
Received November 7, 2016, accepted November 15, 2016, date of publication November 18, 2016,
date of current version December 8, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2630498

Closed Form Analysis of the Normalized Matched
Filter With a Test Case for Detection of
Underwater Acoustic Signals
ROEE DIAMANT
Department of Marine Technology, University of Haifa, Haifa 3498838, Israel

Corresponding author: R. Diamant (roeed@univ.haifa.ac.il)

ABSTRACT In this paper, closed-form expressions for the performance of the normalized matched
filter (NMF) detector are developed specifically for the case of large time-bandwidth product, N . As a test
case, the task of detecting underwater acoustic signals is considered. While the matched filter is the most
common detector used, the NMF detector is used in cases where the ambient noise is fast time varying
and is hard to estimate. While the performance of the NMF has been studied, no closed-form expressions
are given for the detection and false alarm probabilities, and the accuracy of the available approximations
greatly deteriorates with N . As a result, evaluating the detection threshold from the receiver operating
characteristic requires significant, and sometimes untraceable, numerical calculations. This is specifically
important for underwater acoustic signals, where due to the low signal-to-noise ratio, N is very large. The
analysis performed in this paper solves this problem. The analysis is based on the probability distribution of
the NMF to give an exact closed-form (tabulized) expression for the false alarm probability, and a relatively
accurate approximation for the probability of detection, both for the large N case. These approximations are
found accurate in numerical simulations. Results from an experiment conducted in the Mediterranean sea at
the depth of roughly 1000 m validate the analysis.

INDEX TERMS Underwater acoustics, matched filter, detection, detection probability, false alarm
probability, receiver operating characteristic.

I. INTRODUCTION
Underwater acoustics can fulfil the needs of a multitude
of underwater applications. This include: oceanographic
data collection, warning systems for natural disasters
(e.g., seismic and tsunami monitoring), ecological applica-
tions (e.g., pollution, water quality and biological monitor-
ing), military underwater surveillance, assisted navigation,
industrial applications (offshore exploration), to name just
a few [1]. To combat the low signal-to-noise ratio (SNR),
underwater acoustic signals are characterized by a large time-
bandwidth product, N . There detection is performed for a
buffer of samples, y(t), recorded from the channel (usually
in a sliding time window fashion). In this paper, the focus
is on detection of signals of known structure. The applica-
tions in mind are active sonar systems, acoustic localiza-
tion systems (e.g., ultra-short baseline), and acoustic systems
used for depth estimation, ranging, detection of objects, and
communications.

We focus on the first step in the detection chain, namely,
a binary hypothesis problem where the decoder differentiate

between a noise-only hypothesis and a signal exists hypothe-
sis. The former is when the sample buffer, y(t), consists of
ambient noise, and the latter is the case where the sample
buffer also includes a distinct received underwater acoustic
signal. Without prior information of the channel impulse
response and noise (channel state information), the receiver
must assume an additive white Gaussian noise (AWGN)
channel. For such a channel, the most common detection
scheme is the matched filter [2], which is optimal in terms
of the SNR. The matched filter detector is a constant false
alarm rate (CFAR) test, and its detection threshold is deter-
mined only by the target false alarm probability (cf. [6]).
Due to the (possibly) large dynamic range of the detected
signal [7], and for reasons of template matching [8], the
matched filter is often normalized by the noise covari-
ance matrix. This normalization is often referred to as
normalized matched filter (NMF) and is the preferred
choice in several tracking applications such as gradi-
ent descent search, active contour models, and wavelet
convolution [9].
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While the NMF has been analyzed before (e.g., in [10]),
no closed form solutions are given for the false alarm and
detection probabilities. The available expressions are still
manageable for small N values. However, when N is large
(say beyond 20), calculating these analytic expressions poses
a significant computational burden. This is because, to select
the detection threshold, one must draw the receiver operating
characteristic (ROC) curve which shows the detection prob-
ability vs. the false alarm probability for different choices
of the threshold. Hence, the calculation of the ROC must
be efficient, preferably via closed form expressions. This
problem is specifically important for underwater acoustic
systems, where due to low signal-to-noise ratio and the exis-
tence of narrow band interferences, signals have a large time-
bandwidth product with typical values of N > 50 [11]–[13].
Due to large time variation of the ambient noise, the
NMF is widely used in underwater systems, and thus the
efficient evaluation of the NMF ROC is specifically impor-
tant for underwater acoustic applications. In this paper, we
consider this need. For the NMF detector, we offer a closed-
form analytical expression for the probability of false-alarm,
and a relatively accurate approximation for the probability
of detection. The developed expressions allow the immediate
evaluation of the ROC. As a consequence, the performance
of the NMF can be analyzed efficiently for different detector
parameters. To summarize, the contribution of this work is
twofold:

1) Providing closed form expressions for the detection and
false alarm rate of the NMF detector in the large N
limit.

2) A practical tool to set the detection threshold of the
NMF detector in the large N limit.

