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ABSTRACT This paper describes a mixed-signal electrocardiogram (ECG) system for personalized and
remote cardiac health monitoring. The novelty of this paper is fourfold. First, a low power analog front end
with an efficient automatic gain control mechanism, maintaining the input of the ADC to a level rendering
optimum SNR and the enhanced recyclic folded cascode opamp used as an integrator for61ADC. Second,
a novel on-the-fly PQRST boundary detection (BD) methodology is formulated for finding the boundaries
in continuous ECG signal. Third, a novel low-complexity ECG feature extraction architecture is designed
by reusing the same module present in the proposed BD methodology. Fourth, the system is having the
capability to reconfigure the proposed low power ADC for low (8 b) and high (12 b) resolution with the
use of the feedback signal obtained from the digital block when it is in processing. The proposed system
has been tested and validated on patient’s data from PTBDB, CSEDB, and in-house IIT Hyderabad Data
Base (IITHDB) and we have achieved an accuracy of 99% upon testing on various normal and abnormal
ECG signals. The whole system is implemented in 180-nm technology resulting in 9.47-µW (at 1 MHz)
power consumption and occupying 1.74-mm2 silicon area.

INDEX TERMS ECG, boundary detection, feature extraction, discrete wavelet transform, cardiovascular
disease.

I. INTRODUCTION
Among the several non-communicable diseases world is
scourged with Cardiovascular Diseases (CVD) resulting in
millions of deaths every year throughout the globe [1]. There
is an exponential increment in human mortality rate, caused
due to the delayed diagnosis, lack of proper distribution of
health care facilities and prognosis centers in the vicinity.
There is a need of a robust automated device for the early
detection of the vital abnormal ECG signals in chronic CVD
patients. To address the aforementioned problems, there is
a tremendous necessity of developing a personalized CVD
monitoring device powered by battery backup and with a
very low form factor to achieve unobtrusiveness that works
under the emerging cyber-physical system setup. This medi-
cal science and technological needs impose many challenges

on such device development viz., low power consuming
system design tradeoff between the on-board processing and
RF communication, low complexity analog front end cir-
cuit design and energy harvesting or self-power mechanism
to prolong battery life. In this paper, our emphasis is on
proposing a low complexity systemwith on-board processing
methodology, preceded by a low power analogmodule target-
ing remote and personalized CVD monitoring. Although the
existing analog front-ends [2] fulfill the processing require-
ment, but it suffers from amajor drawback of high power con-
sumption which leads to fast draining of battery. To overcome
this, and hence ensure prolonged operation of the monitoring
device, each constituent block of the AFE is designed using
the gm/ID optimization technique. This technique helps in
the sizing the individual MOSFETs, such that the power
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consumption and noise levels are within the desired specifi-
cations. Further, to ensure a reliable operation of the AFE,
the performance parameters individual blocks are verified
across process, voltage, and temperature variations. On the
other hand, main research thrust has been given so far on
the low power feature extraction mechanisms [3], [4] where
the objective was to obtain several ECG characteristic fea-
tures (P, Q, R, S, T) by proposing a methodology which
could be implemented on either micro-controller or FPGA
or an ASIC platform resulting in low power consumption.
However, all of these mechanisms [5], [6] have considered
the ECG boundary containing all the required features will
be supplied from some other process or module and hence
has not been taken into consideration while doing the power
budgeting and the hardware complexity analysis. Although
such robust boundary detection approach would significantly
impact the accuracy of the subsequent feature extractionmod-
ules, but definitely at the cost of higher circuit complexity
resulting in higher power consumption than what reported in
the literatures [7], [8]. Hence, in this paper, we propose the
following:
• a low power AFE, with an efficient automatic gain
control mechanism which maintains the input of the
ADC to a level rendering optimum SNR. The enhanced
recyclic folded cascode opamp is used for the imple-
mentation of the required integrators for 61 ADC
(section II-A).

• the proposed methodology for finding the boundaries of
ECG signal (starting and ending index of the single heart
beat) as shown in Fig. 1(a) (section II-B).

