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ABSTRACT This paper considers joint power control and subchannel allocation for co-tier interference
mitigation in extremely dense small cell networks, which is formulated as a combinatorial optimization
problem. Since it is intractable to obtain the globally optimum assignment policy for existing techniques
due to the huge computation and communication overheads in ultra-dense scenario, in this paper, we
propose a hierarchical resource allocation framework to achieve a desirable solution. Specifically, the
solution is obtained by dividing the original optimization problem into four stages in partially distributed
manner. First, we propose a divide-and-conquer strategy by invoking clustering technique to decompose
the dense network into smaller disjoint clusters. Then, within each cluster, one of the small cell access
points is elected as a cluster head to carry out intra-cluster subchannel allocation with a low-complexity
algorithm. To tackle the issue of inter-cluster interference, we further develop a distributed learning-base
coordinationmechanism.Moreover, a local power adjustment scheme is also presented to improve the system
performance. Numerical results verify the efficiency of the proposed hierarchical scheme, and demonstrate
that our solution outperforms the state-of-the-art methods, especially for hyper-dense networks.

INDEX TERMS Hyper-dense networks, small cells, hierarchical resource allocation, clustering.

I. INTRODUCTION
The fifth generation (5G) mobile networks are expected to
achieve a 1,000-fold capacity increase to meet the ever-
increasing penetration of the mobile Internet [1], [2], the
Internet-of-things [3], [4], and the industrial service sys-
tems [5], etc. The most promising driver for achieving this
object is network densification [6]. Deploying low-power and
low-cost small cells has been regarded as a key piece of
the solution for providing high-quality network efficiency.
However, with the dense deployment of small cell access
points (SAPs), mutual interference among the cells becomes
more and more serious, which makes effective resource allo-
cation be an important but critical issue [7].

Cross-tier interference between small cells and macro-
cell can be avoided with dedicated-channel deployment

(or split-spectrum assignment), while the mitigation of
co-layer interference among SAPs requires more efficient
coordination schemes. There have been some existing solu-
tions studying the resource allocation for co-tier interference
mitigation in small cell networks, e.g., sensing-based dis-
tributed approach [8], convex optimization-based method [9]
and game-theoretic approach [10]. However, if we extend
the traditional system model to a large-scale network sce-
nario with tens and even hundreds of SAPs, most existing
methods will be inefficient, due to the critical challenges
stemming from the randomness of massive SAP locations
and the huge computation and communication overheads.
Actually, to meet the increasing requirements of users for
high data rate transmission, the hyper-dense network prob-
ably composed of hundreds of heterogeneous small cells
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will become an overwhelming trend [11]. Therefore, to fully
realize the promised benefits of such extremely dense net-
works, designing practical solution for efficiently distributing
the available radio resources among massive SAPs, while
satisfying desired performance criteria, urgently needs to be
investigated.

To address the above issue, in this paper, we propose a
hierarchical resource allocation framework to obtain desir-
able performance with reasonable computational complexity.
Specifically, based on the idea of ‘‘divide and conquer’’,
we decompose the original optimization problem into four
steps with partially-distributed management. First, in terms
of a large-scale network, we apply the clustering technique
to group the massive small cells into different clusters to
reduce network complexity, and a simple distributed clus-
tering algorithm is proposed. Secondly, for a given cluster
configuration, within each cluster, one of the SAPs is elected
as a cluster head (CH) that is responsible for subchannel allo-
cation among the small cells in its associated cluster. To avoid
the mutual interference among the SAPs in the same clus-
ter, a low-complexity intra-cluster subchannel assignment
algorithm based on graph coloring is introduced. Since each
CH resolves the subchannel allocation problem indepen-
dently from its neighboring clusters, two mutually interfer-
ing SAPs attached to different clusters may use the same
resource, leading to transmission collision. Therefore, in the
third step, cluster-edge SAPs can autonomously select appro-
priate strategies through learning to achieve inter-cluster
interference resolution. Finally, after completing the above
three steps, if there still exists interference among some
SAPs in the same cluster, the corresponding CH can further
adjust these SAPs’ transmission powers to improve system
performance.

The main contributions of the paper are summarized as
follows:
• We formulate the joint subchannel and power allocation
in hyper-dense small cell networks as a combinatorial
optimization problem, in which the objective is to max-
imize the system throughput.

• We propose a hierarchical resource allocation frame-
work to obtain an effective solution, which divides the
original problem into four steps including clustering,
intra-cluster subchannel allocation, inter-cluster inter-
ference resolution and power adjustment, reducing the
network and computational complexity.

• We design efficient algorithms to perform each stage in
a partially-decentralized manner, and analyze the inher-
ent properties of the presented hierarchical scheme and
highlight several insights.

• We compare our approach with the state-of-the-art
solutions in both small and large network scenarios,
and discuss the associated gains. Numerical results
show that the proposed method can achieve sat-
isfactory performance while having a faster con-
vergence speed, which is more suitable for dense
networks.

The rest of this paper is organized as follows. In Section II,
we give a brief review of the related works. Section III
describes the system model and formulates the optimization
problem. In Section IV, the proposed hierarchical resource
allocation framework is outlined, followed by the discussions
about the four-step partially-distributed scheme. Then, the
complexity, convergence and optimality analysis is provided
in Section V. In Section VI, we present the simulation results
for different scenarios and topologies to demonstrate the
performance gains with our method. Finally, Section VII
concludes this paper.