Simulation results show that the developed expressions are
accurate in the large N limit. To test the correctness of the
analysis in real environment, results from a sea experiment
are reported. The experiment was conducted in the Mediter-
ranean sea to detect chirp signals reflected from the sea
bottom at depth of roughly 1000 m.

The reminder of this paper is organized as follows. The
system model is presented in Section III. In Section IV,
we derive the probability distribution of the NMF and give
expressions for the probability of false alarm and for the
probability of detection. Next, performance evaluation in
numerical simulation (Section V-A) and results from the
sea experiment (Section VI-A) are presented in Section VI.
Finally, conclusions are drawn in Section VII. The notations
used in this paper are summarized in Table 1.

II. BACKGROUND
In this work, the main assumption is that the receiver is
aware of the structure of the transmitted signal, for which
detection is usually based on the matched filter (MF) [14].
To serve as a detector, knowledge of the noise covariance is
required, and as a result, several noise-only training signals
are required [15]. Alternatively, based on the noise texture
model, [16] suggested a maximum likelihood estimator for

TABLE 1. List of major notations.

the noise covariance matrix. In [17], an iterative procedure
is performed where first the covariance matrix is assumed
known and the test statistics for a signal vector is calculated.
Next, using these statistics and additional noise-only vectors,
the noise covariance matrix is estimated and is substituted
back into the test statistics. In [18], an adaptive matched
subspace detector is developed and its statistical behavior
is analyzed to adapt the detector to unknown noise covari-
ance matrices in cases where the received signal is distorted
compared to transmitted one. However, in fast time-varying
environments such as in underwater acoustics [2], the esti-
mated noise covariance is likely to be mismatched [19].
As shown in [20], mismatch in this estimation affects detec-
tion performance and target false alarm and detection rates
may not be satisfied.

The MF detector requires knowledge of the noise vari-
ance. Hence, while the MF is the common detector when
the structure of the signal is known, it cannot be properly
used when the noise characteristics are fast time varying
and hard to estimate. An alternative detection scheme is to
normalize thematched filter with the power of the transmitted
signal [2], [21]. The NMF detector does not require esti-
mation of the noise covariance matrix. Instead, its detection
threshold depends only on the time-bandwidth product, N , of
the expected signal. This is because the normalization term
cancels the noise contribution in the moments of NMF. The
NMF is an appealing detector in cases where the noise is fast
time varying. However, in the presence of multipath or noise
transients, detection via the NMF degrades. Still, since the
receiver is likely not to have prior knowledge of the channel,
the NMF is widely used and was even patented [4].

An initial evaluation of the performance of the NMF
detector is given in [22]. Based on the NMF eigenvalues, a
more advanced analysis for radar detection is given in [23].
In [10], an NMF is suggested, where the linear matched
filter is normalized by the power of the transmitted signal
and a projection of the detected one. The projection is made
according to the estimated noise covariance matrix, and the
result is a simplified test which is proportional to the output
of the standard colored-noise matched filter. A modification
of the matched filter is proposed in [7] for the case of a
multipath channel. The works in [7] and [10] include analysis
for the false alarm and detection probabilities of the NMF.
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However, this analysis is either a modification of a similar
study of the NMF or is based on semi-analytic matrix repre-
sentation. As such, it cannot provide means to evaluate closed
form expressions to the performance of NMF. Alternatively,
instead of deriving the distribution of the NMF, in [24], the
NMF is appriximated by the Low Rank Normalized Matched
Filter whose distribution is known, and a similar analysis with
the adaptive matched filter is given in [25]. A distribution
analysis of the NMF is given in [26]; And a bootstrap approx-
imation is given for the NMF in [28]. However, the accuracy
of this approximation fits signals with a small N value.

Some of the above works provide analytic expressions
for the performance of the detector. These expressions are
provided in non-closed terms (e.g., in [10]). While for signals
of small N , which is suitable for most radio frequency appli-
cations, numerically evaluating these expressions is doable,
for large N the calculation is not traceable. The work clos-
est to the approach presented here was reported in [11],
where for underwater acoustic communication, closed form
expressions where provided for the false alarm and detection
probability of the NMF detector. However, only approxi-
mated analysis is performed using orthonormal basis func-
tions, whose accuracy reduce with N .

III. SYSTEM MODEL
In this work, the target application is detection of under-
water acoustic signals. The underwater acoustic channel is
a frequency selective channel with a long delay spread and
complex ambient noise. However, since this channel is also
fast time varying and space dependent, at the initial phase of
signal detection the receiver cannot be assumed to know the
channel or its charactaristics. Under these circumstances, for
setting up the detection threshold the receiver must assume a
simplified model. For a received signal, y(t), we consider a
binary detection test of hypotheses,

H0 : y(t) = n(t),
H1 : y(t) = s(t)+ n(t). (1)

In (1), s(t) is an underwater acoustic signal of bandwidth W ,
duration T , and n(t) is an additive noise. Let us define the
time-bandwidth product N = WT . We forbid oversampling,
and thus N is also the number of time samples when sam-
pling y(t). We assume that N is large (values exceeding
50 are enough). As we show further below, the analysis made
for the simplified model (1) agrees with experimental results.
Without prior knowledge of the channel, we therefore argue
that this model is a valid compromize.