• a novel low complexity architecture of ECG fea-
ture extraction by reusing the same module used in
the proposed Boundary Detection (BD) methodology
(section II-B). Unlike the state-of-the-art (SoA) archi-
tectures [3], the proposed architecture performs both BD
and Feature Extraction (FE) together using only one
Discrete Wavelet Transform (DWT) core as shown in
Fig. 1(b). The rest of the paper is organized as follows.
Section II introduces the proposed methodologies and
architecture design, section III presents the experimental
results and section IV concludes the paper.

II. PROPOSED METHODOLOGY
Figure. 1(b) represents the block diagram of the proposed
personalized remote CVD monitoring system. As shown in
the Fig. 1(b), a nalog block comprising of Automatic Gain
Control (AGC), reconfigurable ADC and getting continuous
feedback switching resolution signal from the digital block.
As shown in Fig. 1(b) the AGC is responsible for setting the
gain of the Programmable Gain Amplifier (PGA) such that
the input ECG signal is amplified to a level for which the
ADC achieves its maximum SNR. The ADC is activated only
when the AGC completes its operation. The ADC dumps the
digital samples into a memory of fixed size. The ADC reso-
lution is adjusted on the fly with a feedback signal from the
Control Logic Unit (CLU) based on the classification of the

FIGURE 1. (a) Block representation of the proposed analog and digital
and signal processing modules including proposed BD and FE (b)
Architectural block diagram of the proposed system.

ECG signal. Digital block comprises of the proposed BD, FE
and the low complexity DWT core as themain processing unit
(shown in bold in Fig. 1(b)) alongside it has a CLU, memory,
and an intelligent rule engine [9] which would estimate the
trade-off between the on-board process and RF communica-
tion (Bluetooth low energy/ Zigbee/ WiFi) to either smart-
phone or tablet or cloud under the cyber-physical system
framework as shown in Fig. 1(b). Rule Engine (RE), as seen
in Fig. 1(b), decides the abnormality of the signal based on the
extracted features [25], [26] and takes an intelligent decision
dynamically on the trade-off between on-board processing or
RF communication [9].

A. ULTRA LOW POWER ANALOG FRONT END FOR
ACQUISITION AND DIGITIZATION
The prime features of the Analog Front End (AFE) as shown
in Fig. 2(a) are:

(a) An ultra-low power two stage capacitive-coupled signal
conditioning circuit providing programmable amplifications
and tunable 2nd order highpass and lowpass characteristics.
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TABLE 1. List of abbreviations.

(b) An efficient AGC mechanism maintaining the input of
the ADC to a level rendering optimum SNR. In all of the
acquisition schemes (even those where gain is controlled via
DSP) reported till date, the ADC is kept continuously. Hence,
the present scheme is designed to consume less power than
the conventional ones because (i) ADC is turned on only
after AGC has finished its job, and (ii) it avoids gain control
through a DSP which is very power hungry [12].

(c) A low power, high resolution 61 ADC achieving 2nd

order noise shaping while using a single integrator.
(d) Seamless 61 ADC resolution reconfigurability with

minimal hardware and almost zero power overhead. This
facilitates the digital circuit, following the 61 ADC, to
reduce its power consumption by opting to process low-
resolution data. The proposed61ADC implementation aids
area and power cost-efficient switching between the two
modes vis-a-vis other ADC architectures e.g. SAR ADC,
pipeline ADC, etc [13].

1) SIGNAL CONDITIONING STAGE WITH PROGRAMMABLE
GAIN AND TUNABLE BANDWIDTH
The proposed low power AFE provides the required gain
and the bandpass filter characteristics. Fig. 2(b), shows the
schematic of the AFE. The heart of each of the stages is a fully
differential Recyclic Folded Cascode (RFC) OTA adopted
from [14]. Reconfigurability can be introduced in the AFE by
incorporating the features of programmable gain and tunable
bandwidth, hence extending its utility for the acquisition of
various biopotential (ExG) signals. The voltage gain of the

