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ABSTRACT To alleviate the backhaul burden and reduce user-perceived latency, content caching at base
stations has been identified as a key technology. However, the caching strategy design at the wireless edge is
challenging, especially when both wired backhaul condition and wireless channel quality are considered
in the optimization. In this paper, taking into account the conditions of the backhaul in terms of delay
and wireless channel quality, joint design and optimization of the caching and user association policy to
minimize the average download delay is studied in a cache-enabled heterogeneous network. We first prove
the joint caching and association optimization problem is NP-hard based on a reduction to the facility
location problem. Furthermore, in order to reduce the complexity, a distributed algorithm is developed by
decomposing the NP-hard problem into an assignment problem solvable by the Hungarian method and two
simple linear integer subproblems, with the aid of McCormick envelopes and the Lagrange partial relaxation
method. Simulation results reveal a near-optimal performance that performs up to 22% better in term of delay
compared with those in the literatures at a low complexity of O

(
nm3

/
ε2
)
.
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INDEX TERMS Caching placement, user association, backhaul condition, facility location problem,
Lagrange partial relaxation method.

I. INTRODUCTION15

According to the prediction of Cisco, global mobile data16

traffic will increase by a factor of 40 over the next five years,17

from the current level of 93 Petabytes to 3600 Petabytes18

per month [1]. The explosive growth of mobile data traffic,19

especially mobile video streaming, has imposed a heavy20

burden on backhaul links, which connect local base stations21

to the core network. Furthermore, in massive content deliv-22

ery scenarios, e.g., in populated areas or during peak traffic23

hours, user may experience excessively long delay to content24

delivery due to the congestion in backhaul links, and thus25

the overall quality of experience (QoE) of users is degraded.26

To alleviate the backhaul burden and reduce user-perceived27

latency, one promising approach is to deploy caches at the28

small cell base stations (SBS) [2], [3].29

The role of caching in the fifth generation (5G) has been30

recognized [2]–[4], and some decentralized caching architec-31

tures have been proposed [2]–[7]. The main idea of deploying32

caches at SBSs is to cache popular content items on the SBS33

closest to their respective users so that most of the requests 34

can be served from local caches, instead of forwarding the 35

user requests over the expensive and bandwidth-limited back- 36

haul links. In the cache-enabled network, users (UE) can 37

obtain the requested content from the candidate SBSs directly 38

if the content is cached in the SBS, which is obviously ben- 39

eficial to enhance the user experience. To get the better per- 40

formance, whether the SBS caches the required content may 41

be regarded as a novel important consideration of user asso- 42

ciation strategy. It follows that the operator may explicitly 43

devise the user association strategy, together with the caching 44

strategy, to improve the user perceived network performance 45

(in terms of delay). In particular, the efficiency of the caching 46

strategy depends largely on the user association rule such that 47

there is a strong correlation between caching strategy and user 48

association strategy. 49

So far, several literatures have investigated the design of 50

caching policy to improve the efficiency of cache [6]–[8], 51

where caching policies are developed taking into account 52
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the given user association rule. For example, In [6] and [7],53