We are interested in the following quantity (referred to as
the NMF),

NMF =

∫
s(t)y(t)dt√∫

s2(t)dt
∫
y2(t)dt

=

N∑
k=1

skyk√∑
k
s2k
∑
l
y2l

, (2)

where sk and yk are the kth sample of s(t) and y(t), respec-
tively, and y(t) is sampled regularly at the Nyquist rate. For
a detection scheme which uses correlator (2) as its detection
metric, the objective is to develop closed form expressions for
the probability of false alarm and for the probability of detec-
tion, thereby allowing an immediate calculation of the ROC to
choose the detection threshold for different system param-
eters. We note there is a considerable difference between
the NMF in (2) and the regular matched filter. Specifically,
the former includes a non-additive noise term that makes its
analysis highly complicated and very different than for the
latter (cf. [3]).

We consider the case of underwater acoustic signals, where
theNMF in (2) operates on signals of largeN . The underwater
acoustic channel is a highly complex channel of long delay
spread, many multipath, and non-stationary ambient noise
with narrowband interference and noise transients. While,
clearly, the channel affects the NMF’s output, we assume
a simplified model of an additive i.i.d Gaussian noise n(t).
This is because since the detector is performed at the very
beginning of the detection process, the channel or its char-
acteristics can not be assumed known. Thus, in the absence
of prior knowledge of the channel impulse response and
the distribution of the ambient noise, the detector has no
choice but to set its detection threshold based on the above
simplified assumption. Naturally, a mismatch in this model
may lead to performance degradation. However, as we show
in Section V-A for simulations and in Section VI-A, the effect
on performance is not significant. Yet, the special case of
coloured noise can be accounted for by including a trivial
whitening mechanism in the filtering process. In this case, (2)
becomes,

N∑
j,k
sjwj,kyk√∑

j,k
sjwj,ksk

∑
j′,k ′

yj′wj′,k ′yk ′
, (3)

where w is the inverse correlation-matrix satisfying∑
k
wj,kE [nk , nl] = δj,k and δ is the Kronecker delta function.

The above whitening filter is performed prior to detection.
Hence, the following results can therefore be generalized
without the need of significant modifications.

Besides the noise model, another underline assumption
in (3) is that y(t) is of duration equal to that of the signal s(t),
and that in case of hypothesis H1, it includes the transmitted
signal in full. That is, the detector is time synchronized
with the transmitter. In the case of underwater acoustics, this
assumption is hard due to clock offsets, unknown propagation
delay, and lack of coordination with the transmitter. Consid-
ering this, we suggest a fine-resolution detection process in
which the NMF is processed over a sliding window block
from the channel whose duration is larger than the signal
transmitted. Then, instead of comparing a single NMF’s
output sample to the detection threshold, the detector com-
pares the maximum of the NMF’s output performed over the
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processed block. This way, at the cost of complexity, no time
synchronization is required for the detection process. It is
noted that such processing is not a disadvantage per-se of
the NMF. This is because a similar operation is required to
any non-synchronized detector.

IV. PROBABILITY DISTRIBUTION ANALYSIS
In this section, we formulate the probability distribution of the
NMF and for largeN , give approximations for the probability
of false alarm and for the probability of detection. To avoid
the division with the norm of the transmitted and received
signal, analysis is performed in spherical coordinates. For
this reason, while usually the NMF is performed in complex
baseband, the case of real y(t) hat is easier to handle in
spherical coordinates is considered. As will be discussed
further below, the analysis performed for real signals also
applies to complex ones. The difference between the NMF
for complex and real signals lies in replacing the summations
in (2) with an inner product while using the conjugate of the
reference signal s(t). Clearly, this operation does not change
the moments of the NMF, and hence the following analysis
for real signals also applies to complex signals with no need
for adjustment.

FIGURE 1. Spherical coordinates of received signal s(t) and noise n(t).

A. PROBABILITY OF FALSE ALARM
Let Es, En be N -dimensional space vectors whose elements are
sk and nk , respectively. It is easier to manage the following
analysis using spherical coordinates. To this end, we set Es
along the polar-axis (see Fig. 1), such that ρ2 =

∑
k
n2k . The

assumption of i.i.d Gaussian noise leads to the probability
density function

P (ρ, φ, θ1, . . . , θN−2) ∂ρ∂φ
N−2∏
k=1

∂θk

=

(
2πσ 2

)−N
2
e
−

1
2σ2

∑
i
n2i ∏

l

∂nl . (4)

Then, for a noise-only signal, i.e., y(t) = n(t), the NMF is
given by the angle θN−2 between vectors Es and En, such that

NMF =
Es · En
|Es||En|

= cos θN−2. (5)

To find the probability of false alarm, we first need to
evaluate the distribution P(θN−2). Then, given a detection
threshold xT , we obtain

P̂fa =

xT∫
0

P(θN−2)dθN−2. (6)