FIGURE 2. (a) Block diagram of the proposed acquisition system.
(b) Analog front-end providing both amplification and LPF and HPF
characteristics. (M = 10, N= 8, CU = 1.03pF, Cg = 103fF, and
CL = 2-12pF). (c)Block diagram of the peak detector and voltage level
detector. (d) Single ended representation of the fully differential opamp
shared DT 61 ADC. The circuit renders 1st order noise shaping when only
components in black color are activated, and 2nd order noise shaping
when the components in dark red are also activated. Here CS1 = 0.67pF,
CS2 = 2.02pF, CSfb = 0.79pF, Ci1 = 4pF, and Vcm = 0.9V.

closed loop amplifier is varied by changing the feedback
factor. While the high pass cutoff frequency is varied by
changing the gate voltage of the pseudo-resistor, the lowpass
cut-off frequency is varied changing the load capacitance
CL [16]. Further, a T-feedback network is used to reduce the
effective feedback capacitance so that the same gain can be
achieved with much smaller capacitance [17]. The frequency
response of the AFE is shown in Fig. 3(a) indicates the utility
of this system for the acquisition of various ExG signals.
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FIGURE 3. (a)Frequency response of the AFE. The high pass cut-off
frequency is tuned by the gate potential of the pseudo-resistor. Different
high pass cut-off frequency for different values of gate potentials is
shown. (b) The waveforms of the scaled input ECG signal taken from PTB
database (top) and the output signal reconstructed using CIC filter
(bottom). (c)PSD of the opamp shared 61 ADC for an input of −5.2dB.

2) AUTOMATIC GAIN CONTROL
Since the input voltage of the subsequent 61 ADC needs to
bemaintained at an optimum level, the gain of this stage needs
to be controlled. The output level of the AFE is controlled by
the AGC stage, shown in Fig. 2(c), by selecting the appropri-
ate combination of capacitors from the capacitor bank [18] as
shown in Fig. 2(a). The AGC comprises of a peak detector,
a voltage range detector, a fully digital decoder modeled as
a Moore machine and a logic isolation block. The isolation
block:

(i) decouples the gain control mechanism from the analog
front end.

(ii) forwards the output of the AFE to the ADC, once the
input falls in the desired amplitude range.

3) 61ADC DESIGN
61ADC digitizes the AFEs output so that it can be taken up
by the digital module. A conventional Discrete Time (DT)

Cascaded Integrator Feedback (CIFB) 61ADC modulator
with 2nd order noise shaping is chosen for this work. Owing
to the fact that the integrator is the most power hungry block
of the 61ADC, two-fold strategy was employed to mini-
mize the ADC power consumption. Firstly, the whole ADC
was designed for minimum current as possible, keeping the
target SNR intact. Second, the 2nd order noise shaping was
achieved using only a single integrator, which reduces the
power consumption to nearly half that of the ADC employ-
ing two integrators as shown in Fig. 2(d) [14]. The inte-
grator is implemented using the enhanced recyclic folded
cascode (ERFC) [10], [11]. The ERFC OTA has twice the
bandwidth of a conventional folded cascodeOTA for the same
power and area. The plot for spectral density of the ADC
output is shown in Fig. 3(c). The figure clearly shows that the
ADC renders 2nd order noise shaping and SFDR of 70dB.

4) SEAMLESS ADC RESOLUTION RECONFIGURABILITY
The output of the 61ADC is taken up by the subsequent
digital circuit for relevant signal processing like classification
and feature extraction. Since the power consumed by this
digital circuit is proportional to the resolution of the data
it is processing, the digital circuit may opt to reduce its
power consumption by reducing the resolution of the data it
is processing. A control signal from the digital circuit selects
the output resolution of the61ADC. The proposed61ADC
is designed to work in two modes controlled by the DSP (i)
the low-resolution (8 bits), and (ii) high-resolution (12 bits)
mode. In the low-resolution mode, the 61 modulator pro-
vides 1st order noise shaping using one integrator whereas in
the high-resolution mode, the 61ADC modulator provides
2nd order noise shaping while using only a single integrator.
Since integrators are the most power hungry circuits in the
61ADCs, here, a higher resolution is extracted keeping the
power consumption nearly the same.