II. RELATED WORK
Extremely dense (hyper/ultra-dense) wireless net-
works [12]–[14] with small cells have attracted more and
more attentions due to their promising driving force for the
improvement of cellular system capacity. Several studies have
provided some prospects about them from the perspectives of
key techniques and challenges [15]–[17]. To fully harvest the
gains of such heterogeneous networks, interference manage-
ment and resource allocation are the most crucial issues.

In the recent studies, there are many centralized resource
assignment approaches for inter-cell interference mitigation
in small cell networks. For example, Liang et al. developed
a greedy algorithm with a central controller to solve the
co-channel and co-tiered interference in [18]. A central-
ized joint power and subchannel allocation framework was
designed in [19] to maximize system capacity for femto-
cell networks. However, because of the uncertainty in the
number and positions of the SAPs, centralized control and
human intervention in network management are not viable.
In addition, significant signaling overhead and computational
complexity also make centralized approaches inefficient.

Instead, decentralized resource allocation methods are
preferred and a series of distributed solutions have been pro-
posed in existing works, e.g., dual decomposition-based itera-
tive subgradient approach [20], switched-based scheme [21],
geometric probability approach [22], and game theory with
learning-based schemes [23]–[25]. Nevertheless, the dis-
tributed solutions have the advantages of easier implemen-
tation and better scalability compared with the centralized
methods, but their performance is typically inferior to the
centralized schemes. In addition, the convergence speed
of the algorithms proposed in conventional decentralized
approaches will be very slow in large-scale networks with
hundreds of small cells, that gives rise to the inherent lim-
itations. In summary, traditional centralized or distributed
methods cannot scale easily to the extremely dense networks.

Unlike previous studies, in this work, we present a
partially-distributed framework based on clustering which
decomposes the original optimization problem into several
sub-problems for resolution in a hierarchical mechanism, i.e.,
‘‘divide and conquer’’. Note that, although clustering has
been used as a technique to coordinate the co-tier interference
in small cells in the literature [26], how to mitigate inter-
cluster interference is a thorny issue, which is often neglected
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in most existing works [27]. As a result, the gains of cluster-
edge SAPs will be heavily watered-down. Furthermore, the
proposed methods of applying a central controller such as
gateway to group the small cells into disjoint clusters and
perform resource allocation, e.g., in [7] and [28], are also
not appropriate in large-scale small cell networks due to the
random and massive deployment of SAPs. Different from
the aforementioned existing works with clustering, we uti-
lize a distributed cluster formulation scheme which only
requires local information exchange. Moreover, the inter-
cluster interference is also addressed by an effective coor-
dination mechanism with autonomous learning to improve
the system efficiency. These properties make the proposed
hierarchical solution particularly suitable for extremely dense
heterogeneous small cell networks.

III. NETWORK AND INTERFERENCE MODELS
AND PROBLEM FORMULATION
Consider the downlink transmission for a dense small cell
network where K randomly deployed SAPs are overlaid on
a macrocell. It is assumed that the small cell and macrocell
networks operate on split spectrum, in which the cross-tier
interference can be avoided. There are N orthogonal sub-
channels with the bandwidth of 1f available for the SAPs
in the network. For presentation, denote the SAP set as K
and subchannel set as N, i.e., K = {1, 2 . . .K } (|K| = K )
and N = {1, 2, . . . ,N } (|N| = N ). Similar to the previous
studies [29], [30], we consider that there is only one active
user equipment (UE) communicating with the SAP in each
time slot, and the SAPs and the users are all equipped with
single antennas. TheUE belonging to SAP k is denoted byχk .
A closed-access scheme is assumed for all small cells, where
access to a SAP is restricted only to the registered UEs.

Let η =
[
ηni

]
with size of N × K be the subchannel

allocation matrix, and ηni is equal to l if subchannel n is
allocated to SAP i; otherwise, it is equal to 0. Moreover,
we denote the transmit power assigned to the link between
SAP k and UE χk on subchannel n by pnk,χk , p

n
k,χk ∈{

λ1Pk,max, . . . , λMPk,max
}
, where Pk,max is the power limit

and 0 = λ1 < λ2 < . . . < λM = 1. We indicate with
∣∣∣h(n)i,χi ∣∣∣2

the channel power gains and denote N0 as the additive white
Gaussian noise power. Therefore, for SAP k with subchannel
n ∈ N, the signal-to-interference-plus-noise ratio (SINR) can
be given by:

γ nk,χk =
pnk,χk

∣∣∣hnk,χk ∣∣∣2∑
j∈K,j 6=k

pnj,χj

∣∣∣h(n)j,χj ∣∣∣2 + N0

. (1)

Then, based on Shannons capacity formula, the achievable
rate of UE χk on subchannel n in small cell k can be defined
as:

Rnk,χk = 1f log2(1+ γ
n
k,χk ). (2)

