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ABSTRACT Power consumption is one of the major concerns for the cloud providers. The issue of
disorganized power consumption can be categorized into two main groups: one caused by server operations
and one occurred during the network communications. In this paper, a platform for virtual machine (VM)
placement/migration is proposed to minimize the total power consumption of cloud data centers (DCs).
The main idea behind this paper is that with the collaboration of optimization scheduling and estimation
techniques, the power consumption of DC can be optimally lessened. In the platform, an estimation module
has been embedded to predict the future loads of the system, and then, two schedulers are considered to
schedule the expected and unpredicted loads, respectively. The proposed scheduler applies the column gener-
ation technique to handle the integer linear/quadratic programming optimization problem. Also, the cut-and-
solve-based algorithm and the call backmethod are proposed to reduce the complexity and computation time.
Finally, numerical and experimental results are presented to validate our findings. Adaptation and scalability
of the proposed platform result in a notable performance in VM placement and migration processes.
We believe that our work advances the state of the art in workload estimation and dynamic power
management of cloud DCs, and the results will be helpful to cloud service providers in achieving energy
saving.

INDEX TERMS Cloud computing, optimization, integer linear/quadratic programming, column generation,
dynamic resource allocation, estimation theory, time-varying Kalman filter.

I. INTRODUCTION
Cloud computing has already revolutionized traditional Infor-
mation Technology industry through helping developers
and companies overcome the lack of hardware capacity
(e.g. CPU, Memory, and Storage) by allowing the user
to access on-demand resources through the Internet. The
widespread employment of cloud Data Centers (DCs) neces-
sitates the cloud providers(e.g., Amazon Rackspace) to
improve cloud efficiency regarding the operational costs.
Energy consumption is the key concern in operational costs
of cloud systems. With the growing number of in-service
servers, the global expenditure on enterprise energy usage
and server cooling is estimated to be considerably high [1].
Based on recent research outcomes, up to 20% savings can
be achieved on the energy consumptions of DCs. These
savings lead to an additional 30% saving on cooling energy
requirements [2].

Dynamic power management techniques aim to reduce the
energy wastage in DCs by temporarily shutting servers down

when they are not required. It also applies power saving
technologies, such as Dynamic Voltage and Frequency Scal-
ing (DVFS), to minimize the power level of active servers [3].
However, setup and transition times delay of the full reacti-
vation or switching the power level of a server can adversely
affect the system performance. Hence, to be able to dynam-
ically manage the number of active servers and their per-
formance level, the amount of incoming workload and their
requirements should be estimated precisely. The total work-
load of DC consists of several jobs, and each job includes
several Virtual Machines (VMs). The VMs of incoming jobs
should be assigned to the active servers. Concurrently, one
should take into account the role of all server resources
namely CPU, memory, and storage in VMplacement process.
As a result, this will become a multidimensional bin packing
problem.

Based on the types of applications served by the cloud
computing center, there is a vast diversity in the demand
resource profiles. In general, computing tasks such as web
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serving are more process intensive, while database oper-
ations typically require high-memory support. One of the
other essential characteristics of a cloud computing system
is diversification of server resources as well as the types of
workloads. As time goes by, DCs update the configuration
of their resources, the processing capabilities, memory and
storage spaces. They also construct new platforms based on
the new high-performance servers while the older servers are
still operational. Due to heterogeneity of both servers and
workloads, designing an optimal resource allocation algo-
rithm concerning energy and cost efficiency becomes very
complicated.

Beside power usage of servers, communication also
impacts both performance and power consumption of the
operations. Communication increases the job execution
latency and the power consumption. One way to mitigate the
Cloud Network (CN) power usage is to apply traffic aware
VM placement methods [7]–[9]. Nevertheless, due to high
variety, dynamicity, and heterogeneity of workload charac-
teristics, traffic awareness is almost impossible on practical
solutions and therefore DC traffic approximation should be
applied.

All in all, the formulation of VM placement problem
would include both network and servers power usages. In
this paper, a platform for VM placement and migration in
the DC that minimizes the power consumption of the DC is
proposed. First, the incoming workload regarding the number
of different types of jobs and different number of VMs are
predicted for the next time slot. Secondly, the problem of
VM placement and migration for power minimization, which
is NP-hard [10], will be solved according to the estimation
and available resources. Next, column generation (CG) tech-
nique is used to solve this large-scale optimization problem.
Moreover, depending on the time limit and complexity con-
straints, three methods of off-line pattern generation, cut and
solve [13], [14] , and Call-Back [32] are also proposed for
initiation, limiting the searching area, and optimization ter-
mination, respectively. These methods are added to mitigate
the complexity order of the optimization problem further. The
main contributions of this paper are as follows:
• Heterogeneous resources and workloads of a DC are
modeled and power efficient network-aware resource
allocation platform is proposed to optimize the power
consumption of cloud data centers.

• Auto Regressive Integrated Moving Average (ARIMA)
based Kalman Filter (KF) is proposed to estimate the
incoming workload and prediction error is also consid-
ered in the optimal resource allocation.

• CG technique is utilized in dynamic job scheduler with
optimization of cloud power consumption. Then, offline
pattern initiation, cut and solve method and call back
approach are proposed to reduce the complexity and
search space and to make it scalable regarding the
scheduling deadline.

The remainder of this paper is organized as follows: Related
work is discussed in section II. Section III introduces the

notations and preliminaries of the cloud computing DC
model. Section IV describes the job types of cloud DC.
In section V, suggested platform is propounded. Also, the
details of the estimation process and scheduling, which
includes the discussion of the optimization in scheduling
modules. Section VI introduces CG and discusses initializa-
tion, cut and solve, and heuristic algorithm for immediate
termination. In Section VII, we give a comparison of numer-
ical and experimental results with the closest related works
that have been referred to in Section II. Finally, Section VIII
concludes the paper and introduces the possible future work.