B. PROPOSED ON THE FLY BOUNDARY
DETECTION METHODOLOGY
As shown in the Fig. 1(b) Haar-based DWT core will be
shared by the proposed BD and FE modules. The proposed
BD methodology works on the R-Peak and boundary esti-
mation from an ECG signal. To get the optimum R-peak,
the analysis has to be performed on third resolution level of
DWT, it has filter bank structure with a cascaded high pass
(h[n]) and low pass (l[n]) filters [3] and at every stage we
get the half the number of coefficients as output w.r.t the
number of samples at the filter input. It is to be noted that, to
keep the computational complexity low in terms of required
mathematical operations, we have selected the Haar wavelet
the simple wavelet function.

Haar wavelet removes the noise and isoelectric line wan-
dering of ECG signals, which is shown to be more suitable
for health monitoring applications [3].

To begin, ‘N’ ECG samples [ECG_data] has been applied
as input to the first level of DWT, due to the downsampling
after every stage of the filter gives N / 2L coefficients as
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output, here ‘L’ represents the resolution level of DWT, the
number of output coefficients obtained at the third resolution
level are N / 23. Considering N= 4096 ECG samples results
in 512 detailed (cD_L3) from high pass, please see the line
number 4 of Algorithm 1. The corresponding equations of
the filters are (1) and (2), where ‘i’= 0, 1, 2, 3,....(N-1) ECG
Samples from ADC.

hL [n] =
1
√
2
((Ei [2n+ 1]+ Ei [2n+ 2])) (1)

hL [n] =
1
√
2
((Ei [2n+ 1]− Ei [2n+ 2])) (2)

where n = 1 to N
2 − 1.

Here ‘L’ represents the resolution level of DWT. In the
above equation, the factor 1 /

√
2 can be eliminated because

it is just a constant multiplication factor for all the samples
which does not change the morphology of the input ECG
signal. Possibility to obtain R-peak when the ECG is sam-
pled at 1 KHZ is at least once in 1024 samples, therefore,
to get the R-peak, (cD_L3) coefficients are divided into
m = N / 1024 (sampling rate) subframes, as N = 4096 the
cD_L3 coefficients should be divided into 4 sub-frames as
shown in Fig. 4(c) where each sub-frame holds N / (2LXm)
coefficients i.e. each sub-frame consists of 128 coefficients
for N = 4096. N is chosen as 4096 because there will be
at least three frames (heart beats) in 4096 samples, to get
boundaries of a single heart beat there should be a minimum
requirement of at least three frames, so this made us to
take 4096 ECG samples in the design. Keeping in the mind
of architectural implementation, we have not increased the
depth more than 4096 samples, as the increment in memory
depth will lead to the increment in area and power consump-
tion of the design. In Alogorithm 1, cD_L3(1 : 128) to
cD_L3(384 : 512) are the sub-frames please see the line num-
ber 7. Getting the maximum index from all the sub-frames are
shown in Algorithm 1, please see the line number 7. While
finding the maximum and minimum pairs there is possibility
of missing some other pair in the SF which are highlighted
in red color as shown in Fig. 4(c). We can capture those pairs
based on two factors, 1) the amplitude value of the maximum
missing coefficient should be least 60%of the min_4 (Please
see the Algorithm 1, line number 8) which is called threshold
value. 2) The index difference between the missing pair and
the pre and post pairs should be greater than the value 50.
The threshold is calculated as follows: Th = K% (min_4).
Here the value K = 60%, as the value is taken based on the
statistical analysis performed on the three databases (PTBDB,
CSEDB and IITH DB), there is a chance of detecting the
noise if the threshold value is less than 60%. The logic to
adopt the hard value 50 is obtained based on the number of
ECG samples between consecutive R-peaks at the third level
of DWT.

The minimum number of samples in the consecutive
R-peak under 1 kHz sampling frequency are 400. Since the
analysis is performed on the third resolution, the R-peak