Shanmugam et al propose firstly caching at small-cell base54

stations and design the optimal caching policy to maximize55

the cache-hit-ratio. In [8], a distributed caching placement56

algorithm is formulated to minimize the downloading latency57

with the aid of a factor graph. In [9], the UE-SBS association58

is formulated as a one-to-many matching game to maximize59

the average download rate based on the given caching policy.60

These literatures [6]–[9] don’t optimize jointly the user asso-61

ciation and cache-content management, leading the system to62

inefficient operating point.63

There are also a few existing works, done on the joint64

design of cache policy and user association strategy in65

the cache-enabled heterogeneous network. Considering the66

bandwidth capacity constraints of SBS, [10] designs the joint67

user association and data caching strategy to minimize the68

requests served by the macro base stations (MBS). Refer-69

ence [11] gives the joint design of video caching and user70

association scheme to minimize the user experienced delay,71

considering users with different quality requirements and72

video encoding policy. Reference [12] proposes an online73

algorithm to solve the optimum tradeoff between load balanc-74

ing and content availability, in a way to design network costs.75

Reference [13] focuses on analyzing complexity of the joint76

user association and caching scheme. Reference [14] designs77

joint caching, routing, and channel assignment over coordi-78

nated small-cell cellular systems to maximize the throughput79

of the system by utilizing the column generation method.80

However, most of these works ignore the heterogeneity81

of users, such as the difference of wireless channel quality82

of different users. Furthermore, They don’t jointly take into83

account the wired backhaul condition and wireless channel84

quality when designing the caching and association strategy.85

Consequently, ignoring the effect of backhaul condition or86

wireless channel quality may result in inadequate perfor-87

mance gain.88

In summary, to fully exploit the gain of cache, an efficient89

caching and association strategy needs to be designed jointly90

by properly considering backhaul condition and wireless91

channel quality. In this paper, joint design of the caching and92

user association policy is optimized to minimize the average93

delay of small cell users in the cache-enabled heterogeneous94

network. More specifically, the main contributions of this95

paper are:96

1) The joint design of the optimal caching and association97

strategy is studied by formulating an integer non-linear98

optimization problem aiming at minimizing the aver-99

age download delay. Specially, the optimized strategy100

takes wireless channel quality into consideration and is101

fully aware of the propagation delay over the backhaul.102

Further, we prove that the joint optimization problem is103

NP-Hard based on a reduction to the Unsplittable hard-104

Capacitated Metric Facility location problem.105

2) To reduce the complexity and obtain a near-optimal106

solution, a distributed algorithm is proposed to107

decompose the NP-Hard problem into an assignment108

problem solved by Hungarian method and two simple 109

linear integer subproblems, with the aid of McCormick 110

envelopes and Lagrange partial relaxation method. 111

3) Simulations are conducted which show that the 112

proposed algorithm has a low complexity and can 113

achieve comparable performance to exhaustive search. 114

Furthermore, the proposed algorithm can significantly 115

reduce the average download delay, more specifically 116

up to 22% less delay compared to that of the conven- 117

tional scheme. 118

The rest of the paper is organized as follows. In Section II, 119

the system model is presented and the joint caching and asso- 120

ciation optimization framework is formulated. In Section III, 121

we present the reduction to the Unsplittable hard-Capacitated 122

Metric Facility location problem. In Section IV, the decen- 123

tralized algorithm is proposed. In Section V, the simulation 124

results and the corresponding discussions are presented, and 125

we conclude the paper in Section VI. 126

II. SYSTEM MODEL AND PROBLEM FORMULATION 127

A. SYSTEM MODEL 128

Consider a heterogeneous cellular network (HCN) consisting 129

of a single MBS, N SBSs and U UEs randomly located 130

in the network. The MBS is indexed by M . The set of the 131

SBSs is denoted by B={B1,B2, · · ·,BN }, where Bn, n ∈ 132

N = {1, 2, · · ·,N } represents the n-th SBS. It is possi- 133

ble to have overlapping area between SBSs in ultra-dense 134

deployment. Furthermore, we denote the set of the UEs by 135

J = {J1, J2, · · ·, JU }, where Ju, u ∈ U = {1, 2, · · ·,U} 136

represents the u-th UE. The MBS is connected to the core 137

network through high-capacity backhaul such as optical fiber. 138

Each SBS is connected to the core network through a wired 139

backhaul link of limited capacity. Additionally, each SBS 140

is equipped with a storage capacity of bytes Gn ≥ 0. The 141

two-layer architecture is described in Fig. 1. 142

FIGURE 1. The two-layer HCN architecture.

The SBSs reuse the downlink resources of the MBS to 143

serve the transmission to UE. As a result, there exists the 144

interference between the SBSs and the MBS. Further, we 145

assume that neighboring SBSs can be also allocated orthog- 146

onal frequency band or employ enhanced inter-cell inter- 147

ference coordination techniques (eICIC) proposed in LTE 148

Rel.10 [15]. Each SBS Bn has a downlink bandwidth Wn, 149
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which is divided into An subchannel of bandwidth w. Each150