Let the volume-element, dV =
∏
l
∂nl , be expressed in

terms of the solid angle d�. Then, the volume element for
0 ≤ φ ≤ 2π, 0 ≤ θk ≤ π becomes

dV = ρN−1dρd�

= ρN−1∂ρ∂φ

N−2∏
k=1

∂θk sink (θk) . (7)

Then, by integrating (4) over all angular variables, except for
the polar-angle θN−2, one immediately obtains

P(ρ, θN−2) ≈ CN ,1ρN−1e
−

ρ2

2σ2 sinN−2(θN−2),

0 ≤ θN−2 ≤ π, 0 ≤ ρ <∞, (8)

where CN ,1 is a constant. Further integration over ρ leads to

P(θN−2) = CN ,2 sinN−2(θN−2), (9)

and CN ,2 is a constant. For convenience, denote x =
cos(θN−2). Expression (9) implies that all the odd moments
of x vanish identically, whereas even moments are given by

E
[
x2p
]
=
0
(N
2

)
√
(π )

0
(
p+ 1

2

)
0
(
p+ N

2

) , p = 0, 1, 2, . . . . (10)

In particular,

E
[
x2
]
=

1
N
. (11)

The result in (11) can be obtained directly by the method
described in the Appendix, which confirms the above
analysis.

By (9) and (11), when N >> 1 the distribution P(θN−2)
approaches the Gaussian limit with the variance being 1

N .
Then, the probability of false alarm is approximated by

P̂fa =
1
2
erfc

(
xT

√
N
2

)
, (12)

However, since usually Pfa << 1, unless N is huge such that
PfaN >> 1 expression (12) is not accurate enough. Instead,
the accurate term for the probability of false alarm is

Pfa = 1− B
(
x2T ,

1
2
,
N − 1

2

)
, (13)
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where

B(a, b, z) =

a∫
0

tb−1(1− t)z−1dt

denotes the (tabulated) regularized incomplete beta
function.

Note that (13) does not require calculation of the noise
characteristics. This allows an easy calculation of the
detection threshold even before performing detection.
Consider for example a target false alarm probabil-
ity of 10−4. For N = {20, 30, 50, 100}, the thresh-
old becomes {0.75, 0.63, 0.5, 0.36}. Similarly, for Pfa =
10−3, for N = {20, 30, 50, 100}, the threshold becomes
{0.65, 0.53, 0.42, 0.3}.

B. PROBABILITY OF DETECTION
1) EXACT TERM
Suppose y(t) = s(t) + n(t), and mark s2 as the energy
of the received signal. Setting Es along the polar-axis (see
Fig. 1) we have Ey · Es = R cos(φ) with NMF = cos(φ).
Therefore, changing variables (ρ, θN−2) into (R, φ) in (8) we
obtain

P(R, φ) ≈ RN−1 sinN−2(φ)e−
(R cos(φ)−s)2+R2 sin2(φ)

2σ2 ,

− ≤ φ ≤ π, 0 ≤ R <∞. (14)

Integrating over R, P(φ) can be written in terms of the
parabolic-cylinder function,

Dp(z) =
1
π

π∫
0

sin (pα)− z sin(α)) dα,

i.e.,

P(φ) = π−
1
2 21−

N
2

0(N )

γ
(
N−1
2

)e−s2 1
2−

1
4 cos2(φ)

σ2 sinN−2(φ)

·DN

(
−s

cos(φ)
σ

)
. (15)

Alternatively, by the definition of Dp(z),

P(φ) =
e−

s2

2σ2 sinN−2(φ)
√
π0

(
N−1
2

) ·

[
0

(
N
2

)
F
(
N
2
,
1
2
,
s2 cos2(φ)

2σ 2

)

+ 0

(
N+1
2

)
√
2s

cos(φ)
σ

F
(
N+1
2

,
3
2
,
s2 cos2(φ)

2σ 2

)]
,

(16)

where

F(a, b, z) =
0(b)

0(b− a)0(a)

1∫
0

ezt ta−1(1− t)b−a−1dt

is the confluent hypergeometric function. Denote the SNR
ρ = s

σ
. Note that as ρ → 0, (16) is reduced back to (9).

The average NMF, derived from (16), is given by the Kummer
function,

E [cos(φ)] =
0
(
N+1
2

)
0
(
N+2
2

) se− s2

2σ2

√

2σ 2
F
(
N + 1

2
,
N + 2

2
,
s2

2σ 2

)
.

(17)

The probability of detection for the detection threshold,
xT , can be found by

PD =
∫ xT

0
P(φ)dφ. (18)

Similar expressions as in (18) can be found in the literature
to evaluate the detection probability of the NMF detector
(cf. [7], [10]). These expressions can be evaluated numeri-
cally when N is small to calculate the detection probability
almost exactly. However, for large N direct numerical calcu-
lation of PD is bound to fail. This is because P(φ) contains
infinitely many terms which oscillate rapidly as N � 1.
Unfortunately, this is he case in underwater acoustic signals.
It is therefore important to obtain asymptotic expressions for
P(φ) in the large-N limit.