Algorithm 1 Pseudo code for Boundary Detection
Require: Boundaries of each ECG beat to be calculated.
ECG_data = load(.matfile) {N=4096 ECG data}
for i = 1 to N do
cD_L3 = Third_level_haar_dwt(ECG_data)
cD_L5 = Fifth_level_haar_dwt(ECG_data)
{cD_L3, cD_L5 results 512 & 128 coefficients
respectively }

end for
min_4 = min(max(cD_L3(1 : 128),max(cD_L3(129 :
256),max(cD_L3(257 : 384),max(cD_L3(385 : 512))
Th = 60%(min_4)
for i = 1 to length(Third_level_haar_dwt) do
if (cD_L3(i) > Th) then
Comp_mem[i] = 1

else
Comp_mem[i] = 0

end if
end for
for i = 1 to length(Third_level_haar_dwt) do
if Comp_mem (i) ==1 & Comp_mem (i+1)==1) then
Comp_mem(i) = 0
i = i+ 1

else
Comp_mem(i) = Comp_mem(i)
i = i+ 1

end if
end for
for i = 1 to length(Third_level_haar_dwt) do
if (Comp_mem == 1) then
Comp_mem = i
i = i+ 1

end if
end for
for j = 1 to length(cd_3_logic_location) do
if ((Comp_mem_location(j + 1) −

Comp_mem_location(j)) > 50) then
store_index(j) = Comp_mem_location(j)
j = j+ 1

else
store_index(j) = cd_3_logic_location(j+ 1)
j = j+ 1

end if
end for
for i = 1 to length(store_index) do

R_Peak[i]=abs(ECG_data(((min((cD_L3(store_index
(i)-10)):(cD_L3(store_index (i)+10)))*8):((store_index
(i)+10)*8)))

end for
if ((R_Peak(1)−1 >= (R_Peak(1)+R_Peak(2))/2)) then
first_Boundary = (R_Peak(1) − (R_Peak(1) +
R_Peak(2))/2))

else
first_Boundary = first_Boundary

end if
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if length(ECG_data)−R_Peak(end) >= (R_Peak(end)−
R_Peak(end − 1))/2 then
last_Boundary = R_Peak(end) + ((R_Peak(end) −
R_Peak(end − 1))/2)

else
last_Boundary = last_Boundary

end if
for i = 1 to length(R_Peak)− 1 do
Boundary[i] = (R_Peak(i)+ R_Peak(i+ 1)/2)

end for

FIGURE 4. BD Pseudo code block representation (a)Block till finding the
actual maximas in cD_L3 coefficients. (b)Projection of Max and Min
coefficients to ECG memory. (c)Max and Min pairs in cD_L3 coefficients.

equivalent points in DWT domain will have to scale down
proportionally, therefore level 3 DWT the scaled factor will
be 23 therefore, 400 / 23 results in the value 50. The value
400 will be changed if the digital samples are coming at
different sampling rate other than from 1 KHz. Therefore,
the occurrence of successive maximums will be greater than
50 samples difference in level 3 detailed coefficients of DWT
as shown in Fig. 4(a). The Comparator has been taken to
compare all 512 cD_L3 coefficients with the threshold value
and gives an outcome as ‘1’ if the coefficient value is greater

than the threshold else, the outcome is ‘0’, it is clearly shown
in Fig. 4(a) and explained in the line number 9 to 14 of
Algorithm 1. The output of the comparator ‘1’ s and ‘0’ s
will be stored in the memory (comp_mem) whose depth is
512 with word length of 1 bit. To find the missing maximum
coefficients in cD_L3 coefficients, count the number of ‘1’
s in the ‘comp_mem’ such that the index difference between
the two successive ‘1’ s should be greater than 50 as shown
in Fig. 4(a) and Algorithm 1, please see the line number 32.

In the Fig. 4(a) the difference between the index_1 and
index_2 is greater than 50, this signifies index_1 is one of
the maximum coefficients in the cD_L3 and its value has to
be stored in a memory (store_index) Algorithm 1, please see
the line number 32. Similarly, other maximum coefficients
have been calculated and stored in ‘store_index’ memory
of variable depth 4 to 7, ‘mem_max’ depth depends on the
number of pairs occurring in cD_L3 coefficients. For every
maximum index there is aminimum index nearby (±10)max-
imum in cD_L3 coefficients, hence we get the minima‘s as
explained in Algorithm 1, please see the line number 40. The
value±10 has been taken on statistical analysis, by observing
various ECG signals. The R-peak has been calculated by
projecting maxima and minima values to the ECG memory
as explained in Algorithm 1, please see the line number 40
and it is clearly shown in the Fig. 4(b). The boundaries are
calculated by taking the average over R-peaks as explained in
Algorithm 1, please see the line number 54. In the real time,
ECG wave may start at any point within P, Q, R, S, T and the
ECG signal may or may not have the initial (B0) and final
(B5) boundaries as shown in Fig. 4(b). Line number 42 to 53
of Algorithm 1 explains the condition about the occurrence of
first (B0) and last boundary (B5) of continuous ECG signal.