user access only one subchannel at a slot. Thus, the maximum151

number of active users of SBS Bn is An, where An = Wn
/
w.152

To achieve load balancing, the ‘‘SBS-First’’ constraint is153

considered, such that each UE will try to download files from154

its adjacent SBSs unless the capacity of these adjacent SBSs155

is not sufficient. In this case, UE will turn to the MBS to156

deliver these files.157

Denote the transmission power of the SBS Bn, the trans-158

mission power of the MBS M and the noise power at each159

UE as Pn, PM and σ 2 respectively. Let hn,u be the channel160

gain between UE Ju and SBS Bn. Therefore, the signal-to-161

interference-plus-noise ratio (SINR) between UE Ju and SBS162

Bn is γu,n =
Pnhn,u

σ 2+PMhM ,u
. Denote by H (u) the set of available163

SBSs for UE Ju, which are capable of providing higher SINR164

for UE Ju.165

UEs request files from a set I = {1, 2 · ··,F} of166

|I| = F content items. Let qu,i ∈ {0, 1} denote whether user167

u requests file i. We have qu,i = 1 if user u requests file i,168

and qu,i = 0 otherwise. Assume that each request is entirely169

served by one base station. Without any loss of generality, we170

assume all these files have the same size L. This is because171

files can be divided into blocks of the same length or by172

leveraging advanced coding techniques [7]. Thus, each SBS173

Bn is equipped with a limited storage capacity of Sn files,174

where Sn = Gn
/
L.175

B. PROBLEM FORMULATION176

Let xni ∈ {0, 1} be a binary decision variable, which repre-177

sents whether the SBS Bn caches i-th file or not. We have178

xni = 1 if SBS Bn caches i-th file, and xni = 0 otherwise. The179

caching policy matrix is defined as follows:180

x = {xni : n ∈ N , i ∈ I}. (1)181

To indicate the association relationship between UE and182

SBS, we introduce binary decision variable pu,n ∈ {0, 1}. The183

variable pu,n denotes whether UE Ju is associated with the184

SBS Bn. The UE-SBS association can be described through185

the following matrix:186

p =
{
pu,n : u ∈ U , n ∈ N

}
. (2)187

Next, we need to calculate the delay for UE Ju to download188

file iwhen associating with SBS Bn. The main components of189

the delay are the wireless transmission delay and the backhaul190

delay. The wireless transmission delay between UE Ju and191

SBS Bn is calculated as:192

D1
u,n =

L
wu,n log2(1+ γu,n)

, (3)193

where L represents the file size, and wu,n indicates the194

bandwidth of UE Ju allocated by SBS Bn. The wireless trans-195

mission delay from SBS to UE depends on the bandwidth and196

SINR.197

Another main component of delay is the backhaul delay.198

We denote the backhaul delay of UE Ju connected to SBS199

Bn as DBu,n. For wired backhaul, the backhaul delay of SBSs200

is related to the average link distance, the average traffic 201

load and the average number of SBSs connecting to a single 202

small cell gateway. It can be modeled to be an exponentially 203

distributed random variable with a mean value of DB [16]. 204

When the requested content is cached in the nearby SBS, 205

the user can fetch directly the content from the local caches 206

of SBS, without the need for going through the backhaul. 207

Thus, it doesn’t incur extra delay over the backhaul. In other 208

words, whether the delay of UEs contains the backhaul delay 209

depends on whether the requested content is cached. Thus, 210

when user requests file i, the backhaul delay between UE Ju 211

and SBS Bn is calculated as 212

D2
u,n = (1− xni)DBu,n. (4) 213

Consequently, the delay for UE Ju to download file i when 214

associating with SBS Bn is written as 215

Dui,n = D1
u,n + D

2
u,n 216

=
L

wu,n log2(1+ γu,n)
+ (1− xni)DBu,n. (5) 217

The average delay of small cell users can be calculated as 218

D =
1
|U |

∑
u∈U

∑
n∈N

∑
i∈I

qu,ipu,nDui,n. (6) 219

With the consideration of transmission bandwidth capacity 220

constraint and storage capacity constraint, the joint caching 221

and user association problem to minimize the average delay 222

of small cell users is formulated as 223

min
p,x

D̄ (7) 224

Subject to:
∑
i∈I

xni ≤ Sn, ∀n ∈ N , (8) 225∑
n∈H (u)∪{M}

pu,n = 1, ∀u ∈ U , (9) 226

∑
u∈U

pu,n ≤ An, ∀n ∈ N , (10) 227

xni ∈ {0, 1}, ∀n ∈ N , i ∈ I, (11) 228

pu,n ∈ {0, 1}, ∀u ∈ U , n ∈ N . (12) 229

The objective of the optimization problem is to minimize 230

the average download delay. The constraints of the optimiza- 231

tion are specified in (8)-(12). The inequality (8) denotes the 232

storage capacity constraint of each SBS. The equality (9) indi- 233

cates that each UE can only associate with one SBS in H (u) 234

or MBSM and avoid partial association. The inequality (10) 235

reveals the transmission bandwidth constraint of each SBS. 236

Finally, (11) and (12) dictate discrete and binary nature of 237

optimization variables. 238

Note that the optimization problem defined in (7)-(12) 239

is non-linear combination optimization problem since both 240

of the caching variable and user association variable are 241

integer values. Furthermore, the objective function is a non- 242

linear function since there is mutual dependency between 243

the caching variable and user association variable. In the 244
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next section, by resorting to a reduction to facility loca-245