2) APPROXIMATED SOLUTION
When both N and ρ are large compared to unity,
P(φ) can be approximated using the asymptotic form of
Dp(z) [29],

Dp(z) ≈ e−
z2
4 zp

(
1+O

(
z
p

))
, (19)

applicable for z >> 1 and |z| >> |p| (i.e., for large SNR).
However, this may not be applicable to all considered cases.
Instead, the correct asymptotic can be found by expanding
P(φ) around its saddle-point.

To that end, let us go back to expression (14). Denoting
R → R̃

√
N
σ
, and introducing γ = s

2σ
√
N
, (14) takes the

form

Pγ (R̃, φ) ≈
(
R̃ sin2(φ)

)−1
eNg, (20)

where g = ln(R̃) + ln(sin(φ)) − 1
2 R̃

2
+ 2R̃γ cos(φ). Note

that γ is a function of ρ (which corresponds to the SNR).
Since Pγ = 0 at the end points (R̃, φ) = (0, 0) and (R̃, φ) =
(∞, π), the large-N behaviour of this function is dominated
by Gaussian fluctuations around some saddle-points in the
complex (R̃ × φ)-hyper plane. The saddle-points equations
are then

∂g

∂R̃
= R̃−1 − R̃+ 2γ cos(φ) = 0,

∂g
∂φ
= cot(φ)− 2R̃γ sin(φ) = 0, (21)

with fluctuations determined by the following
Hessian (also known by the name ’’Fisher information
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matrix’’)

H =


∂2g

∂R̃2
∂2g

∂R̃∂φ
∂2g

∂φ∂R̃

∂2g
∂φ2


= −

 R̃−2 + 1 2γ sin(φ)

2γ sin(φ) 2R̃γ cos(φ +
cos(φ)

sin2(φ)
)

. (22)

Equation (21) is solved by the quartet

Rc =
2γ 2
±
√
4γ 4 + 4γ 2 + 1√
4γ 2 + 1

, (23)

sin(φc) = ±
1√

4γ 2 + 1
. (24)

Fortunately, only one of these solutions (the one for which
Rc, φc ≥ 0) is reachable by a continuous deformation of
the contour of integration. Substituting back into (22), one
obtains

|g′′| = −
∂2g
∂φ2c

= 1+ 4γ 2
+

4γ 4

1+ 4γ 2

(
2γ 2
+

√
4γ 4 + 4γ 2 + 1

)
.

(25)

To the leading order in powers ofN−1 and for arbitrary values
of γ ≥ 0,

Pγ (φ) ≈

√
N |g′′|
2π

e−
N
2 |g
′′
|(φ−φc)2 , N >> 1. (26)

For γ << 1 (i.e., small SNR), we get φc ≈
(
π
2 − 2γ

)
and |g′′| ≈ 1. Therefore, (26) implies that the NMF main-
tains good deflection as long as γN > 1, which is similar
to other compressing filters. (Note that under this condi-
tion, the variance of φ is smaller than the SNR separation).
In the opposite limit, as γ increases, φc ≈ 2γ−1 approaches
towards the edge-point φ = 0. At the same time, however,
|g′′| → 4γ 4 and var(φ)

φ2c
≈

Nγ 2

−1 << 1. Thus, when φc → 0,

the Gaussian lube shrinks thereby avoiding any significant
deformations due to edge-effects. As a result the probability
of detection, Pd , can be evaluated as

PD =
1
2
erfc

(
(φc − θT )

√
N |g′′|
2

)
, φc < θT <

π

2
. (27)

This approximation introduces a relative error of the order
O
(
N−1

)
in the estimation of PD. It follows from (27) that,

for a fixed ρ, as the number of samples N is increased, Pd is
saturated.

The above analysis provided an exact closed form expres-
sion (12) for the false alarm probability, and a closed
form approximation for the detection probability (27). These
expressions can be readily used to obtain the ROC. Having
expressions (12), (25), and (27), one can construct the ROC

FIGURE 2. ROC curves for N = 100. Contour lines represents SNR
values ρ. Logarithm base 10.

in the large-N limit. First, the detection threshold is obtained
by inverting (12). Next, |g′′| is calculatedwith the help of (27).
Finally, the required ρ ratio is determined by solving (25)
for γ . The above process is demonstrated in Fig. 2, where we
show the obtainedROC curves forN = 100 for different SNR
values. Due to the closed form expressions (12) and (27), the
ROC was obtained with no computational burden.

V. PERFORMANCE EVALUATION
To evaluate the accuracy of the expressions for Pfa and PD,
results from numerical simulations and from a sea experi-
ment are now presented. To that end, the above analysis is
compared with empirical measurements of the probability of
false alarm, P̂fa, and the probability of detection, P̂D. This is
performed by counting the number of occurrences for which
NMF > cos(θT ) when y(t) = n(t) and when y(t) = s(t) +
n(t), respectively. Unless stated otherwise, we determine the
detection threshold based on a target Pfa = 10−4, i.e., a
CFAR detector. For efficiency, the sample buffer y(t) and
the reference signal s(t) are downscaled baseband converted.
As mentioned above, no adjustment is needed in the analysis
due to the transformation from the case of real signals to the
case of complex ones.