The existing feature extraction algorithm [3] has applied
Maximum Modulus Analysis (MMA) on cD_L3 to get the
temporal boundaries let say, t1 and t2 as shown in Fig. 4(c).
These algorithms used to calculate R-peak based on condi-
tions whether t1 < t2 or t1 > t2. In the proposed algorithm,
there is no necessity to check these conditions, instead, left
shift the t1 and t2 by three times, say x1 = (t1<<3) and
x2 = (t2<<3) to get the R- peak and find the absolute value
in the ECG memory within the range x1 and x2, resulting in
the hardware optimization upon ignoring the conditions. The
accuracy of the algorithm has been improved at the stage of
finding the P / T waves, where the existing algorithms [3]
analyzed the extraction of P / T at fifth level by considering
the QRSon and QRSoff obtained at the third. To find the exact
values of P / T , the values of QRSon and QRSoff values
should be divided by 22 since analyzing is done at fifth level,
which improves the accuracy and also the low complexity
is achieved by discarding the LSB bits instead of division
hardware and right shifting.

C. LOW COMPLEXITY FEATURE EXTRACTION
ARCHITECTURE
The obtained start and end boundaries and R_peaks as shown
in Fig. 4(b) from the boundary detection methodology will
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Algorithm 2 Pseudo code for extracting Features
Require: Features of one ECG beat are calculated. {We

got R-Peak R_0, boundaries B_0 and B_1 from afore
mentioned Boundary Detection Algorithm}

1: if R_0 >= 0 then
2: Q_Peak = min(ECG_samples(((QRS_on)∗8) : R_0))
3: else

Q_Peak = max(ECG_samples(((QRS_on) ∗ 8) :
R_0))

4: end if
5: if R_0 >= 0 then
6: S_Peak = min(ECG_samples(((R_0 : (QRS_off )∗8))
7: else

S_Peak = max(ECG_samples(((R_0 : (QRS_off ) ∗
8))

8: end if
9: max_p = max(cD_L5(1 : QRS_on/4))
10: min_p = min(cD_L5(1 : QRS_on/4))
11: P_Peak = abs(ECG_Samples((min_p ∗ 32) : (max_p ∗

32)))
12: max_T = max(cD_L5(QRS_off /4 : 1))
13: min_T = min(cD_L5(QRS_off /4 : 1))
14: T_Peak = abs(ECG_Samples((min_T ∗ 32) : (max_T ∗

32)))

be given as input to FE module. The remaining features
to be extracted are QRS complex and P / T intervals and
their indices from the main memory (ECG memory) of all
the frames. The following explanation of Algorithm 2 is for
one frame and the same applies to all other frames extracted
from BD algorithm. To identify the QRS boundaries QRSon
and QRSoff we have adopted the concept from [3]. In this
methodology, the accuracy is achieved along with architec-
ture optimization in extracting the ‘Q’ and ‘S’ indices and
P/T wave intervals along with their exact indices. Generally,
if the R-Peak is positive, then the ‘Q’ and ‘S’ peaks will
be negative and vice versa. In most of the feature extraction
algorithms [3] have not considered in finding the negative
side of ‘Q’ and ‘S’, losing the accuracy of the algorithm,
where in the proposed method, we are able to find the ‘Q’
and ‘S’ points in a very accurate way.