tion problem, we prove that the optimization problem is246

NP-Hard.247

III. THE REDUCTION TO FACILITY LOCATION PROBLEM248

The connection between the unsplittable hard-capacity249

facility location problem and the joint caching and user asso-250

ciation problem is non-trivial. In fact, previous work in the251

literature that established reductions of caching problem to252

facility location problem focused on the simple case that users253

only are connected to the base station with the requested file254

already cached, and the cost of communication between any255

base station and user pair is same [10]. Our model considers256

the case that users with different wireless channel quality may257

be associated with any base station within its communication258

range. Thus, the connection relationship and cost value of the259

facility location problem need to be redesigned.260

Lemma 1: The optimization problem is polynomial-time261

reducible to the unsplittable hard-capacity facility location262

problem.263

Proof: The unsplittable hard-capacity facility location264

problem is described as follows. Given a set of locations L,265

there is a subset A ⊆ L of facilities and a subset B ⊆ L266

of clients that must be assigned to some open facilities. For267

each client j ∈ B, there is a positive integer demand dj, which268

can only be served by a single facility (unsplittable). For each269

facility i ⊆ A, it can serve a total demand at most Ci ≥ 0270

(hard-capacity). The cost of serving one unit of demand of271

client j by facility i is ci,j ≥ 0. The cost of opening facility272

i ⊆ A is fi ≥ 0. The facility location problem aims to decide273

the set of facilities and find the optimal assignment of each274

client to facilities so as to minimize the total cost incurred.275

The reduction of the optimization problem to the unsplit-276

table hard-capacity facility location problem is as follows:277

The set of facility A contains two parts: the first part is278

named aM for the MBS, and the second part is ani, which279

is for every SBS n ∈ N and every file i ∈ I. The set of280

client B consists of the following subsets: (i) B1 contains |U |281

clients, denoted as bu, bu ∈ U . Those clients in B1 indicates282

the cellular users. (ii) B2 contains |F − Sn| virtual clients,283

denoted as b′n,1 b
′

n,2 etc, ∀n ∈ N . (iii) the subset of B3284

contains |(Sn − 1) ∗ An| virtual clients, denoted as b′′n,1, b
′′

n,2285

etc, ∀n ∈ N . For each facility, the capacity of the facility aM286

is equal to +∞ and the capacity of the facility ani for each287

SBS n ∈ N and each file i ∈ I is set to An. For each client,288

the demand of the client bu ∈ B1 and b′′q ∈ B3 is equal to289

1. In addition, the demand of the client b′c ∈ B2 is set to An,290

which is unsplittable. UE Ju only can have a relationship of291

connection with these SBSs in H (u). The cost of opening292

facility is equal to 0. The cost for each pair of facility and293

client is specified as follows:294

1) The cost of each pair of the form (ani, bu) is calculated295

as the delay of UE Ju connected to the SBS Bn with file i296

cached. Therefore, the cost is calculated as cost(ani, bu) =297

L
wu,n log(1+γu,n)