As stated in Section III, the assumed model of i.i.d Gaus-
sian noise likely does not realistic underwater acoustic chan-
nels, and a mismatch in performance is foreseen. Still, with
no prior knowledge of the channel, this simplified channel
model is the best practice. To show the effect of setting the
detection threshold based on this simplifiedmodel, along side
verifying the exact term in (12) and the approximation in (27)
for the channel considered in the systemmodel, it is of interest
to test how significant the effect of this mismatch is. To that
end, in this section the accuracy of the develop expressions
are shown also for the case of non Gaussian noise, and for the
case of a realistic channel collected during a sea experiment.
The results will show that no significant performance degrade
exists.
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A. SIMULATIONS
The numerical simulations include transmission of a linear
frequency modulation (LFM) chirp signal. The duration of
the signal is set for Ts = 50 msec, and its bandwidth varies
with the considered N . Compliant with the system model,
an AWGN channel is assumed. The effect of the channel
on performance is shown for the sea experiment discussed
further below. As a benchmark, comparison is performed
with the analysis in [11] for the NMF. While in this work
the false alarm probability is derived exactly, the term for
the false alarm in [11] is approximated. Hence, the latter is
used as a benchmark only for the case of detection, since
both in [11] and in this work the detection probability of the
NMF is approximated for underwater acoustic signals with
large N . Comparison between the expression in (27) and the
benchmark was made for a fixed threshold of 0.17 and as a
function of the signal-to-noise ratio. For completeness, the
detection probability benchmark approximation from [11] is
quoted here:

PBMD ≈ Q
(
Th− µ
ε

)
, (28)

where µ and ε are the mean and variance of the NMF output,
set for an AWGN channel with no Doppler scale.

FIGURE 3. Probability of false alarm as a function of detection threshold.

In Fig. 3, results for the probability of false alarm are shown
for a white Gaussian noise. Good match between the analy-
sis (pfa) and the empirical (p̂fa) results is observed. The results
show the strong dependency between threshold θT from (12)
and the compression ratio N . That is, for the same target
probability of false alarm the threshold level dramatically
decreases as N increases. Fig. 3 also shows results of P̂fa for
two ρ ratios. As expected, the probability of false alarm does
not depend on the SNR, i.e., the NMF detector is indeed a
CFAR test.

In Fig. 4, approximation (27) is verified for several com-
pression ratios N for a white Gaussian noise. Analysis pd
and the empirical p̂d results are given. Results are shown as
a function of ρ. One can observe that PD increases with N .

FIGURE 4. Probability of detection as a function of ρ. Performance are
compared with the analysis in [11]. Target Pfa = 10−4.

This is because of the dependency of threshold xT in N .
However, for high levels of N , PD saturates. Fig. 4 shows that
for small values of N , there is only a rough match between
the analytic approximation PD and the empirical measure-
ment P̂D. This is due to the use of the saddle-point approxima-
tion in (21), which applies for largeN . Therefore, in the small
N limit, a better approach would be to numerically evaluate
other available expressions (e.g., [7]) that for small N are still
traceable. However, from Fig. 4 one can see that for higher
values of N and starting from N = 50, a sufficient match
is observed with no numerical analysis. This result clarify
why this work is limited for signals of large N . Fig. 4 also
shows the comparison between the benchmark approximated
detection probability and the term in (27). The results show
that the term in (27) is significantly more accurate then the
benchmark analysis. We note that a similar gap in the accu-
racy of the evaluation is obtained also for otherN values. This
is because unlike in [11] where for calculating the detection
probability the NMF is approximated as a Gaussian, in (27)
the Gaussian approximation is considered only around the
saddle-point.

Next, we test how setting the detection threshold based
on our analysis fits also the case of a more complex noise.
We consider two realistic noise components: a strong single
carrier interference at the centre frequency (CW) that simu-
lates the effect of interference formed by e.g., eco-sounders,
and a sea noise recorded during a sea experiment (Exp noise).
An example of an Exp noise is shown in Fig. 5a, and the
empiric pdf evaluated for all noise instances used is shown in
Figure 5b. One can observe the strong random transients in
the experiment noise resulting wideband interferences, and
the noise pdf appears to be similar to a Laplace Gaussian.
For the case of CW, we explore the results for a noise term
combining both i.i.d. Gaussian noise and a CW. In all cases,
the detection threshold is set according to (13), i.e., only for
Gaussian noise. For each case, we perform 105 Monte-Carlo
simulation runs. For the case of CW, in each run only the i.i.d.
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FIGURE 5. Recorded noise from sea experiment: (a) a single time-domain example, (b) empirical PDF.

FIGURE 6. The effect of mismatch in noise model on the detector performance: (a) Probability of false alarm as a function of N for target
Pfa = 10−3(b) Probability of detection as a function of ρ for target Pfa = 10−4.