Once we get the R-Peak index, we need to check whether
the value of R-peak is positive or negative by passing the
index value to the location of main memory (ECG memory).
To find the ‘Q’ index, we need to find the minimum value
between the QRSon and R-Peak when the R-peak is posi-
tive, else we need to find the maximum when the R-peak
is negative, the same case is applicable in finding the ‘S’ point
but the range changes from R-peak to QRSoff . The opti-
mization is achieved in getting the P / T waves in terms
of decreasing the computational complexity by removing
unnecessary conditions [3]. Algorithms till date have tried
to find the maximum and minimum for P / T peaks based
on the conditions occurred after applying MMA on cD_L5
coefficients, and other complex functions [3]. To explain the

low complexity of the optimized algorithm, we have taken an
example. Let ‘s say x_1 and x_2 are the maximum and min-
imum coefficients in the cD_L5 coefficients in the range of
‘1’ to (QRSon >> 2, right shift by two times) then, irrespec-
tive of whether x_1 index is greater than x_2 or vice versa,
we can directly go to main memory (4096 samples) and find
the absolute value between the range (P_on= x_1<< 5) and
(P_off = x_2 << 5) for getting P peak index, please see the
line number of 11 of Algorithm 2. This logic avoid the extra
hardware architecture required for holding the conditions
(whether x_1> x_2 or x_1<x_2) and while implementing
we have not used any bulky hardware like multipliers and
shifters, instead we have appended that many number of
zeroes to get the same value. The same procedure is followed
in finding the T peak, T_on and T_off indices, whereas the
ranges change from (QRSoff >>2) to cD_l5_end (last sample
in cD_L5) for the detailed coefficients of fifth resolution
level, please see the line number of 11 of Algorithm 14. The
above mentioned pseudo code is for one frame and it applies
to all other frames got from boundary detection algorithm as
shown in Fig. 4(b).

III. RESULTS AND DISCUSSIONS
The combined validation of the whole system is per-
formed using the AMS simulator of Cadence Virtuoso. The
input (ECG) is given in pwl format and fed it to the analog
block. The digital output from ADC is fed to the digital block
and the input and output waveforms of the entire system are
monitored on the AMS simulator for the verification.

Switching of ADC resolution from low (8 bit) to
high (12 bit) occurs only when there is any abnormal in heart
rate count. Initially the outcome of ADC is an 8 bit ECG data,
the digital block will process the data and if any variation
in the heart rate count compared to the normal condition
of the patient then the control signal from the digital block
will act as a switch to change the resolution of the ADC
to 12 bit to maintain the accuracy in the classification of
ECG while extracting the features. The reason for choosing
8-bit resolution is to reduce the power consumption of the
chip while processing. Even at the 8-bit resolution we can
easily track the heart rate of the patient without losing the
accuracy in calculating the heartbeat count. However, after
the abnormal heart rate detection, to maintain the accuracy of
classification in extracting the features of ECGwe go for high
resolution (12 bit) of the ECG data. Therefore, any abnormal
variation in the heart rate count leads to the switching from
low resolution to high resolution of the ADC. The digital
module consumes 6.86 µW and 7.47 µW power at 1MHZ
for 8 and 12 bit ECG data respectively.

A. ANALOG FRONTEND VALIADTION
The complete analogmodulewas validated on the ECG signal
taken from the PTBDB [15], CSEDB [21] and IITHDB.
The digital output of the 61 ADC (stream of 1s and 0s)
generated by the Spectre simulator in cadence is exported
to Matlab Simulink, where it is passed through a CIC filter
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FIGURE 5. Cases with different ECG input signal sensed at different index points (case a) ECG signal sensed from before onset of P (case b)
Input signal sensing from P-peak. (case c) Input signal detection from R peak (case d) Sensing started from T-peak.

TABLE 2. AFE performance.

TABLE 3. Opamp shared 61 ADC performance.

to reconstruct the ECG signal. As is shown in Fig. 3(b) the
reconstructed waveform captures all the essential features of
the ECG signal. The performance parameters of the designed
AFE are compiled in Table II. Table III summarizes the
performance of the designed 61 ADC.

B. PROPOSED BD AND FE VALIDATION
The validation has been done by testing the proposed
methodology on 350 test cases of different ECG dis-
eases (Myocardial Infraction, Hypertrophy, sinus arrhythmia,

FIGURE 6. (a)Block diagram of the proposed BD and FE system using
ARM LPC1768 (b) Boundaries and features of the ECG signal received by
the mobile phone.

ventricular arrhythmias, etc.) and normal ECG signal
database taken from PTBDB [15], CSEDB [21] and in-house
IITHDB, these records are standard 12-lead ECG sampled
at a rate of 1 KHz. The stability and the correctness of the
proposed system is evaluated by the validating the whole
system using the various ECG normal and abnormal signals
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TABLE 4. Performance results of proposed BD.