+ (1− qu,i)DBu,n.298

2) The cost of each pair of the form (ani, b′c) and the 299

form (ani, b′′q) is set to very small positive constant d , d � 300

min(cost(ani, bu)). The setting of parameter d is to ensure 301

that all clients in the subset of B2 and B3 are associated with 302

the facility ani. Consequently, exactly Sn of the facilities are 303

uncovered by the virtual users of B2, corresponding to the 304

cached files. Meanwhile, a total of An cellular users can be 305

accessed to SBS Bn, corresponding to the capacity constraint 306

of SBSs. 307

3) The cost of each pair of the form (aM , bu) is set to very 308

large positive constant h, h� max(cost(ani, bu)). The setting 309

of parameter h is to ensure that all clients in the subset of 310

B1 will choose firstly to access the facility ani. Only when 311

ani can’t serve more clients, the client choose to access the 312

facility aM , which is consistent with the hypothesis of ‘‘SBS- 313

First’’. 314

Based on the above description, we formulate the unsplit- 315

table facility location problem. In addition, based on the proof 316

in [10], we can obtain the following two conclusions: 317

1) When the cost of the feasible solution for the facility 318

location problem is D, there exists a corresponding feasible 319

solution for the optimization problem with cost C , satisfying 320

D = C +

(
U −

N∑
n=1

An

)
h 321

+

N∑
n=1

((F − Sn)An + |(Sn − 1)An|)d . (13) 322

2) When the cost of the feasible solution for the opti- 323

mization problem is C , there exists a corresponding feasible 324

solution for the facility location problem at cost D, satisfying 325

C = D−

(
U −

N∑
n=1

An

)
h 326

−

N∑
n=1

((F − Sn)An + |(Sn − 1)An|)d . (14) 327

Thus, the reduction from the optimization problem defined 328

in (7)-(12) to the above proposed unsplittable facility location 329

problem holds. There exists a reduction from the optimization 330

problem to the unsplittable hard-capacity facility location 331

problem, which is known to be NP-Hard [17]. 332

FIGURE 2. A example of the reduction to the facility location problem.

Fig. 2 presents an example of the reduction based on the 333

above description. Here, the parameters of the system are set 334
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TABLE 1. The proof of the transformation from equality to inequality.