Gaussian noise is randomized, while for the Exp noise case in
each run we use different instances of recorded noise. In case
of the CW interference, the power of the CW is made equal
to that of the i.i.d Gaussian term. To explore the effect of the
complex noise terms on the detection rate, for all three cases
we alter the energy of the noise components to fit different
SNR values.

Fig. 6a shows results for the probability of false alarm,
where p̂fa represents results for i.i.d. Gaussian noise only,
p̂CW noise
fa represents results for i.i.d. Gaussian noise with a

CW interference, p̂Exp noise
fa represents results for Exp noise,

and the target false alarm probability is set for pfa = 10−3.
Performance are shown for different N values. Clearly, since
the detection threshold is determined while considering only
an i.i.d Gaussian noise term, we expect differences in the
results for the above three noise cases. However, Fig. 3

shows that p̂fa, p̂CW noise
fa , and p̂Exp noise

fa are on the same order.
Compliant with the results from Fig. 3, this match exists for
both small and large values of N . That is, in terms of false
alarm, the analysis holds also for complex noise terms. The
performance in terms of the detection rate is shown in Fig. 6b.
Here, we set the detection threshold for a target false alarm
of 10−4. Small differences are observed between our analytic
approximation, pd , the simulated case of i.i.d Gaussian noise
only, p̂d , and the case of Exp noise, p̂

Exp noise
d . However, much

better detection rates than the expected ones are observed for
the case of Gaussian noise with CW, p̂CW noise

d . The reason
is that while the CW is considered in the calculation of the
SNR (with equal power to the i.i.d Gaussian noise term),
since the transmitted signal is wideband, the contribution
of the narrowband CW interference greatly decreases after
the NMF. We therefore conclude that both in terms of false
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alarm rate and detection rate, the analysis made can be used
also for detection of signals in complex environments.

VI. PERFORMANCE EVALUATION
The results from the simulations verify the correctness
of (12). Furthermore, for underwater acoustic signals where
the common case is N > 50, approximation (27) predicts
the probability of detection and thus the ROC. In addition,
the results show that the analysis holds for an ambient noise
consisting a single carrier interference and for the realistic
case of noise recordings from a sea experiment.

FIGURE 7. Sound speed profile, temperature, and salinity. Measured
during the sea experiment.

A. SEA EXPERIMENT
Since, at the phase of signal detection, the receiver can-
not assume to have channel state information, the analy-
sis in this paper is made for an additive white Gaussian
noise (AWGN) channel. To show the practicability of the
analysis (12) and (27) and to test its robustness to realistic
channels, we now explore its validity in real environments.
The experiment took place in August 2014, and was per-
formed 10 km off the shores of Haifa, Israel, at water depth
of roughly 1000 m. The sound speed profile, temperature,
and salinity, measured at the upper layer of the water col-
umn is shown in Fig. 7. We observe a strong thermocline
around 60 m. The experimental setup included a surface
vessel from which a transmitting projector and a receiving
hydrophones were deployed. The transmitter was located at
water depth of 50 m, and the hydrophone was placed at
water depth of 100 m. The transmitter-receiver range was
roughly 50 m. The experiment included 600 underwater
acoustic transmissions. Each transmission consisted of two
linear frequency modulation chirp signals, spaced by a time
gap of 100 msec, whose carrier frequency was 50 kHz, band-
width 10 kHz, and whose duration varied between: 10msec,
50msec, and 100msec. The tested N values were therefore
100, 500, and 1000. Several ρ values were tested by changing
the amplification level of the transmitted signals. Transmis-
sions were made at depth of 10 m, and signals were received
at depth of 100 m. This depth difference allowed sufficient
separation between the receptions of the direct path, surface
reflections, and bottom reflections, while allowing the use of
a narrow voltage range to reduce quantization errors.

TABLE 2. Results from sea experiment.

Following each transmission, a sampled buffer of 2 sec
was collected from the channel. A time-frequency response
of one of these sample buffers is shown in Fig. 8a. The domi-
nant templates of the two transmitted chirps observed around
time instances 4.1 s and 4.2 s are related to the direct path
from the transmitter and to surface reflections. Considering
that the transmitter-bottom-receiver path length was roughly
1850 m and assuming the average sound speed was roughly
as shown in Fig. 8b, the weaker templates observed around
time instances 5.3 s and 5.4 s are related to reflections of the
two chirps from the sea bottom. The received signals included
strong multipath arrivals. An example to such multipath is
observed in Fig. 8b, where we show the output of the NMF for
the latest arrival. Since the transmitted signal was wideband,
the output of the NMF can serve as a rough estimate of the
channel’s impulse response [27]. Hence, considering the time
delay between the first and last significant peaks in Fig. 8b,
we conclude that the impulse response length was roughly
20 ms (or 30 m). For each detected signal, the SNR ρ was
evaluated by estimating the arrival time of the received signal
and measuring the signal energy and the noise level.