II. RELATED WORK
Despite the ubiquitous research attention devoted to power
efficient resource allocation in cloud computing systems, it
lacks from the optimal dynamic power management practical
platforms. Dynamic power management technique necessi-
tates a forecast of the workload of cloud computing DC.
Some research papers such as [23], have studied stochastic
modeling of cloud computing systems to predict the available
resources and the workload of the DC. However, either exact
analysis retain the restrictive distributions such as Poisson
and Exponential, are used for the arrival and departure rates of
the cloud workload or the accuracy of the analysis is degraded
by some approximations.

Different predictive policies attempt to predict the request
rate and to track the future loads of the DC. Conventional
dynamic power management approaches, e.g., [14]–[16] use
prediction policies such as Moving Average (MA) and Linear
Regression (LR). In MA method, the request rates are aver-
aged over a time window to predict the future job arrival rate.
LR method is identical to MA except for the estimation of
the request rate, which is made by matching the best linear fit
to the values in the window. The best forecasting result with
the highest accuracy is achieved using the Auto Regressive
Integrated Moving Average (ARIMA) technique [18], [19],
and [22]. In time series analysis of non-stationary scenar-
ios, it is preferable to use an ARIMA model, which is a
generalization of MA model fitted to the time series data.
Calheiros et al. [22] applied prediction module based on
ARIMA model to estimate the requests for the application
servers of SaaS providers and later evaluated the accuracy of
the future workload prediction using real traces of requests
to web servers from the Wikimedia Foundation. The average
accuracy of ARIMA is measured up to 91 percent. Assuming
that the number of running tasks is a stationary process,
Zhang et al. [18] also used ARIMAmodel-based estimator to
predict the arrival rate and the number of long running tasks
when the trend of resource demand is stable. Zhang et al.
continued their analysis in [18], by using real traces obtained
from Google compute clusters, indicate that the prediction
Root Square Error (RSE) of ARIMA in the large scale is less
than one percent.

Zhang et al. [17], also addressed the heterogeneity of
workloads and PMs. According to their characteristics, tasks
are classified into classes with similar resource demands and
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performance characteristics. Different types of servers are
also considered based on their platform ID and capacities
on various resources. An estimator based on time series
has been implemented to predict workload rate. Then, a
heterogeneity-aware resource monitoring and management
system dubbed Harmony was proposed to perform dynamic
capacity provisioning to minimize the total energy consump-
tion and scheduling delay considering heterogeneity as well
as reconfiguration costs.

In this paper, taking the same approach as in [17] and [21],
an estimator is used to estimate the arrival rate of the new
jobs in the system. However, non-stationary space of the
job arrival process results in such a high level of error in
which the model is rendered unreliable for application in
heterogeneous scenarios. Therefore, to optimally manage the
resources, it is better to consider the prediction error of the
load more precisely. In this paper, state-space of KF is used
to predict the workloads of the DC in the presence of non-
linear structural changes and irregular patterns. A time series
ARIMA is employed to obtain the best initial parameters of
the Kalman model [33]. So, KF is applied on ARIMA model
to reduce the prediction error of arrival rate. KF is popular
due to its desirable non-linear performance. Incorporating
non-linear effects of variables, structural breaks can be easily
identified with state space than simple ARIMA.

Moreover, the estimation error is also considered in the
resource allocation problem by reserving some resources for
the unpredicted load as mentioned in [6]. To the best of our
knowledge, dynamic resource management in [6] is the only
technique to scale the DC with the unpredictably changing
load. It should also be noted that performance of ARIMA
was evaluated for Google Compute real cluster trace [17]
and Wikimedia webservers request [21] and estimation error
rate of ARIMA enhances for the general large scale scenarios
while the ARIMA-based KF estimator proposed in this paper
targets heterogeneous type of workloads.

As opposed to the workload request estimation, the fore-
cast of the exact traffic among the VMs allocated to the
DC is very complicated in practice, if not impossible, due
to the high variety of the cloud network traffic. Therefore,
the traffic rate should be approximated. Li et al. [10] and
You et al. [19] associated the network cost with the number of
separated VMs of tenants by defining different cost functions
in which the number of job fragmentations is the variable.
Reference [10] and [19] used a single-dimensional resource
allocation algorithm and set a slot to represent one resource
unit (CPU/memory/disk) in a way that each slot can host
one VM. You et al. [19] also proposed a binary search-
based heuristic algorithm to achieve an optimum point in the
trade-off between PM-cost and network cost to minimize the
cost according to the arbitrary assumption for the proposed
cost functions. Reference [19] proposed an optimal solution
to reduce the network cost for a homogeneous scenario by
demonstrating that the most active VMs has to be placed on
the PMs with the higher capacity. Similarly, in this paper, the
network power consumption is attributed to the number of

separated VMs of a tenant on each server. According to the
results of [19], the proposed cut and solve method prioritizes
the PMs with the higher capacity in the search area. How-
ever, instead of an unrealistic homogeneity assumption, as
in [10] and [19], in this paper, heterogeneity of both work-
load and machine hardware are considered in the scheduling
problems.

Assi et al. [20] addressed the issue of traffic in data center
networks from a different aspect. Assi et al. [21] assumed
that each job is characterized by a set of VMs communicating
with each other. The problem of mapping traffic flows of
each job into VLANs and selecting the most efficient span-
ning tree protocols with the objective of load balancing is
investigated regarding the bandwidth requirements of VMs
and bandwidth constraints. CG technique is proposed to solve
the optimization problem reducing the complexity and search
space and then a semi-heuristic decomposition approach is
proposed to make it scalable. In this paper, similar to [20]
CG approach is taken into account to solve the optimization
problem. However, while solving the optimization problem of
typical cloud VM placement [22] took more than few hours,
the time needed to reach the solution can decrease to few
minutes when the cut and solve technique and the Call-Back
method are applied. Moreover, it is worth mentioning that the
proposed platform is independent of the DC topology.