as follows: |N | = 2, |U | = 6, |I| = 4, |S1| = |S2| = 2,335

|A1| = |A2| = 2. Therefore, each SBS Bn contains four336

facilities. In addition, user 3 and user 4 are in overlapping337

coverage area of SBS 1 and SBS 2, so these users have338

relationship of connection with the facility a1i and a2i.339

IV. DECENTRALIZED ALGORITHM340

The problem defined in (7)-(12) is NP-Hard and the com-341

plexity is extremely high. To reduce the complexity of the342

problem, a distributed algorithm is proposed in this section.343

Firstly, the optimization problem is transformed equivalently344

with the aid of McCormick envelopes. Secondly, we use the345

method of Lagrange partial relaxation to solve the trans-346

formed problem and decompose the problem into several347

subproblems.348

It can be shown that the caching variable and user associ-349

ation variable are tightly coupled in the objective function of350

the optimization problem, which causes the problem hard to351

solve. To conquer the challenge, we introduce a new variable352

zui,n, z
u
i,n = (1−xni)pu,n that allows us to rewrite the optimiza-353

tion problem defined in (7)-(12) as follows:354

min
p,x,z

1
|U |

∑
u∈U

∑
n∈N

∑
i∈I

qu,i

[
Lpu,n

wu,n log2(1+ γu,n)
+ zui,nD

B
u,n

]
355

(15)356

Subject to: (8)-(12),357

zui,n = (1− xni)pu,n,∀u ∈ U , i ∈ I, n ∈ N . (16)358

To obtain the convex relaxation, we replace the non-convex359

constraint zui,n = (1 − xni)pu,n with its McCormick convex360

relaxation by using McCormick envelopes [18], which is361

given by362

zui,n ≥ pu,n − xni, ∀u ∈ U , i ∈ I, n ∈ N , (17)363

zui,n ≥ 0, ∀u ∈ U , i ∈ I, n ∈ N , (18)364

zui,n ≤ pu,n, ∀u ∈ U , i ∈ I, n ∈ N , (19)365

zui,n ≤ 1− xni, ∀u ∈ U , i ∈ I, n ∈ N . (20)366

Specially, due to the discrete and binary nature of optimiza-367

tion variables xni and pu,n, it can be readily established that368

the equality zui,n = (1 − xni)pu,n is equivalent strictly to the369

constraints (17)-(20), which is shown in Table I.370

Thus, the optimization problem can be further expressed as371

min
p,x,z

1
|U |

∑
u∈U

∑
n∈N

∑
i∈I

qu,i

[
Lpu,n

wu,n log2(1+ γu,n)
+ zui,nD

B
u,n

]
372

(21)373

Subject to: (8)-(12), (17)-(20).374

In order to solve the new optimization problem, we use 375

the method of Lagrange partial relaxation [19]. Specially, 376

we relax the constraints (17), (19), (20) and introduce the 377

respective set of dual Lagrange multipliers: 378

µui,n ≥ 0 ∀u ∈ U , ∀i ∈ I, ∀n ∈ N , (22) 379

λui,n ≥ 0 ∀u ∈ U , ∀i ∈ I, ∀n ∈ N , (23) 380

ψu
i,n ≥ 0 ∀u ∈ U , ∀i ∈ I, ∀n ∈ N . (24) 381

Hence, the Lagrange function is expressed as 382

L(µ,λ,ψ, p, x, z) 383

=
1
|U |

∑
u∈U

∑
n∈N

∑
i∈I

[
qu,iLpu,n

wu,n log2(1+γu,n)
384

+ qu,izui,nD
B
u,n+µ

u
i,n(pu,n−xni−z

u
in) 385

+ λui,n(z
u
i,n−pu,n)+ψ

u
i,n(z

u
i,n+xni−1)]. 386

(25) 387

Thus, the dual problem can be given by 388

max
µ,λ,ψ

min
p,x,z

L (µ, λ, ψ, p, x, z), 389

Subject to: (8)-(12), (18), (22)-(24). 390

Interestingly, given the dual variablesµ, λ,ϕ, the Lagrange 391

function can be written as 392

L (µ,λ,ψ, p, x, z) = f (p)+ g (x)+ h (z) , (26) 393

where f (p), g (x) and h (z) are the objective functions of P1, 394

P2, P3 respectively. Furthermore, the feasible region of dual 395

problem can be decomposed into three independent regions 396

(i.e. {(9), (10), (12)}, {(8), (11)} and {(18)}). Therefore, the 397

dual problem can be decomposed into three subproblems, 398

named as P1, P2, P3 respectively. The three subproblems are 399

given as follows: 400

P1 : min
p

∑
u∈U

∑
n∈N

∑
i∈I

qu,i

[
L

wu,n log2(1+ γu,n)

]
pu,n 401

+ µui,npu,n − λ
u
i,npu,n 402

Subject to: (9), (10), (12). 403

P2 : max
x

∑
u∈U

∑
n∈N

∑
i∈I

µui,nxni − ψ
u
i,nxni 404

Subject to: (8), (11). 405

P3 : min
z

∑
u∈U

∑
n∈N

∑
i∈I

(
qu,iDBu,n − µ

u
i,n + λ

u
i,n + ψ

u
i,n

)
zui,n 406

Subject to: (18). 407

Particularly, after the decomposition, the joint optimization 408

problem becomes essentially separate optimization problems 409

and the coupling between the association variable and the 410

caching variable disappears. 411

The first subproblem only involves the UE-SBS associ- 412

ation variable p. Here, we model the first subproblem as 413

the assignment problem. We view each base station Bn as 414

a machine of processing capacity An, and each UE Ju as 415

a job that requires one units of processing. When UE Ju 416
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is assigned to BS Bn, it incurs a cost of dun, dun =417 ∑
i∈I

qu,iL
wu,nlog2(1+γu,n)

+ µui,n − λ
u
i,n. Because the total processing418

capacity of all machines is not equal to the number of jobs, a419

dummy variable is introduced, either for a machine or a job,420

to make it balanced. In other words, if
∑
n∈N

An > U , we add421 ∑
n∈N

An − U virtual jobs to the job sets. The cost of these422

virtual jobs is zero. On the other hand, if
∑
n∈N

An < U , we423

need to introduce a virtual machine of processing capacity424

U −
∑
n∈N

An. Due to the special structure of the assignment425

problem, the solution can be found using a more conve-426

nient method called Hungarian method [20]. The second427

subproblem only involves the caching variable x and the third428

subproblem only involves the added new variable z. Both sub-429

problems are the linear integer optimization problem, which430

can be solved by the generic linear integer programming431

method [17].432

By solving the three subproblems and obtaining the values433

of p, x, z, we use the subgradient method to update the dual434

variables. In the t-th iteration, for ∀u ∈ U , i ∈ I, n ∈ N , the435

dual variables are updated as follow:436

µui,n (t + 1) =
[
µui,n (t)+ σ (t) d

(
µui,n (t)

)]+
, (27)437

λui,n (t + 1) =
[
λui,n (t)+ σ (t) d

(
λui,n (t)

)]+
, (28)438

ψu
i,n (t + 1) =

[
ψu
i,n (t)+ σ (t) d

(
ψu
i,n (t)

)]+
, (29)439

where [x]+ = max {0, x} and σ (t) is the step size of the t-th440

iteration. And d (µ(t)), d (λ(t)), d (ψ (t)) are the subgradient441

of dual problem with respect of µui,n(t), λ
u
i,n(t), ψ

u
i,n (t), given442

by443

d
(
µui,n(t)

)
444

= pu,n(t)−xni(t)−zui,n(t), ∀u ∈ U , i ∈ I, n ∈ N , (30)445

d
(
λui,n(t)

)
446

= zui,n(t)− pu,n(t), ∀u ∈ U , i ∈ I, n ∈ N , (31)447

d
(
ψu
i,n (t)