In this paper, our target is to maximize the system through-
put, jointly considering the subchannel assignment and power

control. Therefore, the corresponding problem for downlink
transmission in a small cell network can be mathematically
formulated as follows:

max
ηnk ,p

n
k,χk

K∑
k=1

N∑
n=1

ηni1f log2(1+ γ
n
k,χk )

s.t. (a) : pnk,χk ∈
{
λ1Pk,max, . . . , λMPk,max

}
, ∀k, n

(b) : ηnk ∈ {0, 1} , ∀k, n. (3)

Constraint (a) represents the transmit power limits of
each SAP. Constraint (b) restricts that each element of the
allocation matrix is a binary variable.
Remark 1: The problem (3) is a binary combinatorial

optimization problem, in which the objective is to find the
optimal subchannel assignment

{
ηnk

}K
k=1 and power control{

pnk,χk

}K
k=1

determining which subchannel should transmit

data for which SAP on which power level, whose solution
is intractable. What’s more, in a dense network scenario, the
computational complexity will increase greatly such that a
centralized mode of operation or conventional decentralized
optimization techniques cannot be applied directly for a prac-
tical solution. For example, consider a network with 50 small
cells, four power levels and five subchannels, in which each
small cell choosing one pair of subchannel and power for
transmission, the number of all possible strategy selection
profiles is 450 × 550 ≈ 1.13 × 1065 , for which it is hard to
achieve the effective solutions using conventional optimiza-
tion approaches. To address this challenge, a more efficient
resource allocation method with acceptable computational
threshold and desirable system performance is in urgent
need.

IV. PROPOSED HIERARCHICAL RESOURCE
ALLOCATION SCHEME
In response to the infeasibility of applying existing cen-
tralized/distributed methods, in this section, we develop
a partially-distributed resource allocation scheme with
hierarchical framework, which is proved to be suitable for
large-scale networks. Specifically, the proposed hierarchical
solution decomposes the original optimization problem into
the following four steps, as described in Fig. 1.

1) Distributed clustering: massive SAPs are firstly
divided into several disjoint groups through local infor-
mation exchange, where now a cluster becomes a
resource assignment unit, dramatically reducing the
network complexity.

2) Intra-cluster subchannel allocation: in each cluster,
one of the SAPs is elected to be a cluster head to per-
form subchannel allocation within its attached cluster
based on coloring an interference graph. Note that this
step is carried out in parallel.

3) Inter-cluster collision resolution: those SAPs located
at the edge of two neighboring clusters need to
change their subchannel occupancy strategies through
autonomous learning, for resolving the possible
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FIGURE 1. Flowchart of the proposed clustering-based hierarchical
framework.

inter-cluster interference when they operate on the
same resources.

4) Power adjustment: after accomplishing subchannel
allocation according to the above mentioned rules, the
CHs can further coordinate the transmission powers
of some SAPs which still cannot avoid subchannel
access collisions within clusters to improve the system
efficiency.

For each step, we provide effective algorithms and analyze
their properties, which are described as follows.

A. STEP 1: DISTRIBUTED CLUSTERING
In a dense deployment of small cells with tight interference
constraints, clustering is a very efficient technique which
can divide the large-scale network into smaller modules,

Algorithm 1 Distributed Cluster Formulation Algorithm
1: Initially, indicating with si the ith small cell, i.e., ∪isi =
K; set |cl | = 0 and l = 1.
2: for i = 1 to K
3: si establishes a list of interfering neighbor SAPs by
sensing the environment, and then transmits and shares the
associated interfering list with its corresponding neighbors.
4: end
5: for i = 1 to K
6: if si has the highest degree of interfering neighbors,
then
7: si elects itself as a cluster head and informs its
neighbors, |ci| = |ci| + 1
8: its j associated interfering neighbors will be
grouped into cluster members and send attachment request
to the CH si, and |ci| = |ci| + j
9: Remove the SAPs in the cluster ci from K
10: while |K| > 0
11: Sort the list of remainder SAPs decreasingly
according to their interference degree; repeat 6 to 9
12: end
13: else
14: i+ 1, go back to 5
15: end if
16: end

dramatically reducing the complexity of network. The opti-
mal clustering yields the cluster configuration achieving the
highest sum-rate, which can be obtained by an exhaustive
search. For K SAPs, the number of possible cluster formu-
lation ways is given by [7]:

K∑
k=1

1
k!

k∑
i=0

(−1)k−i
(
k
i

)
iK ≈ O

(
KK

)
. (4)

It is clear that the number of possible clustering ways
grows exponentially with the number of SAPs. Therefore,
applying exhaustive search to seek the optimal cluster con-
figuration is prohibitive. In essence, clustering methods can
be categorized into two subgroups: centralized and decentral-
ized clustering. Although the centralized clustering scheme
with a coordinator can obtain better cluster configuration,
it requires the global information of the entire network [7],
which is not suitable for the considered large-scale network
scenario. Instead, decentralized clustering methods with a
self-organized manner are more preferred. Motivated by the
idea of clustering rule proposed in [31], here, we present
a simple distributed cluster formulation scheme as shown
in Algorithm 1.1

At first, a list of interference neighbors can be obtained
by each SAP by exploiting its attached users’ measurement