The work in this paper addresses various challenges of
the research mentioned above in such areas as heterogeneity,
the power consumption of DC, and workload estimation to
present a robust method that can generate more overall and
reliable outcomes.

III. PRELIMINARIES AND NOTATIONS
We assume that a DC has T types of servers, where each
server type is determined by the amount of various kinds of
resources that it contains. Note that assumption of T servers
address the heterogeneity of the resources at DC. A server
type may have K different types of resources such as band-
width, storage, CPU, and memory. A unique resource vector
determines the amount of resources that each server type has.
Let Mt denote the number of type t servers in the DC where
t ∈ {1, ,T }. It is also assumed that ckt denote the capacity of
type t servers on type k resource.
The power consumption of an on type t server will be

denoted by Qt . R different VM configurations are assumed.
Each VM configuration is determined by the amount of var-
ious types of resources it contains. Let ikr denote the type
k resource requirement of the type r VM. According to the
job requirements, it is also assumed that there are H different
types of jobs, where each job type requires a random number
of VMs from different types. Assuming H various types
of jobs addresses heterogeneity of the incoming workloads
to DC.

Due to the dynamicity and time variation, data related to
the previous W slots are measured and stored in the plat-
form. So, W is the window size, and the most recent data
belong toW slot before are captured. The historical data from
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w ∈ {1, . . . ,W } slot before will be used to estimate the
number of jobs and the attributed number of VMs. In other
words,W represents both degree of differencing and the order
of the Moving-average of the ARIMA model.

We let Nh,`−w, V r
h,`−w represent the total number of type h

jobs and the total number of type r VMs dedicated to type h
jobs at the `− w time slot (lag w), respectively.
To optimally allocate resources among the jobs, Nh,` and

V r
h,` should be estimated using data from previous slots.

To simplify the notations, Nh,` and V r
h,` are summarized by

Nh, V r
h in Section V.

Let also Ph denote the communication power consumption
between two VMs of the type h job. The scheduling variable
xmtr,nh represents the number of type r VMs in mth type t
server assigned to serve job nh where mt = {1t , . . . ,Mt }.
It is desired to find the optimal values of xmtr,nhs that minimize
the DC power consumption. Similarly, connectivity variable
xÌČmtnh s is defined as the number of VMs assigned to job nh
on the mth type t server.
The notation for the mathematical model has been summa-

rized in Table 1.

IV. MODELING OF THE CLOUD COMPUTING JOBS
The current model assumes a varying number of jobs in a
cloud computing DC in different time slots. Each job may
require different number of VMs, which may be assigned to
several servers. To minimize communication among VMs,
it is preferable to place all the VMs on the same PM or
PMs close to each other. However, to reduce the number of
servers, VMs of jobs may distribute among several servers.
Thus, there is always a trade-off between network communi-
cation and the power consumption of the servers[10]. In this
research, two different types of jobs, namely centralized and
distributed, are investigated.

Let us bring an example for further explanation about this
trade off. Assume that there are three active servers in the
DC and other servers are shut down, and hypervisors of these
servers can accept only one more VM. In this situation, a
job demanding 3 VMs arrives at the DC. Under this circum-
stances, there are twomain resource allocation strategies. It is
better to distribute a VM of the incoming job to each server to
minimize the server power consumption while to reduce the
power consumption associated with network communication,
it is better to turn on a new server and allocate all the VMs
of the incoming job to the new server. Generally speaking,
power consumption is related to both network and servers.
Thus, the optimal solution varies over the time.

In the first scenario, corresponded to [24]–[26], each cen-
tralized job has a centralized database and VMs of the job
have to communicate with the main database to serve their
tasks. As a result, the VMs assigned to a job on different
servers need to communicate with a database. Then, a dis-
tributed model is investigated so that all the VMs of a job
communicate with each other to serve their tasks [28], [29].
Similarly, the number of fragmentations (i.e., the number
of servers containing VMs of a job) is linearly correlated

TABLE 1. Table of parameters.

with the communication rate of the job. Hence, the resource
allocation problem can be modeled linearly. However, in the
distributed model, communication rate of a job is approxi-
mated in a quadratic format [22].

Fig. 1 represents the placement and connection of VMs
demanded by these two types of jobs in the cloud DC. As it is
shown, incoming jobs are heterogeneous regarding demand-
ing the different number of VMs from various kinds.

In this figure, it is assumed three types of VMs (R = 3)
in three colors (gray, blue and green). There are two types
of jobs (H = 2) and there is a job from each type in the
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FIGURE 1. Example of VM Allocation in the DC.

system (Nh=1 = 1,Nh=2 = 1). It is also assumed that there
are two types of servers (T = 2), in white and black colors.
It is assumed that the resource allocation algorithm assigns
2 VMs of the distributed application to a white server and
three others are assigned to another server located somewhere
else at the DC. The network power consumption of the VMs
assigned to one server is zero while according to the DC
topology, there would be a power consumption associated
with the network communication for the VMs located in
different servers. Fig. 1 shows these communication link with
the green line. For the centralized application, the scenario is
different. If the VM assigned to the same server as database
VM (green one) is allocated the communication power con-
sumption is zero (For instance, there is no network power
consumption between gray VM and green one) while if they
are assigned to different servers (blue VMs), there would be
a communication energy consumption.

V. SYSTEM PLATFORM OVERVIEW
In this section, the architecture for VM provisioning module
is described as it is depicted in Fig. 2. As shown in this figure,
the estimator, and the estimation error updater modules pre-
dict the load and prediction error. The predicted data is then
delivered to the scheduler modules. Historical information
of incoming workloads, i.e. the number of jobs and their
associated VMs from W time slot before, in previous time
slots are used to update and tune the workload estimators and
the estimation error.