)
448

= zui,n (t)+ xni (t)− 1, ∀u ∈ U , i ∈ I, n ∈ N . (32)449

Denote g(t) = [d (µ(t)) , d (λ(t)) , d (ψ (t))]T and set the450

step size as σ (t) = vUB−q(t)
‖g(t)‖2

[21], where UB is the upper451

bound on each iteration and v is a positive constant and q (t)452

is the value of Lagrange function in the t-th iteration. The453

UB can be found by simply finding a feasible solution of454

the primary problem. Note that the step size is nonsummable455

diminishing step length. Based on the proof in [22], the456

algorithm is guaranteed to converge to the optimal value. The457

method is summarized in Algorithm 1.458

V. SIMULATION459

In this section, numerical results of the proposed algorithm460

are presented. In Section V.A, we compare the performance461

of the proposed algorithm with that of the exhaustive search,462

establishing the performance of the proposed algorithm. In463

Section V.B, we present the convergence analysis and discuss464

Algorithm 1 Decentralized Algorithm for the Primal Opti-
mization Problem
Require:
t = 1, µui,n (1) = 0, λui,n (1) = 0, ψu

i,n (1) = 0, q (1) = 0,
UB=+∞, ε = 0.01, and tmax = 2000.

Ensure:
while

∣∣∣UB−q(t)UB

∣∣∣ ≥ ε and t ≤ tmax do
Solve P1 and find the solution of pu,n.
Solve P2 and find the solution of xni.
Solve P3 and find the solution of zui,n.
Update UB.
q (t) = L (µ,λ,ψ, p, x, z) and σ (t) = vUB−q(t)

‖g(t)‖2
.

Update the dual variable µui,n (t + 1), λui,n (t + 1),
ψu
i,n (t + 1) by using (27), (28), (29).

Update t = t + 1.
end while

TABLE 2. Parameter values used in numerical results.

the impact of various parameters on the proposed algorithm. 465

In Section V.C, the proposed algorithm is compared with 466

conventional scheme. 467

We numerically evaluate the algorithm by fixing the loca- 468

tion of MBS at the center of a macrocell with a radius 469

400m and distribute SBSs randomly throughout the MBS 470

coverage area. The physical layer parameters such as the 471

transmit power of SBSs, the path-loss model, noise power 472

are chosen according to 3GPP standards. Each user requests 473

one file based on the Zipf distribution with shape parameter 474

η = 0.6, where the request probability of the i-th file is 475

ρi =
1/iη∑F
i=1 1/iη

[23]. The range for the mean of the back- 476

haul delivery delay DB is selected based on measurements 477

obtained from a practical network [24]. To investigate the 478

impact of backhaul delay, we chooseDB ∈ [0, 3]. The param- 479

eter v of Algorithm 1 is set to 0.5. The system parameters are 480

summarized in Table II. 481

A. OPTIMALITY TEST OF THE PROPOSED ALGORITHM 482

The performance of the proposed algorithm is evaluated 483

firstly. We compare the performance of the proposed algo- 484

rithm with the exhaustive search in a small-scale system. 485
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FIGURE 3. Performance comparison of the proposed algorithm and
exhaustive search.

The result obtained from the exhaustive search is adopted486

as a benchmark, which is the lower bound of the average487

delay. In the small-scale system, the file library has six files.488

There are two SBSs and each has a capacity of one file.489

A total of 50 users are placed randomly, independently and490

uniformly in the cell. We consider the performance averaged491

over five thousand network instances. Fig. 3 shows that the492

performance of the proposed algorithm is very close to that493

obtained using the exhaustive search. In addition, it also494

can be observed that as cache size increases slightly, the495

average download delay reduce significantly, which shows496

that caching is beneficial to enhance wireless network per-497

formance.498

B. CONVERGENCE AND COMPLEXITY499

1) Convergence500

The convergence of the proposed algorithm in a large-scale501

system is depicted in Fig. 4. In the large-scale system, the502

file library has 50 files. There are 8 SBSs and each has a503

capacity of 3 files. A total of 200 users are placed randomly,504

independently and uniformly in the cell. As it can be seen, the505

proposed algorithm gradually improves the obtained result506

and converges rapidly in less than a few hundreds steps.507

2) Complexity508

To guarantee the accuracy ε of subgradient method, the pro-509

posed algorithm need O
(
1
/
ε2
)
iterations [19]. Furthermore,510

the time complexity of the proposed algorithm in each iter-511

ation is the same, namely O
(
nm3

)
[20], where n denotes512

the maximum number of neighboring BSs a user can be513

connected to and m denotes the number of users. As a result,514

the complexity of the proposed algorithm is O
(
nm3

/
ε2
)
.515

In Table III, the number of iterations and time complexity per516

iteration of the proposed algorithm and exhaustive search are517

summarized.518

TABLE 3. Number of iterations and time complexity of algorithms.