TABLE 5. Performance results of FE on the databases, DB: data base, PM: performance metric.

TABLE 6. Summary of power analysis.

obtained from the ECG database [15], [21]. We have imple-
mented the design on three platforms, ASIC, FPGA, and
ARM board. The performance evaluation of BD and FE are
shown in the TABLE IV and TABLE V respectively in terms
of the mean and standard deviation of the error between the
algorithm and the annotation result for each record. Overall
mean and the standard deviation are calculated by taking the
average of mean and the standard deviation error of all the
records. The design has been analyzed by customizing the
ECG wave starting index with different case points (P, Q,
R, S, and T) as shown in the Fig. 5. All these cases have
been given to the architecture and the outcome of boundaries
and R-peaks are highlighted in the Fig. 5 resulting in 99%
accuracy in detecting the proper boundaries and the extracting
the features of the ECG signal.

The design is implemented on ARM cortex M3 based
microcontroller LPC1768 which has 500 KB flash memory
and 64 KB SRAM. The design is coded in embedded C and
compiled for LPC 1768 using ARM mbed online compiler.
The overall memory consumed for implementation is 39.1kB
(8%) of flash and 0.7kB (2%) of RAM.After processing if the
ECG signal is detected as abnormal by the rule engine logic
[9], then the LED1 on LPC1768 board blinks and simultane-
ously sends patient fiducial points and ECG signal samples
to the doctor mobile phone via Bluetooth as shown in Fig. 6.
Verilog code is written for the integration of BD and FE,

where the Xilinx ISE tool is used to verify the results, we have
used Xilinx inbuilt memory core (BRAM) in storing the ECG
samples and the DWT coefficients. The BIT file is down-
loaded onto theXilinxVirtex-7 FPGA chip using JTAG cable,
the final results from the FPGA have been observed on the
Chipscope pro tool. The design has occupied 19% of the slice
LUTs present in the Virtex-7 board. The proposed system
is implemented in 180 nm technology resulting in 9.47µW
(@1MHz) power consumption and occupying 1.74mm2 sili-
con area. Table VI summarizes the comparison study with our
proposed work and the state-of-the-art ECG-based cardiac
health monitoring architectures. However, it is to be noted
that among the existing architectures (Table VI), [7] focused
only on the artifacts removal and R-peak detection but not on
extracting features and classification of ECG. Reference [8]
has achieved comparable power consumption like the pro-
posed one, but the application is limited to ECG acquisition
and the heart rate monitoring only without detailed feature
extraction.

IV. CONCLUSION
This paper presents a mixed-signal system for personal-
ized and remote cardiac health monitoring. We proposed
here novel methodologies to reduce the power consump-
tion of the chip. Subsequently, the architecture based on the
proposed methodology has been designed and performance
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has been compared with the state-of-the-art designs. Low
power analog front end with an efficient automatic gain
control mechanism, maintaining the input of the ADC to
a level rendering optimum SNR and the enhanced recyclic
folded cascode opamp used as an integrator for 61 ADC is
our first contribution. Secondly, a novel on-the-fly PQRST
BD methodology is formulated for finding the boundaries.
A novel low-complexity ECG feature extraction architecture
is designed by reusing the same module present in the pro-
posed BD methodology is our third contribution. As shown
in the Section III, the results obtained from the proposed
system have the medical significance in terms of detecting
abnormal ECG waves. The proposed system is having the
capability to reconfigure the ADC from low (8 bit) to high
(12 bit) resolution using a feedback signal from the digital
block is our fourth contribution. We have taken the ECG
database from the PTBDB, CSEDB and in-house IIT Hyder-
abad DB (IITHDB) to validate the whole system and we
got an accuracy of 99% upon testing on various healthy and
unhealthy ECG signals. The whole design is occupying an
area of 1.74 mm2 and consume 9.47µW (@ 1 MHz) power
using the technology node of 180nm.
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