The estimator module predicts the incoming load in terms
of some jobs requiring a different number of VMs for the
next time slot. ARIMA-based KF is proposed to predict
the total number of incoming VMs and jobs for the next
time slot. However, it is convenient that incoming job arrival
is a random process and only the expected values can be
reached. Therefore, the prediction error is inevitable which
has to be taken into account in the resource allocation pro-
cedure. The details of estimator module will be discussed in
Subsection V-A.

Moreover, another module is needed to monitor the work-
load and resources in the DC and to gather the information
about the availability of the resources inactive servers.

After predicting the load and monitoring the available
resources, the incoming load should be scheduled. The pro-
posed scheduling module consists of two schedulers for
expected and unexpected loads. As it mentioned earlier unex-
pected load refers to the estimation error of prediction mod-
ule. Schedulers of the expected and unexpected loads solve
the power consumption minimization problem to distribute
the load among the servers. First, using CG, the optimization
problem is solved for the expected incoming load and previ-
ous loads in the system. Then, the scheduling variables are
used as inputs for the other optimization problem to reserve
some capacity for the unexpected loads. Finally, the variables
related to the available resources for the next time slot are
updated.

According to the result of the optimizations, the capacity
provisioning module adds/drops resources by turning on/off
the servers. It also assigns the workloads in terms of VMs
to the activated servers and migrates some old VMs into the
other servers.

A. ESTIMATION TECHNIQUE
In cloud computing, applications compete for resources. By
causing the host load to vary over time, this competition ren-
ders the load prediction very complicated. The previous liter-
ature on the forecasting of the cloud workload and available
resources includes time series prediction based on historical
information captured throughout monitoring of the systems.
In this paper, first, the workload prediction module based
on ARIMA model has been developed to approximate the
incoming workloads of different jobs regarding VMs. Setting
ARIMA model coefficients may have some approximation
error represented by vector ξh,` with its attributed covariance
error indicated by 3h,`.
Then, the estimation is obtained recursively by the

well-known KF to decrease the forecasting error [29].
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FIGURE 2. The Proposed Platform Framework.

The estimated number of incoming type h jobs at the next
time slot, represented by N̂λh,`, is obtained by the following
equation:

N̂λh,` +
W∑
w=1

ah,`−wNλh,`−w =
R∑
r=1

W∑
w=1

brh,`−wV
r,λ
h,`−w (1)

In Eq. (1), N̂λh,` is dependent of the number of previous
jobs and the previous VMs types in the DC. V r,λ

h,`−w also
represents the estimation of the total number of incoming type
r VMs of type h jobs at time slot ` − w. W is the window
size (order of the moving-average) calculated by the auto-
correlation function of the number of jobs and VMs over the
time series [30]. It is also assumed that ηh,` represents the
prediction error N̂λh,`−N

λ
h,` withψh,` as the covariance. Main

target of KF is to predict Nλh,`s and V
r,λ
h,` s.

N̂h,` = 2h,`πh,` + ξh` (2)

πh,`+1 = πh,` + ηh,` (3)

where,

2h,` = [Nλh,`−1, . . . ,N
λ
h,`−W ,V

1,λ
h,`−1, . . . ,

V r,λ
h,`−w, . . . ,V

R,λ
h,`−W ] (4)

πh,` = [ah,`−1, . . . , ah,`−W , b1h,`−1, . . . ,

brh,`−w, . . . , b
R
h,`−W ] (5)

πh,` denotes the KF state space vectors equal to ARIMA
coefficients, which should be updated as follows:

π̂h,`+1|l = (I − Lh,`)π̂h,`|`−1 + Lh,`2h,`πh,` (6)

where,

Lh,` = 6h,`|l−1θh,`(ψh,` + θh,`6h,`|l−1θ
T
h,`)
−1 (7)

where, 6h,`|l−1 = E[(πh,` − π̂h,`|l−1)(πh,` − π̂h,`|l−1)T ] and
should be upgraded as follows:

6h,`+1|l =6h,`|l−1−6h,`|l−1θh,`(ψh,`+θh,`6h,`|l−1θ
T
h,`)
−1

×θTh,`6h,`|l−1 +3h,` (8)

As it mentioned earlier, 3h,` and ψh,` are the covariance
matrix of the approximation error and prediction error of the
type h workload at time slot l. For more details and please
check [29]. The estimation of the number of various kinds of
jobs and their associated number of VMs helps to activate the
servers proactively so as to avoid the delay in setup time of the
servers, which can adversely affect the system performance.

B. SCHEDULING OF THE EXPECTED LOAD
The total power consumption of the cloud DC is minimized
when the job load is served by the minimum number of
servers, and each job is assigned VMs from as few servers
as possible. In this subsection, the optimization problem and
CG both for centralized and distributed models are added.
First, typical ILP/IQP are used to model and solve the opti-
mization problem. Second, CG will be introduced to reduce
the complexity of the optimization problem.

1) CENTRALIZED MODEL
From the definitions in Table 1., the following relationships
exist for Centralized Model (CM): ∀nh ∈ {1h, . . . ,Nh},
∀h ∈ {1, . . . ,H}, ∀mt ∈ {1t , . . . ,Mt }, ∀t ∈ {1, . . . ,T },

VOLUME 4, 2016 8549



S. Vakilinia et al.: Energy Efficient Resource Allocation in Cloud Computing Environments

∀r ∈ {1, . . . ,R}

x̃mtnh =
R∑
r=1

xmtr,nh (9)

zmtnh =

{
1 if x̃mtnh > 0
0 x̃mtnh = 0

(10)

Eq. (10) extracts the connectivity variables, zmtnh , out of the
scheduling variables, xmtnh s. Then, the communication power
usage of a job nh is approximated and associated with the total
number of pieces of the job in the form of VMs.