Detection of the two chirp signals was performed using
the NMF detector with target Pfa = 10−4 and detection
threshold (12). Accurate detection was verified by comparing
the time difference of arrival of each two local maxima of the
NMF response with the expected time gap between the two
transmitted chirp signals (100 msec). On the other hand, miss
detection was declared when the output of the NMF did not
exceed threshold. False alarm was determined for cases when
the NMF response exceeded the threshold at wrong timing.

The decoding of the sea experiment achieved no false
alarm. Considering the time window used for the sample
buffer, this outcome corresponds to zero false alarms for
roughly 2500 trials. The results for the detection rates are
given in Table 2 alongside the predicted approximation (27).
Since for high values of N the probability of detection
changes little with N (see Fig. 4), results for N ≥ 500
are accumulated. In addition, for clarify, the measured ρ
levels are quantized. Compliant with the analysis, no miss
detection was found at ρ levels above 15 dB. However,
for lower ρ ratios, detection performances are a bit below
the expected level. This is explained by the effect of the
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FIGURE 8. Buffer recorded during the sea experiment (depth roughly 1000 m): (a) Time-frequency response, (b) Output of the NMF for the latest
arrival.

non-linear channel (especially the Doppler shift phenomena
and non-resolved multipath) on performance, which distorts
the received signal and thus reduces the output of the NMF.
Nonetheless, considering the fact that the detection proba-
bility fast increases with the SNR (see Figs. 4 and 6b) and
that the measured detection rates are collected within an SNR
range of 5 dB, the differences shown in Table 2 are rather
small. We therefore argue that the analysis in this work can
serve as a good indicator for the performance in a real sea
environment.

VII. CONCLUSIONS
This paper focused on the performance of the normalized
matched filter (NMF). The NMF is used when the noise
covariance matrix is fast time-varying and is hard to estimate.
While the performance of the NMF has been studied, no
closed expressions are given for the false alarm and detection
probabilities. As a result, calculating the ROC for large time-
bandwidth product N requires a significant, and sometime
non-traceable, numerical calculation effort. As a result, it
maybe hard to set the detection threshold for different sys-
tem parameters. This specifically affects underwater acoustic
applications where, due to the low signal-to-noise ratio, N is
large. Considering this problem, this work provided closed
form expressions for the false alarm and detection probabil-
ities, and thus an immediate method to calculate the ROC
and choose the detection threshold. The analysis involved
derivation of the probability distribution and the moments
of the NMF. Then, both the exact finite-N distribution (16)
and the large-N limit (26) were studied. For the case of
large N value, exact expression for the probability of false-
alarm (12) and an approximation for the probability of detec-
tion (27) were developed. Numerical simulations showed
that the developed expressions are accurate. Results of a sea
experiment shows small differences between the measured
detection rate and the analysis for the detection probability.

APPENDIX
VIII. SECOND MOMENT OF A NMF
In this section expression for the second moment of the
NMF (2) are developed for the case of y(t) = n(t). For a
sampled noise signal with a sampling period1 and number of
samples N ,

NMF2 =

(
N∑
k=1

nksk1
)2

(
N∑
k=1

n2k1
)
·

(
N∑
k=1

s2k1
) . (29)

Denote ñk =
nk
σ
, s̃k = sk

√
1
Es
, where σ 2 is the variance of

n(t) and Es is the energy of s(t). Then,

NMF2 =

(
N∑
k=1

ñk s̃k1
)2

σ 2 Es
1(

N∑
k=1

ñ2k1
)
·

(
N∑
k=1

s̃2k1
)
σ 2 E

1

. (30)

Clearly, E
[
NMF2

]
does not depend on σ or Es. In the follow-

ing, sk and nk are therefore refer to as normalized variables.
The second moment of the sampled NMF is

E
[
NMF2

]
= E


N∑
k,l
sksl · nknl(
N∑
m=1

n2m

)
. (31)

To simplify (31), one can use the connection

1
X
=

∫
∞

0
e−λXdλ, (32)

such that

E
[
NMF2

]
=

N∑
k,l

sksl · E
[∫
∞

0
nknle

−λ
∑
m
n2m
dλ
]
. (33)
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Since nk is Gaussian, so is the integral in (33) and

E
[
NMF2

]
=

N∑
k

s2k · E
[∫
∞

0
n2ke
−λ

∑
m
n2m
dλ
]
. (34)

Consider N = 1. Here,

E
[
NMF2

]
=

∫
∞

−∞

dn
√
2π

∫
∞

0
n2e
−n2

(
λ+ 1

2

)
dλ

=

0
(
3
2

)
√
2π

∫
∞

1
2

da

a
3
2

= 1, (35)

where a2 is used. The result in (35) is a good sanity check
since for the case of a single sample, the variance of the NMF
is 1. For a general N ,

E
[
NMF2

]
=

∑
k

s2k ·
1

(2π)
N
2

0

(
3
2

)
π

N−1
2

∫
∞

1
2

da

a
3
2 a

N−1
2

=

√
π

2
N
2

·
1
N
π−

1
2 2

N
2 =

1
N
. (36)

By (36), the variance of NMF for the case of noise-only signal
is inverse proportional to N .
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