1Our main objective is to apply the idea of clustering to decompose the
large-scale network. Since there would be little variation in the following
steps with different cluster constructions, the discussions about the optimal
cluster formulation are omitted, and are also not the focuses of this paper.
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reports. Due to the lower coverage of SAPs, the signal
transmitted by a given SAP causes interference only to the
UEs located in a few neighboring cells. Thus, such local
interference relationship among the small cells can be char-
acterized by an interference graph. Here, we use a distance-
determined model [32] for presentation . The interference
graph can be denoted as G = (V,E), where V is the set
of vertices denoting SAPs and E is the edge set, i.e., V =
{v1, v2 . . . vK } and E =

{
(i, j)| i, j ∈ K, dij < d0

}
where dij is

the distance between SAP i and j, and d0 is the threshold.
Afterwards, the list is transmitted and shared amongst the
corresponding neighboring SAPs. Therefore, every SAP can
compute the number of interfering neighbors. According to
this information, a SAP will elect itself as CH if it has the
highest interference degree, while its associated neighbors act
as cluster members. Specifically, an example of the cluster
formation stage is given in Fig. 2. A dense network consisting
of 10 SAPs is considered in Fig. 2-(a), and it is divided into
three clusters as shown in Fig. 2-(b).

We define C as the set of clusters of small cells. Each
SAP must be a member of only one cluster and the resulting
clusters should cover all SAPs in the network. A cluster cl ∈
C is the lth set of SAPs such that cl ∈ K, ∀l ∈ {1, 2, . . . , |C|},
∪
|C|
l=1cl = K, and ∩|C|l=1cl = φ. Once the initial network

with hyper-dense deployment of small cells is partitioned into
disjoint clusters, the resource assignment problem for overall
network can be transformed into a situation in which cluster
is a resource allocation unit. Hence, the formulated problem
based on clustering is given by:

max
ηnk ,p

n
k,χk

|C|∑
l=1

∑
k∈cl

N∑
n=1

ηni1f log2(1+ γ
n
k,χk )

s.t. (a) : pnk,χk ∈
{
λ1Pk,max, . . . , λMPk,max

}
, ∀k, n

(b) : ηnk ∈ {0, 1} , ∀k, n

(c) : ∪|C|l=1cl = K

(d) : ∩|C|l=1cl = φ. (5)

Remark 2: It is noted that original system utility is
U0 =

∑
i∈K

ui, after clustering, which can be re-written as

U0 =
|C|∑
l=1

∑
i∈cl

ui, where ui denotes the achievable payoffs

of SAP i, i.e., throughput here. From the possible strat-
egy selection profile perspective, for the initial network,

we can have (N ×M)K , while that is
|C|∑
l=1
(N ×M)|cl | in

terms of the clustering configuration, where N and M indi-
cate the number of subchannels and power levels, respec-
tively. Since in a large-scale network, |cl | < K and

|C| < K hold,
|C|∑
l=1
(N ×M)|cl | � (N ×M)K follows.

That is to say, the proposed clustering scheme dramati-
cally decreases the network complexity and computational
overhead.

FIGURE 2. Distributed cluster formulation procedure. (a) Original network
topology. (b) Distributed cluster formulation.

B. STEP 2: INTRA-CLUSTER SUBCHANNEL ALLOCATION
Applying the clustering scheme presented in the first step, we
have partitioned the large-scale network into smaller disjoint
groups. Now a cluster becomes a resource allocation unit
in which an associated cluster head can achieve resource
management in a centralized manner via exchanging simple
messages within the cluster. For each cluster cl , since the
object is to maximize the sum-rate of all small cells within the
cluster, co-tier interference needs to be avoided, if possible.
To do so, we present a low-complexity intra-cluster sub-
channel allocation algorithm based on the sequential coloring
scheme [33].

Assuming each color denotes a subchannel, graph col-
oring facilitates subchannel assignment, where two SAPs
connected by an edge in the interference graph should not
use the same subchannel simultaneously, for mitigating co-
channel interference, i.e., the following constraint should be
satisfied, if possible:(

ηni + η
n
j

)
bij ≤ 1, ∀i, j ∈ cl, cl ∈ C, n ∈ N, (6)

where bij is a binary index that takes the value of 1 if there
exists an interference edge between the SAP i and j, and
0 otherwise. Let β ∈ {1, 2 . . .N } be the color number of
vertices in G, and N is the total number of sub-channels. The
corresponding CH of the cluster cl is CHl , which is elected
to be responsible for the resource management within the
cluster. The details of the intra-cluster subchanel allocation
algorithm are listed in Algorithm 2. It is worth pointing
out that, in this step, intra-cluster subchannel assignment is
performed in parallel, which greatly speed up the procedure
achievement.