fnh =
T∑
t=1

Mt∑
mt=1t

zmtnh (11)

fnh represents the number of pieces of job nh. Let binary
variable ymt denote on or off status of m

th type t server,

ymt =

{
1 if

∑H
h=1

∑Nh
nh=1h

zmtnh > 0

0
∑H

h=1
∑Nh

nh=1h
zmtnh = 0

(12)

Eq. (12) helps to find server status variables, ymt s, using z
mt
mt

connectivity variables. Accordingly, the optimization prob-
lem is given by:

min
xmtr,nh

H∑
h=1

Ph

Nh∑
nh=1h

fnh +
T∑
t=1

Qt
Mt∑

mt=1t

ymt

S.T. : (9), (10), (11), (12)
T∑
t=1

Mt∑
mt=1t

xmtr,nh ≥ v
r
nh

H∑
h=1

Nh∑
nh=1h

xmtr,nh i
k
t ≤ c

k
t (13)

In the objective function, the first and second terms cor-
respond to the communications and server power consump-
tions of the datacenter respectively. The first group of con-
straint ensures that VM requirements of each type of job
are satisfied and the second group guarantees that resource
demands of jobs scheduled on a server do not exceed the
resource capacities of that server. In order to linearize the
constraints (10) and (12) in previous page, they are substituted
with the following constraints:

x̃mtnh − z
mt
nh ≥ 0

θzmtnh − x̃
mt
nh ≥ 0

H∑
h=1

Nh∑
nh=1h

zmtnh − ymt ≥ 0

θymt −
H∑
h=1

Nh∑
nh=1h

zmtnh ≥ 0 (14)

θ denotes an integer much larger than the maximum value
of the above positive integer. For the remainder of the paper,
this replacement will be referred as positive Integer to Binary
Linear Conversion (IBLC) constraints.

2) DISTRIBUTED MODEL
We assume a Distributed Model (DM), where a job may
be assigned VMs on different servers. There will be a need
for communications among the VMs assigned to a job on
different servers. This demand is proportional to the product
of the number of VMs assigned to each job on each pair
of servers. Similarly, it is desired to find the optimal values
of xmtr,nhs that minimize the DC power consumption. As a
result, the optimization objective is given by;

min
xmtr,nh

H∑
h=1

Ph

Nh∑
nh=1h

T∑
t=1

Mt∑
mt=1t

{

T∑
t ′=1

Mt′∑
m′
t′
=1t′

xmtr,nhx
m′
t′

r,nh − (xmtr,nh )
2
}

+

T∑
t=1

Qt
Mt∑

mt=1t

ymt

In the above objective function, the first and second terms
correspond to the communications and server power con-
sumptions of the DC, respectively. As shown, the energy
consumption attributed to the VMs communication is approx-
imated as a linear function of the total number of communi-
cation links to the jobs.

C. DYNAMIC JOB SCHEDULING
In this section job scheduling is extended by considering the
optimization of power consumption as a function of time. As
a result, it is assumed that time-axis is slotted and VMs are
assigned to jobs in time slot unit. Also, the job scheduling
is considered in such a way to allow VM migration. In other
words, the analysis is extended to the case where location of
the VMs of different jobs varies over time.

Let us consider nthh job, which is in the system in the current
slot and will continue to receive service in the next slot. Let
xmtr,nh , x

′mt
r,nh denote the number of type r VMs assigned to this

job over themth type t server during the current and next slots
respectively. The following binary variables are defined,

βmtr,nh =

{
1 if (xmtr,nh − x

′mt
r,nh ) < 0

0 otherwise = 0
(15)

The value of βmtr,nh shows whether the type r VMs required
by job nh have migrated or not. In the case of VM has
migrated from the mt server, β

mt
r,nh will have a nonzero value

and in all other cases a zero value. The objective function of
this optimization problem is given by:

Min{(13)+
H∑
h=1

Nh∑
nh=1h

R∑
r=1

Gr
T∑
t=1

βmtr,nh |x
mt
r,nh − x

′mt
r,nh |} (16)

where the absolute value of (xmtr,nh − x
′mt
r,nh ) corresponds to the

number of VMmigrations. In the above, migration of a VM is
allowed if it results in power saving larger than the power cost
of the migration. Job scheduling without VM migration can
be achieved by settingGr , i.e., the power consumption related
to the migration of type r VMs, to an enormous value. This
will prevent migration as any power saving can not offset its
cost. As a result, old jobs will preserve their VM assignments.
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Moreover, in order to linearize Eq. (15) similar to Eq.(14),
IDBLC is applied and the associated constraints are added
into the problem.

D. COLUMN GENERATION
The scheduling problem in its current form is NP-hard. For
large scale DCs, finding the global optimum point of an ILP
becomes overly complicated and time-consuming. Due to
the similarity of the current problem with the cutting-stock
problem, a well-known CG technique is used to solve the
problem. In this subsection, the application of CG technique
as a method to reduce the search space of the optimization
problem is discussed.

To solve the optimization problem described in the previ-
ous section using CG approach; first, the independent sets
and possible patterns must be identified. Let a pattern refer
to a distinct combination of the number of VMs from each
type that a server can accommodate. After that, a collection
of patterns has been considered for each type of server. Based
on server type, T pricing models have been determined.
About resource constraints, each pricing problem suggests
some configuration candidates to the master problem. If the
newly proposed configuration advances the master problem
objective, it will be added as a new column to the pattern
set. Consequently, the proposed CG technique consists of
master and pricing problems. The master problem determines
if the explored patterns satisfy the job demand constraints.
The pricing models find a new set to feed the master problem.
Pricing objective function is, in fact, the reduced cost coeffi-
cient of the master problem. The master and pricing prob-
lems collaborate until the reduced cost factors (objectives)
of all pricing problems are negative, indicating that optimal
solution is reached. As discussed earlier, to use CG to solve
the optimization problem, the optimization problem should
be rewritten in terms of patterns and independent sets and by
using new appropriate notations.