FIGURE 4. The convergence of the proposed algorithm.

FIGURE 5. The effect of Zipf Parameter.

C. PARAMETER IMPACT ANALYSIS OF THE PROPOSED 519

ALGORITHM 520

We explore the effect of the steepness of the file request 521

pattern on the performance of the proposed algorithm in a 522

small-scale system. The shape parameter of the file popu- 523

larity is varied from the value 0.6 to 3. Fig. 5 shows the 524

effect of Zipf parameter on the average delay. It can be 525

observed that as the Zipf parameter increases, the average 526

delay decreases. In addition, it can be seen that as the Zipf 527

parameter increases, the effect of the backhaul delay on the 528

average delay decreases. This is because as popularity dis- 529

tribution gets steeper, a small number of contents are more 530

popular when Zipf parameter is high, which improves the 531

caching effectiveness. Thus, more contents can be served 532

directly from the local caches of BSs and don’t have to travel 533

through the backhaul, which decreases the effect of backhaul 534

delay. 535
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D. COMPARISON WITH OTHER SCHEMES536

We compare the proposed algorithm with the Most537

Popular Content-Maximum SINR (MPC-MS) scheme in a538

large-scale system. The MPC-MS scheme is to cache the539

most popular contents, which is a standard caching placement540

strategy [25], [26], and users are associated with the SBS541

with the maximum-SINR without considering the backhaul542

conditions [27].543

FIGURE 6. Performance comparison of different schemes.

Fig. 6 demonstrates that the proposed scheme outperforms544

the MPC-MS scheme and some important insights are also545

revealed. Firstly, the backhaul delay affects significantly the546

caching policy and user association scheme. When the back-547

haul delay is very small, the proposed algorithm has a sim-548

ilar performance as that achieved by the MPC-MS scheme.549

On the other hand, when the backhaul delay is large, the550

performance gap of the proposed algorithm and theMPC-MS551

scheme increases. This is because backhaul delay becomes a552

major component of delivery delay but the MPC-MS scheme553

ignores the backhaul conditions, thereby achieving a higher554

average download delay. The simulation result shows that the555

proposed algorithm can reduce delay by up to 22% than the556

conventional scheme.557

FIGURE 7. Delay allocation of different schemes.

Further, Fig. 7 shows the advantage of the proposed558

algorithm from the perspective of delivery delay. It can be559

observed that as backhaul delay is relatively small, wire- 560

less transmission delay will dominate the average delay and 561

becomes the limiting factor. In this case, the gap of the 562

MPC-MS scheme with the proposed algorithm is relatively 563

small. On the other hand, as backhaul delay increases gradu- 564

ally, the average delay is mainly contributed by the backhaul 565

delay caused by constrained backhaul link. In this case, the 566

proposed algorithm is fully aware of the backhaul conditions 567

and reduce the larger backhaul delay. Therefore, it can be 568

concluded that the proposed algorithm achieves the efficient 569

tradeoff between the wireless transmission delay and back- 570

haul delay. 571

VI. CONCLUSION 572

This paper designs the joint caching and association strategy 573

to minimize the average download delay. The joint strategy 574

takes into account wireless channel quality and is aware of 575

the transmission delay over the backhaul. We analyze the 576

joint optimization problem by formulating an integer non- 577

linear optimization problem. The problem is proved to be 578

NP-Hard based on a reduction from the facility location 579

problem. In order to reduce the complexity, a distributed 580

algorithm is proposed by decomposing the NP-hard problem 581

into an assignment problem solved by Hungarian method 582

and two simple linear integer subproblems, with the aid 583

of McCormick envelopes and Lagrange partial relaxation 584

method. Simulation results show that the proposed algo- 585

rithm can significantly reduce the average download delay, 586

approaching the lower bound of the average download delay 587

but with a low complexity. Moreover, the simulation results 588

demonstrate the necessity to consider the cache condition, i.e, 589

whether the BS caches the requested contents when deciding 590

the best UE-SBS association, especially when the backhaul 591

condition is poor. Therefore, it can be concluded that our 592

work gives a promising method to determine the optimal 593

caching policy and user association scheme, and provides 594

some important insights for understanding the complicated 595

interaction between the caching policy and user association 596

strategy. 597
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