will now be applied to an exam-
ple inventory management system with five suppliers and
its effectiveness will be demonstrated in the presence of
an unpredictable, rapidly changing consumers’ demand.
Characteristics of the suppliers are presented in Table 1. The
sampling period T is assumed to be 1 day and the simulation
encompasses 6 months (180 days). The available warehouse
can contain 600 tons of the product. The consumers’ demand
is assumed to change according to the following formula

d(kT ) = 60+ 60 · (−1)b1+k/30c (52)

with maximum demand being dmax = 120. The commodity
loss coefficient for i-th supplier changes in the following way

fi(kT ) =
f imax + f

i
min

2
+
f imax − f

i
min

2
· (−1)bk/30c. (53)

TABLE 2. Supplier groups.

In other words, relations (52) and (53) imply that every
month the unpredictable losses and consumers’ demand shift
between the two extreme values. Suppliers with the same
delivery time are now grouped together according to their
delivery times and coefficients (24) for each group are dis-
played in Table 2. Since the maximum delivery time is 4,
matrix A defined in (25) is 5 × 5 dimensional. Vector c is
calculated according to (31) and equals

cT = [1 0.3 0.3 0.65 1]. (54)

Next, coefficients Davg and Dδ are obtained from (28) and

Davg = −Dδ = −
dmax
2
−
umax
2

n−1∑
r=1

(F rmax − F
r
min) = −69.

(55)

Design parameter s0 is determined according to (38) and
equals 72 tons. Consequently, the width of the band (10)
is β = 128.3551 tons. Theorem 5 states that the demand
value yd must be greater than 465.8551 tons. On the other
hand, Theorem 6 states that the warehouse capacity must
be no lesser than yd + β. In conclusion, since the available
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FIGURE 1. Sliding variable.

FIGURE 2. Amount of stored goods.

FIGURE 3. Amount of ordered goods.

warehouse capacity is 600 tons, the parameter yd is set to
470 tons. Figure 1 shows the evolution of the sliding vari-
able, Figure 2 depicts the amount of goods stored in the
warehouse and Figure 3 shows the amount of ordered goods.
Figure 1 demonstrates that the sliding variable quickly enters
the band (10) illustrated by black dashed lines and remains

confined to the band in all subsequent steps. It can further
be seen from Figure 2 that the warehouse capacity is never
exceeded and that, after initial deliveries are completed, the
warehouse is never empty. Finally, Figure 3 demonstrates that
the amount of ordered goods is always non-negative and never
exceeds the capabilities of the suppliers.

V. CONCLUSIONS
A new reaching law based sliding mode control strategy
has been proposed and applied to an inventory management
system. The strategy for such plants must abide by several
constraints. First of all, the control signal must never require
the suppliers to send a larger shipment than they are capable
of. Naturally, the signal also cannot be negative, as sending
goods back to the suppliers is not feasible. Another impor-
tant constraint is the warehouse capacity, which must never
be exceeded. Finally, at any moment the warehouse stock
level should be large enough to satisfy consumers’ demand.
In this paper, all of the properties described above have
been formally proven. Simulation results further demonstrate
the effectiveness of the proposed method. The reaching law
approach - as proposed in this paper - can be seen as a
solution alternative to the application of time-varying sliding
hyperplanes [28]–[30] in variable structure systems.
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