Let us define some patterns for each type of server. Thus,
for server type t , jt ∈ {1, , Jt } is defined as a possible pattern.
Now let us assume that x jtr,n represents the scheduling of VM
type r of the job n over the server type t by pattern jt . Hence,
there are Jt different ways to put R different VMs of different
jobs in server type t . In addition, let us define mjt as the
number of the times pattern jt of server type t is used in the
resource allocation. In other words, mjt of server type t is
required with the configuration jt in order to serve the jobs
in the optimum resource allocation. From the definitions, the
following relationships can be written:

x̃ jtnh =
R∑
r=1

x jtr,nh (17)

wjtnh =

{
1 if x jtnh > 0

0 x jtnh = 0
(18)

(17) and (18) are ∀jt ∈ {1t , . . . Jt }, ∀nh ∈ {1h, . . . ,Nh},
∀h ∈ {1, . . . ,H}, ∀t ∈ {1, . . .T } For employment of CG, the

problem should be divided into the master and pricing prob-
lems. Consequently, the optimization in the master problem
for the centralized problem can be written by:

min
xjtr,nh

H∑
h=1

Ph

Nh∑
nh=1h

T∑
t=1

Jt∑
jt=1t

wjtnhmjt +
T∑
t=1

Qt
Jt∑

jt=1t

mjt

S.T.
T∑
t=1

Jt∑
jt=1t

x jtr,nh ≥ v
r
nh

T∑
t=1

Jt∑
jt=1t

mjt ≤ Mt

x̃ jtnh − w
jt
nh ≥ 0

θwjtnh − x̃
jt
nh ≥ 0 (19)

The first term denotes the power consumption of VMs
communication while the second one indicates the power
consumption of active servers. The first constraint group
ensures that the job and VM requirements are satisfied fol-
lowed by the second group of constraint on number of servers.
The last constraint group extracts connectivity variables, wjtnh ,
out of the scheduling variables, x jtr,nh . The pricing problems
for each type of t should be written by,

min
xjtr,nh

utr,nh x̃
jt
r,nh

S.T.
H∑
h=1

Nh∑
nh=1h

∑
r=1

Rx jtr,nh i
k
t ≤ c

k
t (20)

The objective function of pricing problem should be the
reduced cost function of the master problem on t th server
types. utr,n coefficients denote the values of the dual variables
of the master problem related to the t th server types. Con-
straints ensure resource limitations of the servers are met. The
candidate patterns will be introduced to the master problem
by pricing problems. As long as the reduced cost functions are
positive, the algorithm continues. But once the reduced cost
functions all together become negative, then pricing issues
are terminated and introduce no new candidate to the master
problem. Reference [22] applied CG on distributedmodel end
up with;

min
mjt

H∑
h=1

Ph

Nh∑
nh=1h

T∑
t=1

Jt∑
jt=1t

{

T∑
t ′=1

Mt′∑
m′
t′
=1t′

mjtmj′t′ x
jt
r,nhx

j′
t′
r,nh − (mjt x

jt
r,nh )

2
}

+

T∑
t=1

Qt
Jt∑

jt=1t

mjt

Next, the dynamic scheduling using CG is investigated. It
is assumed that nthh job is in the system in the current slot
and it will continue to receive service in the next slot. Let
x ′jtr,nh , x

jt
r,nh denote the number of type r VMs assigned to

VOLUME 4, 2016 8551



S. Vakilinia et al.: Energy Efficient Resource Allocation in Cloud Computing Environments

this job over the jtht pattern during the current and next slots,
respectively. In this model, the binary variables βM−ttr,nh are
defined to show whether or not r type VMs required by job
nh have migrated from a server, as follows:

βmtr,nh =

1 if
Jt∑

jt=1t
(x jtr,nhz

mt
nh − x

′jt
r,nhz

′mt
nh ) < 0

0 Otherwise

(21)

It is noted that the above summation allows the use of a
different pattern at the server as long as it preserves the
number of VMs assigned by the original pattern to this job.
The additive objective function of themaster problem is given
by,

Min{
H∑
h=1

Nh∑
nh=1h

R∑
r=1

Gr
T∑
t=1

Mt∑
mt=1t

βmtr,nh

Jt∑
jt=1t

|x jtr,nh − x
′jt
r,nh |}

(22)

For dynamic scheduling, Objective (22) should be added to
Objective in (19) in the master problem. As in the previ-
ous subsection, job scheduling without VM migration can
be achieved by setting a very large value for Gr . Finally,
similar to the previous subsection, IDBLC has to be applied
to linearize Eq. 21.

E. SCHEDULING FOR UNEXPECTED LOAD
Since there is not enough time to set up new servers into
the system, active servers should have enough capacity to
be able to serve the jobs. Thus, in each time slot, some
resources should be reserved for the future unpredicted load.
For the unexpected load, the objective is to minimize (1)
the extra power consumption related to the servers and (2)
communication among the VMs of the jobs. Here, following
parameters are defined: emtr,nh : The number of type r VMs of
unpredicted load of job nh allocated on server mt .
ẽmtnh : Total number of VMs required by the unpredicted load

of job nh allocated on server mt .
Then, the following parameters are defined:

ζmtnh =

{
1 if emtnh > 0
0 emtnh = 0

(23)

Moreover,

ymter =

{
1 if

∑H
h=1

∑Nh
nh=1h

emtnh > 0

0
∑
emtnh = 0

(24)

According to the above definitions, optimization Problem of
minimizing the power consumption is given by:

min
emtr,nh

H∑
h=1

Ph

Nh∑
nh=1h

T∑
t=1

Mt∑
mt=1t

ζmtnh (1− w
mt
nh )

+

T∑
t=1

Mt∑
mt=1t

ymter (1− ymt )

S.T.
H∑
h=1

Nh∑
nh=1h

(emtr,nh + x
mt
r,nh )i

k
t ≤ c

k
t

ẽmtnh − y
mt
er ≥ 0

θymter −
H∑
h=1

Nh∑
nh=1h

x̃emtnh ≥ 0

ẽmtnh − ζ
mt
nh ≥ 0

θζ htnh − ẽ
mt
nh ≥ 0 (25)

The first part of the optimization denotes the communica-
tion of fragments of the job caused by the unexpected load
while the second part denotes the number of new servers that
should be set up only for the unexpected load. It should be
noted that the output variables such as xmtr,nh of the expected
load problem are considered fixed in the optimization prob-
lem of the unexpected load. After solving the optimization
problem for both expected and unpredicted load, all the
results will be sent to an updating module to check the
resource constraints and update the variables for the next time
slot as it represented in Fig.3.