However, due to the fact that each CH performs the sub-
channel allocation independently from its neighboring clus-
ters, two mutually interfering SAPs attached to different
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Algorithm 2 Intra-Cluster Subchannel Allocation Algorithm
1: Initialization: Set the iteration l = 1 and the color
number β = 1.
2: for i = 1 to |cl |, cl ∈ C
3: while β < N
4: if none of the adjacent vertices of vi in cluster cl are
assigned color β, then
5: CHl assigns color β to the vertex vi
6: else
7: β = β + 1, go to 4
8: end if
9: end
10: CHl assigns a sub-channel from N to vi randomly
11: end

FIGURE 3. Subchannel allocation within clusters based on graph coloring.
(a) Cluster configuration. (b) Intra-cluster subchannel allocation.

clusters might operate on the same resources. Consequently,
although achieving intra-cluster subchannel allocation, the
interference between two neighboring clusters may still exist.
For example, given the cluster configuration as Fig. 3-(a),
after accomplishing the subchannel assignment within the
clusters C1, C2 and C3, it may engender transmission colli-
sions between SAPs 2 and 4, 6 and 8, since they utilize the
same resources. As a result, the performances of some cluster-
edge users (i.e., the users attached to the SAPs 2, 4, 6 and 8)
are relatively bad because of the existence of inter-cluster
interference. Nevertheless, this issue was not addressed in
most existing works [7], [28], which will be solved at the
stage of inter-cluster interference resolution.

C. STEP 3: INTER-CLUSTER COLLISION RESOLUTION
Since the prior subchannel access collisions between two
neighboring clusters are unknown for respective CH, it is

Algorithm 3 Decentralized Inter-Cluster Interference
Resolution Algorithm
1: Initialization: Set the iteration t = 0, and the initial
evaluation value Q(a) = 0, for ∀i ∈ {1, 2, . . .Nf }, ∀m ∈
{1, 2, . . .M}.
2: Loop for i = 1 to

∣∣Nf ∣∣, t = 0, 1, . . .
3: if exploration probability is less than ε then
4: select action randomly
5: else
6: choose action ai,mt = argmaxa∈AQ(a)
7: end if
8: receive immediate reward for SAP i at time t + 1:
r i,mt+1 = 1f log2

(
1+ γ (n)

i

)
9: update Q (a) according to the rules as:

Qt+1(a) = (1− α)Qt (a)+ α(rt (a)+ λmax
a′∈A

Qt (a
′)) (7)

10: End loop

intractable to eliminate inter-cluster interference by the coor-
dination from CHs with a centralized scheme. To tackle
this challenge, we resort to the distributed learning scheme,
in which those SAPs located at the edge of clusters inter-
fered by other neighboring SAPs from different clusters can
adopt the suitable subchannel selection strategies through
autonomously learning. Based on the reinforcement learning
scheme [34], we propose a distributed inter-cluster collision
resolution algorithm only relying on the interaction with the
environment, which is described in Algorithm 3.

The main idea of the algorithm can be summarized as fol-
lows: we indicate withNf the set of SAPs located at the edge
of clusters, which need to adjust their subchannel occupations
through learning. It is clear that

∣∣Nf
∣∣ is less than K . For an

arbitrary SAP i (i ∈ Nf ), the object is to find an appropriate
policy that maximizes the expected cumulative reward during
the learning period:

argmax
i∈Nf

(
E

(∑
t

λr it

))
, (8)

where λ is the discount factor (0 ≤ λ < 1) and r it is the
received reward at time t . The action set for SAP i is denoted
as A =

(
ai,1, ai,2, . . .

)
, which can potentially enable SAP

i to mitigate inter-cluster interference while not interfering
its neighboring SAPs in the same cluster. We define Q(a)
as an evaluation value for the expected cumulative reward
over a long time for the agents with taking action a. In this
algorithm, a SAP performs the exploration step with prob-
ability ε, and αt denotes the learning rate that is used to
control the speed of adjustment of Q(a). A new value of Q(a)
is obtained based on the previous value along with the new
observed reward. Here, the new observed payoff is biased by
the outcome of choosing the best action based on the available
knowledge. The stop criterion of the algorithm is to content
that the predefined maximum iteration number is reached.
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Theorem 1: Given learning rates 0 ≤ αt < 1, and∑
∞

t=0 αt = ∞,
∑
∞

t=0 αt
2 < ∞, then the proposed decen-

tralized inter-cluster interference resolution algorithm can
converges to a stationary point as t →∞, with probability 1.

Proof: According to the convergence proof for the
action-play process proposed in [35], we can get that if given
the bounded rewards with the conditional learning rates as
described in the theorem, ∀a, as t → ∞, Qt (a) → Q∗t (a)
holds with probability 1, where Q∗t (a) denotes the optimal
stationary value. In the algorithm, it is noted that the obtained
reward for each player is the data rate receiving from the
strategy selection, which is bounded, i.e., |rt | ≤ R. Thus,
following the similar analysis in [35], Theorem 1 can be
achieved.

D. STEP 4: POWER ADJUSTMENT
After accomplishing the above three steps, if there still exists
co-tier interference among the SAPs in an arbitrary cluster
cl (cl ∈ C), the corresponding CH can further perform local
power adjustment to improve the system performance. The
optimization problem can be formulated as:

max
pnk,χk

∑
k∈cl

N∑
n=1

ηni1f log2(1+ γ
n
k,χk )

s.t. (a) : pnk,χk ∈
{
λ1Pk,max, . . . , λMPk,max

}
, ∀k, n. (9)

Since the considered power levels are discrete, for given
subchannel allocation, the local power adjustment will
become relatively simple, which can be efficiently solved
by using the exhaustive search scheme in an optimal man-
ner. Notably, since the power value is discrete and power
set is finite, it is expected that the complexity of applying
exhaustive search is low and reasonable in practice. Actually,
in terms of the local power adjustment, an even simpler
alternative is to use the equal power transmission, which can
remove all computations of the exhaustive search method.
The reason is that, during the period of subchannel allocation,
the worst-case initial interference has been considered, where
all SAPs are assumed to be transmitting on all subchannels
with uniform maximum power. In other words, we have tried
to minimize the subchannel access collision through the pre-
vious three steps with coordination, so usingmaximumpower
allocation is feasible. What’s more, we found that utilizing
uniform maximum power could yield almost the same per-
formance as applying exhaustive search through simulations.
Notably, this kind of strategy has been also applied in some
existing related works [7], [36].