VI. APPLICATION AND CHALLENGES
There are few concerns with the proposed platform that have
to be noticed:
• Ph represents the parameter indicating the power con-
sumption resulted by communication of two VMs allo-
cated to two different servers. This parameter depends
on the location of the servers. For instance, the com-
munication between two servers in a rack consumes a
different amount of power from those are allocated in
two separate racks.

• The scheduling in the proposed platform is done for
the entire workload of the DC. Thus, the complexity
and the time required to solve the optimization problem
becomes a critical factor. Due to the dynamicity of the
resource allocation in the DC, it should not take longer
than few minutes.

For addressing the first issue, assuming the entire VM
requirements of the jobs is less than the resources of a rack,
the optimization as mentioned the earlier in the proposed
platform has to be solved hierarchically. Our optimization
problem is similar to simple balls and urns problem [31].
The problem is how to put the number of balls in the min-
imum number of the urns. Note that here the balls are the
VMs and urns are considered as a modular Power Opti-
mizedDatacenter (PoD). After solving the optimization prob-
lem on a large scale and allocating jobs to different PoDs,
on the smaller scale, each rack is considered as an urn.
Finally, on the smallest scale, the PMs are considered as
servers inside a rack. In each step, different values should
be defined for Ph. In fact, Ph is variant for different types
of jobs and has to be calculated based on the previous
step.

For the second issue, despite the application of the
CG and decomposition methods, computation time, as a
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FIGURE 3. Optimization framework architecture.

benchmarking constraint, is not satisfied and the optimization
problem cannot be solved within a plausible short period.
This can be attributed to the complexity order of the prob-
lem and a significant number of variables. Hence, Fur-
ther measures to reduce the computation time are applied.
First, in the CG, the offline initialization is implemented
to decrease the number of iteration among the master
and pricing problems. Given many different types of jobs,
first, the offline optimization problem is solved for each
server type to obtain the initial server configuration pat-
terns. Moreover, Call-Back method [32] is also applied in
the CG optimization problem so that when the time is close
to the deadline, the pricing problems would stop searching
for better configurations and restricted master problem
solve the optimization problem using the existing patterns.
Thus, there will be a trade-off between the computation
time and optimality. In the case of non-negative reduced
cost function of pricing problems, lower the computation
time, the less optimal solution. Parallel computation tech-
nique should be applied to solve the pricing problems
simultaneously.

Finally, cut and solve approach is applied to reduce the
complexity of the problem. Cut and solve method performs
such that first relaxed problem (LP/QP) is solved. Then,
the slice is selected in the searching area, and a new con-
straint is added to the relaxed problem. The new problem is
called sparse problem which provides an incumbent solution.
If the incumbent solution solved by CG technique equals
to the relaxed problem solution, it is considered as opti-
mal. Otherwise, the slice will be ignored, and a new slice
will be selected. So the cuts accumulate with each iteration
and finally, solving the sparse problem yields the optimal
solution.

The cut and solve mechanism is depicted in
Algorithm 1. First, to avoid the switching on and off the
servers, the collection of active servers from the previous
slot is pierced as a cut. Here, the term ‘‘critical resource
type’’ is defined as the most demanding type of resources.
In each step, the searching area is accumulated by PMs with
the highest capacity on critical resources such that,

1 =
∑

mtCt |
∑

mtCt > Ω

H∑
h=1

Nλh+ψ
λ
h∑

nh=1h

R∑
r=1

vrnh i
r
k

Ω is an arbitrary constant which may have some effect on the
time required to solve the problem. The higher the value of
theΩ , larger the size of the cut. Moreover, the longer time is
needed to resolve the optimization problem of each step, and
the probability of getting the optimal solution in each cut will
be higher.

VII. NUMERICAL RESULTS
In this section, some numerical results are presented to
evaluate the performance of the estimation module and the
schedulers. Time-varying KF is implemented in MATLAB
and IBM ILOG CPLEX is used as a platform to model and
solve the optimization problems. KF updates the inputs of
IBM ILOG CPLEX optimization problem. The results can
be applied on OpenStack Liberty through some Nova APIs.
Ceilometer module gathers the required information and cin-
der, and heat modules help to manage the resource allocation
of Nova computing instances in the Nova controller node.

Server instance flavors are selected according to
[23, Tables 4.8 and 4.9]. Numerical results plot a performance
metric either at a random time or as a function of discrete
time. We assume that the number of job types, H , equals
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Algorithm 1 Algorithm Cut_and_Solve
1: procedure –Determining the searching area Solve the

LP/QP relaxed problem ();
2: k = critical resource type();
3: Sort the server types according to to the value of Ck

t /Qt .

4: while
∑
mtCt < Ω

∑H
h=1

∑Nλh+ψ
λ
h

nh=1h

∑R
r=1 v

r
nh i

r
k do

5: Add extra servers according to the sorted list in to
the current list of active server

6: Provoke CG(search area); //to solve the sparse
problem

7: If (CG(search area)== relaxed problem())
8: return CG(search area) ;
9: end while

10: end procedure

FIGURE 4. Results of the ARIMA-based KF prediction. (a) h = 1, MMPP
with 2 states. (b) h = 5, MMPP with 5 states.

to 5. And new jobs arrive at the cloud DC according to
a Markovian Modulated Poisson Process (MMPP), which
based on [34] and [35] is a great model for job arrival process,
such that the number of states is equal to the job type index.

Fig. 4 shows the acceptable performance of the Estimation
module. However, Fig. 4.b indicates that for MMPP with the
highest number of states (5) which represents more heteroge-
neous workloads the performance of KF is degraded a bit. To
narrow this issue down and to find the performance gain of the
KF, in Fig. 5, the error rate of the KF estimator is compared
with the classic ARIMA model. As shown in this figure,
the performance of the KF is better than that of the pure
ARIMA model such that the average Mean Absolute Error
(MAE) of the proposed estimator (1.29) is almost half of the
MAE of simple ARIMAmodel (2.63).Moreover, Fig. 5.b and
Fig. 5.c show that even for the most heterogeneous types of
arrival rates the ARIMA-based KF part has better tracking
performance than the ARIMA.

According to [36], one of the best paper in the literature that
focused on the optimized placement of VMs to minimize the

FIGURE 5. Estimation error. (a) Average error. (b) Error of type 4 jobs.
(c) Error of type 5 jobs.

FIGURE 6. Optimal and heuristic power consumption of cloud as a
function of time. (a) DM. (b) CM.

sum of Network cost and PM-cost is [10].Thus, we compare
performance of our optimum resource allocation algorithms
with a heuristic scheduling method proposed in [10] that
assigns a job to the server with the smallest index number
that also has enough idle resources to serve the job. For these
results, we assumed Ph = h∗ 50W and Gr = r ∗ 20W . Fig. 6
presents optimal power consumption of the cloud DC as a
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function of the number of time slots both for centralized and
distributed models. We considered optimization of the left-
over jobs with individual VM release service discipline. For
the VM migration scheme, we also plot consumption of the
heuristic proposed in [10]. We note that power consumption
varies as a function of time because of the random job arrival
process. It may be seen that there is a significant power usage
gap (100KW for DM and 68KW for CM) between optimal
and heuristic algorithms power consumption which shows
value of proposed optimization method.

FIGURE 7. Optimum power consumed in DC as a function of total number
of jobs in the DC.

Fig. 7 plots the total power consumption as a function
of the number of jobs in the cloud DC for optimal and
heuristic placement of the VMs of a job in distributed and
centralized models. For optimal placement of VMs, results
also have been plotted for a hybrid model which included
both distributed and centralized jobs. As it shown, there is an
enormous power usage gap (1.3MW) between DM optimum
resource allocation and heuristic algorithm of CM. And there
is also (1.6MW) power usage gap between the total energy
consumption of optimal resource planning solution and the
heuristic for the half loaded DC which shows we can achieve
the optimal solution for power saving by using the proposed
CG based cut and solve algorithm of optimal resource alloca-
tion method.

FIGURE 8. Activation rate of the PMs.

Fig. 8 shows the activation percentage of two different
types of Dell servers for centralized and distributed models
as a function of jobs in the DC. As shown in the figure, type
t = 1, 6 of servers in CM is much less than the DM.
Moreover, as load increases, the aggregation rate of these type
of servers in DM is more homogeneous while in the CM,

growth rate introduces many random variations compared to
DM. It may be caused by a strict dependency of the CM to
the network links while DM has less dependency to network
connections due to the high communication rate and the
higher number of active servers.

FIGURE 9. Trade off between Computation Time and Optimality.

Fig. 9 shows the trade-off between computation time and
optimality. As it mentioned earlier, Call-Back method is
employed to end the optimization problem before the dead-
line. In Fig. 9, optimality gap percentage (the difference
between the obtained results and optimal value divided by
the optimal value) is presented for a different number of
jobs, with different error rates with Ω as a parameter. As
it depicted, in less than 3 minutes computation time on a
server with two Intel Xeon Processor E5-2660 v2 CPUs and
8x16GB DDR3 (M393B2G70DB0-CMA) RAM, an accept-
able near-optimal solution can be achieved.

FIGURE 10. Computation Time comparison as a function of DC Scale.

In Fig. 10, the optimality of our proposed solution with
work done in [10] named Sorting-based Placement (SBP)
under 2 minutes constraint over computation time is
compared. As it may seem, the proposed framework is more
optimal under different loads (less optimality gap). The impo-
tence of SBP is mainly because of the assumption over het-
erogeneity of the DC. It is worth mentioning that our pro-
posed platform, despite the higher computation complexity
and tight time constraint, it still outperforms SBP.

VIII. CONCLUSION AND FUTURE WORK
In this paper, a platform is proposed for workload prediction
and VM placement in cloud computing DC. First, an esti-
mation module was introduced to predict the incoming load
of the DC. Then, schedulers were designed to determine the
optimal assignment of VMs to the PMs. Column generation
method was applied to solve the large-scale optimization
problem in conjunction with different algorithms to decrease
the complexity and the time to obtain the optimal solution,
both on the performance of the proposed platform. Finally, we
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also investigated the trade-off between optimality and time.
Numerical results indicate the proposed platform yields to
the optimal solution for a limited time-frame. Our numerical
results have shown that our approach explores the optimal
solution with an optimality gap of at most 1% in 3 minutes
computation time. We have also compared and assessed the
performance of our proposed estimation module and state of
the art ARIMA estimator. The comparative results prove that
our proposed module attains encouraging gain over its peers.

In future work, we think that according to the prediction
error, DVFS technique can also be investigated to lessen
the processing power consumption. DVFS can be applied
to dynamically change voltage and frequency of the cloud
servers CPU over the time to save more energy in a sense to
compensate the estimation error, higher level of voltage and
frequency will be applied.
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