V. COMPLEXITY, CONVERGENCE AND
OPTIMALITY ANALYSIS
A. COMPUTATIONAL COMPLEXITY AND
COMMUNICATION OVERHEAD
1) STEP 1 - DISTRIBUTED CLUSTERING
This step mainly relys on local information exchange for con-
structing neighbor list to achieve clustering. For each SAP, it
needs calculate the distance between each other and K − 1

comparisons to determine the neighbor relationship. Hence,
the complexity of distributed clustering isO

(
K 2
)
for a dense

network with K SAPs.

2) STEP 2 - INTRA-CLUSTER SUBCHANNEL ALLOCATION
Subchannel assignment within clusters is based on sequen-
tial coloring (or greedy coloring) scheme, whose complexity
depends on the density of graph. It is known that, in general,
if a graph G with n vertices has maximum degree 1, then it
can be colored with no more than 1 + 1 colors with greedy
coloring algorithms. In algorithm 2, we assume that if1 > N
(N is the subchannel number), the color will be assigned
randomly. Hence, for a given cluster cl with |cl | SAPs, the
complexity of completing the subchannel allocation is of the
order O

(
|cl |2

)
in worst case.

3) STEP 3 - INTER-CLUSTER COLLISION RESOLUTION
To mitigate the interference among the neighboring clusters,
cluster-edge users need to change the strategy selections
through autonomous learning. Assume the available subchan-
nel set for an cluster-edge user is A, the predefined maxi-
mum iteration number for the learning scheme is Imax, then
the proposed inter-cluster collision resolution has complexity
of O (|A| Imax).

4) STEP 4 - POWER ADJUSTMENT
The complexity of this problem depends on the utilized
solution method, e.g., using the exhaustive search scheme
with a computational complexity of O (M), where M is the
number of power levels. Since the transmission interference
on subchannels has been reduced as much as possible in the
above three steps, a special case is considered in this paper.
That’s equal transmit power is used on all the subchannels,
which can yield almost the optimum performance when the
power adjustment procedure benefits from using exhaustive
search. The step of equal transmit power with given subchan-
nel allocation has complexity of O (1).

Achieving hierarchical resource allocation also requires
some communication cost, which mainly includes the over-
head of information exchange between the neighboring SAPs
in the phases of the distributed clustering and the subsequent
algorithms execution. Since each SAP only needs to commu-
nicate with its neighbors via backhaul channels in a local area,
the communication overhead among SAPs will be tolerable.

B. CONVERGENCE AND OPTIMALITY ANALYSIS
In terms of the proposed hierarchical resource allocation
framework with four-step partially-distributed manner, the
convergence can be analyzed as follows. It is expected that
only if the number of SAPs in the system is finite, an arbitrary
large network could be divided into smaller groups by using
clustering technique with easy operation. Since intra-cluster
subchannel allocation is carried out by CHs at the central unit,
the convergence is predictable, and this stage can be quickly
completed. The convergence proof for the step of inter-cluster
collision resolution based on autonomous learning has been
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provided in Subsection IV-C. Regarding power adjustment, it
is obvious that the process will converge to a stable state by
using the interior point method or equal transmit power.

As for optimality, as we are solving a non-deterministic
polynomial hard (NP-hard) problem, optimality cannot be
guaranteed. However, the system performance of the pro-
posed scheme is empirically shown to approach optimality
with a very small gap in small-scale networks, and to be
very desirable in large-scale scenarios with relatively low
complexity. The detailed simulation results can be found in
the next part.

To sum up, the results of the hierarchical scheme operating
with a partially-distributed manner can be proved to converge
to the exact status, thereby efficiently solving the resource
allocation problem with suboptimal performance for ultra-
dense networks.
Remark 3: The proposed hierarchical resource allocation

scheme possesses the benefits of easy implementation and
good scalability, in which the corresponding algorithm for
each step is not limited to the methods given in this article.
That is, the aforementioned four stages can also be performed
by applying other existing feasible algorithms owing to the
universality of the framework. The superiority of our scheme
is that it imposes limited complexity and only requires local
information, while achieving desirable system performance
with faster convergence speed, which are validated in the
section of simulation results. All these advantages render the
hierarchical scheme a strong candidate for resource assign-
ment in the hyper-dense heterogeneous small cell networks.

VI. SIMULATION RESULTS
In this section, the numerical simulation and analysis are
conducted to estimate the performance of the proposed hier-
archical resource allocation scheme. Here, we consider a
small cell network with random deployment of femtocell
access points (FAPs) in a square area, and each FAP can
cover a circular cell region of radius 10 meters. The available
spectrum in the network is divided into multiple subchannels
each with a bandwidth of 180 kHz. We set the discount factor
λ = 0.3 and the learning rate α = 0.3 for the inter-cluster
interference resolution stage. The channel gains include path-
loss and shadowing. The following path-loss equation is
used to estimate path-loss between femtocells and UEs. For
path-loss between a femtocell and its UE, PL = 38.46 +
20 log d and for path-loss between a femtocell and a general
UE PL = 38.46 + 20 log d + qL, where d is the distance
between a FAP and the UE and qL accounts for loss due to
walls [7]. Table 1 lists the parameters used for obtaining the
numerical results.

The simulation results mainly include the following three
parts. In the first part, we present the convergence behavior
of the proposed scheme and compare the convergence speeds
of our solution and a traditional learning algorithm. In the
second part, we show the throughput performance compar-
ison of the proposed hierarchical scheme with some other
existing methods both in small scenarios and big scenarios.

TABLE 1. Simulation parameters.

Finally, the fairness performance comparison is illustrated in
the third part.

A. CONVERGENCE BEHAVIOR
We consider a large-scale small cell network with random
deployment of 50 FAPs in a 100m × 100m square area. The
inner wall loss is set to 10 dB and 5 subchannels are available
in the network. To show the convergence of the proposed
algorithms, Fig. 4 depicts the evolution of the number of FAPs
on each subchannel. It is noted that the system converges to a
stable state in about 210 iterations. This result validates the
convergence of the proposed hierarchical scheme in dense
network scenario.

FIGURE 4. The evolution of the number of FAPs on each subchannel.

In general, the achievable system performance of tradi-
tional distributed resource allocation algorithms often relys
on the number of iterations so that these methods will require
very long time to guarantee the convergence in large-scale
networks. However, in this work, the proposed hierarchical
scheme is partially-distributed. In order to investigate the
superiority of our method in terms of convergence speed,
from a statistical perspective, we compare its convergence

8664 VOLUME 4, 2016



J. Qiu et al.: Hierarchical Resource Allocation Framework for Hyper-Dense Small Cell Networks

speed with that of conventional decentralized learning algo-
rithm proposed in [37]. In this policy, the process of dynamic
resource allocation for each small cell is carried out concur-
rently based onQ-Learning. That is to say, all the players (i.e.,
the FAPs) will participate in the resource competition simul-
taneously through self-organizing learning without informa-
tion exchange.

FIGURE 5. Convergence speed comparison for different network scales.

For simplicity, we term the ‘‘Synchronous Decision-
Making Process Based on Q-Learning’’ presented in [37]
as ‘‘SDMPQL’’ scheme. Specifically, the cumulative distri-
bution function (CDF) of the iterations needed to converge
to the stable state is shown in Fig. 5. It is noted from the
figure that for a given network scale (e.g., N = 50), the
convergence speed of our proposed hierarchical scheme is
faster than that of the distributed global learning algorithm
as expected. Moreover, when the network scales up from
N = 50 to N = 60, the convergence speed of the hier-
archical scheme slightly decreases, whereas that of global
Q-learning algorithm decreases significantly. The reason is
that, in this work, the original resource allocation for the
large-scale network is transformed into a simpler situation,
where each disjoint cluster becomes a resource assignment
unit with centralized management by the CHs within each
cluster. Furthermore, resource allocation for the respective
cluster is performed in parallel. Therefore, it is expected that
the proposed hierarchical resource allocation framework with
partially-distributed scheme has faster convergence speed
than traditional distributed global learning algorithm. The
result shows the advantage of our method in dense networks
in terms of convergence speed.

B. THROUGHPUT PERFORMANCE
In this subsection, we compare the throughput performances
of different resource allocation methods for both small
and big networks. In the small scenario, we apply the
exhaustive search as a benchmark to show the near-optimal
system throughput of our solution. Then, to validate the scal-
ability and performance gains of the proposed hierarchical

scheme for large-scale networks, the performance compari-
son between the proposed approach and some other existing
methods in big scenarios is also provided.

1) SMALL-SCALE NETWORKS
Since finding the global optimum is intractable for tradi-
tional computing techniques in large-scale networks with
tens and even hundreds of nodes, firstly, a small scenario
is considered in which several FAPs varied from 10 to 15
are randomly deployed in 50m × 50m area. The inner wall
loss is set to 10 dB and 3 subchannels are available in the
network. In this context, we compare the achievable system
throughput of the following three schemes: (i) the proposed
hierarchical scheme, (ii) exhaustive search and (iii) random
allocation (RA) scheme. Specifically, the exhaustive search
is assumed to be implemented by an omnipotent controller in
a centralized manner, whose performance is global optimum,
serving as an upper bound. On the other hand, in the random
allocation scheme, each FAP selects an arbitrary subchannel
to transmit data with equal probability in each time slot.

FIGURE 6. Comparison of the achievable system throughput of three
schemes.

The comparison results about the achievable system
throughput for the above-mentioned three methods are
described in Fig. 6. For the proposed scheme and random
allocation approach, the simulation results are obtained by
independently simulating 104 trials and then taking the aver-
age results. We can observe that our hierarchical scheme
has a performance that is close to the optimal solution with
exhaustive search and much better than the random allocation
approach. The results demonstrate the near-optimal perfor-
mance of the proposed scheme in small scenarios.

2) LARGE-SCALE NETWORKS
In order to investigate the advantages of our method over
some existing resource allocation solutions in large-scale sce-
narios, in this subsection, we consider ultra-dense networks
where three other approaches are applied to be as benchmarks
for comparison. Specifically, these solutions include:
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• Distributed interference graph coloring (DIGC)
scheme [38]: in this policy, each player chooses a color
(i.e., denoting the subchannel) from a given set (sub-
channel set) uniformly randomly at the beginning of
each time slot, and informs its neighbors of the tentative
choice. If the selection does not conflict with any of its
neighbors, then the player will perform data transmis-
sion on that subchannel; otherwise, it gives up the color
and repeats the above procedure in next time slot, until
completing the color assignment.

• Synchronous decision-making process based on
Q-learning (SDMPQL) scheme [37]: all the play-
ers compete for the resources based on autonomous
learning.

• Random allocation (RA) approach: each player elects a
strategy randomly regardless of other players’ choices.

With parameter variation, the comparisons of system
throughput of the proposed hierarchical resource allocation
scheme with that of the aforementioned three existing solu-
tions for large-scale networks are described as follows.

FIGURE 7. Total throughput of the system versus the number of FAPs.

Fig. 7 shows the variation in system throughput with
the number of FAPs. We change the FAP number from
50 to 80, corresponding to the increasing of femtocell density.
We have five subchannels and the inner wall loss
qL = 10dB. It is noted that our proposed hierarchical scheme
offers a higher system throughput in comparison with the
DIGC and RA schemes. What’s more, with the increasing
of femtocell number, the achievable system throughput using
our scheme increases more quickly than the above-mentioned
two schemes. This is because the co-tier interference will be
severer when the femtocell density becomes higher. However,
the DIGC and RA schemes lack more effective coordination.
Also, from the Fig. 7, we can notice that the proposed scheme
can achieve the performance which is close to that of the
SDMPQL scheme.

Fig. 8 shows the variation in system throughput with the
subchannel number. We change the number of subchannels
from 5 to 10 with 80 FAPs and qL = 10dB. In Fig. 8, it

FIGURE 8. Total throughput of the system versus the number of
subchannels.

is noted that as the subchannel number increases, the sub-
channel selection collisions decrease, hence, the achieved
throughput increases. We can also see that the gaps for
the proposed hierarchical scheme, SDMPQL and DIGC are
gradually becoming smaller with the increase of subchannel
number. This is because the achievable system throughput of
the three methods is all close to the maximum value when
the spectrum resource is so adequate that the subchannel
selection collisions appear rarely.

FIGURE 9. Total throughput of the system versus inner wall losses.

Fig. 9 shows the variation in system throughput with the
inner wall losses. We have 80 FAPs and 5 subchannels with
changing of inner wall losses from 10 dB to 30 dB. It is
obvious from the figure that increasing the inner wall losses
has a positive impact on the achieved throughput for the
system. As the inner wall loss increases, mutual interference
among FAPs will decrease, hence, stimulating the increasing
of the system throughput.

C. FAIRNESS PERFORMANCE
Fairness is evaluated in terms of the fairness index [39], which
determines how fairly the resources are distributed among
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FIGURE 10. Fairness comparison.

existing UEs. It is expressed as follow:

λ =

(
K∑
i=1

Ri)
2

K
K∑
i=1

Ri2
, (10)

where K is the sum of UEs, and Ri is the throughput of UE i.
Fig. 10 shows fairness index calculated with the four different
schemes. We can learn from the figure that our proposed
hierarchical resource allocation scheme can get very good
fairness, even though in large-scale high-density network
scenarios, it can still achieve 0.85.

D. DISCUSSIONS
We summarize the above simulation results as follows:
• Fig. 4 validates the convergence of the proposed scheme
for a large-scale network.

• Fig. 6 shows the near-optimum performance of our
method for small networks.

• From Fig. 7 to Fig. 10, it is clear that our scheme
outperforms several existing resource allocation meth-
ods, i.e., distributed interference graph coloring and ran-
dom allocation schemes, for dense networks in terms of
throughput and fairness performance.

• Associated with Fig. 5, we can notice that the hierar-
chical allocation scheme yields almost the same per-
formance as the synchronous decision-making scheme,
with a faster convergence speed.

These results demonstrate our method is more suitable for
extremely dense small cell networks.

VII. CONCLUSION
In this work, we have proposed a novel hierarchical resource
allocation framework to address the downlink co-tier inter-
ference problem in hyper-dense small cell networks. Large
scale poses several challenges that could not be effectively

addressed by the previous centralized or distributed solu-
tions. To tackle this issue, we provided a partially-distributed
scheme to divide the initial optimization problem into four
steps with reasonable computational complexity, including
distributed clustering, intra-cluster subchannel allocation,
inter-cluster interference resolution and power adjustment.
Simulation results confirmed that our proposed scheme could
achieve satisfactory system performance with a faster conver-
gence speed, andweremore suitable for ultra-dense small cell
networks.
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