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ABSTRACT To detect multiple sclerosis (MS) diseases early, we proposed a novel method on the hardware
of magnetic resonance imaging, and on the software of three successful methods: biorthogonal wavelet
transform, kernel principal component analysis, and logistic regression. The materials were 676 MR slices
containing plaques from 38MS patients, and 880MR slices from 34 healthy controls. The statistical analysis
showed our method achieved a sensitivity of 97.12±0.14%, a specificity of 98.25±0.16%, and an accuracy
of 97.76± 0.10%. Our method is superior to five state-of-the-art approaches in MS detection.

INDEX TERMS Biorthogonal wavelet transform, kernel principal component analysis, logistic regression,
multiple sclerosis, computer vision, machine learning.

I. INTRODUCTION
Multiple sclerosis (MS) affects human brain and spinal cord
by damaging the insulating covers of neural cells [1]. The
cause is unclear, thus the underlying mechanism is either
immune system destruction [2] or myelin-producing cell fail-
ure [3]. Clinically, MS is associated with depression [4],
lower urinary tract symptom [5], fatigue [6], muscle weak-
ness [7], etc.

To detect MS early, the neuroradiologists tend to use
magnetic resonance imaging (MRI) technique to scan the
patients’ brains. Nevertheless, the normal-appearing white
matter (NAWM) paradox [8], [9] poses a radical challenge,
since the lesions within the white matter may appear the same
as healthy white matter.

With the rapid development in computer science, the com-
puter vision (CV) [10], [11] has high probabilities to help
neuroradiologists to detect MS. CV studies and mimics the
human vision, and thus gaining high-level understanding on
digital images and videos. It can implement any tasks that a
human visual system can do. Artificial intelligence (AI) [12]
can ease the process that CV learns to understand the con-
tents in image and video. Therefore, CV is often combined
with AI [13] and its variants, such as machine learning [14],
bio-inspired mechanism [15], expert system [16], swarm
intelligence [17], etc.

Current CV systems on brain diseases capture more excit-
ing attentions from scholars in both research and industrial
domains. For example, Murray et al. [18] extracted features

VOLUME 4, 2016
2169-3536 
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

7567



S.-H. Wang et al.: Biorthogonal Wavelet Transform, RBF Kernel Principal Component Analysis, and Logistic Regression

from MS images. They employed a multiscale amplitude-
modulation frequency-modulation (abbreviated asMAMFM)
method. Finally, support vector machine (SVM) was used.
Phillips et al. [19] suggested a novel feature—wavelet
entropy (WE)—for abnormal brain detection. To train the
classifier, a Hybridization of Biogeography-based optimiza-
tion and Particle swarm optimization (HBP) was pro-
posed. Siddiqui et al. [20] presented a combined system
based on discrete wavelet transform (DWT), principal com-
ponent analysis (PCA), and least-square support vector
machine (LS-SVM). Nayak et al. [21 ]proposed a novel
abnormal MR image detector, based on DWT, probabilis-
tic PCA (PPCA), and random forest (RF). Zhou [22] used
stationary wavelet entropy (SWE) to detect MS. They com-
pared three algorithms: decision tree (DT), k-nearest neigh-
bors (kNN), and SVM.

Nevertheless, the accuracy performances of above men-
tioned references are not satisfying. Besides, their statisti-
cal analysis only reported the average result, other than the
standard deviation. In this study, we presented a novel MS
detection method based on biorthogonal wavelet transform,
kernel principal component analysis, and logistic regression.
The structure is organized as follows: Section II gives the
materials. Section III offers the methodology. Section IV
presents the results and discussions. Section V concludes the
paper.

II. MATERIALS
In this study, we obtains 676 MR slices containing plaques
from 38 MS patients, and 880 MR slices from 34 healthy
controls. The detailed description of those data can be found
in reference [22]. The MS patients and healthy controls are
scanned by different scanners in different position. To ease
brain slice comparability, we used the histogram stretch-
ing (HS) [23] method to increase the dynamic range of all
MS and healthy brain images. The HS was performed as
follow:

b(i, j) =
a(i, j)− amin

amax − amin
(1)

where (i, j) represents the coordinate of the pixels, a repre-
sents original slice, b the HS normalized slice. The amin and
amax represent the minimum and maximum intensity values,
respectively. Figure 1 shows the samples of our used brain
slices.

III. METHODOLOGY
A. DISCRETE WAVELET TRANSFORM
In numerical analysis, the discrete wavelet transform (DWT)
is an effective way to extract global features from images or
videos. It is also used in JPEG 2000—an image compression
standard and coding system [24] and the fingerprint identifi-
cation systems [25]. In academic fields, DWT is applied in
various fields, e.g., classification of MR image [26], hearing
loss detection [27], pathological brain detection [28], video
watermarking [29], abnormal brain detection [30], infant cry

FIGURE 1. Sample of brain slices. (a) A MS slice with 3 plaques. (b) A MS
slice with 5 plaques. (c) A healthy brain slice. (d) Another healthy brain
slice.

detection [31], dendrite spine detection [32], biometric tem-
plate generation [33], tea classification [34], etc.

Mathematically, the DWT of a brain image x is obtained
by passing it through a series of filters. The discrete samples
of xare passed through a low-pass filter g and a high-pass
filter h, resulting the approximation coefficients (AC) and
detail coefficients (DC), respectively. The filters output are
usually down-sampled by a factor of 2.

AC(n) =
∑+∞

m=−∞
x(m)g(2n− m) (2)

DC(n) =
∑+∞

m=−∞
x(m)h(2n− m) (3)

These two filters are known as the quadrature mirror filter.
Figure 2 shows the diagram of passing through filters.

FIGURE 2. Diagram of passing through filters (DS = down-sampling,
AC = approximation coefficient, DC = detail coefficient).

B. BIORTHOGONAL WAVELET TRANSFORM
There are many wavelet families, such as Haar [35], db [36],
and others. In this study, we chose the biorthogonal wavelet.
The advantage of orthogonal wavelet is the associate wavelet
transform is orthogonal, thus, the inverse wavelet transform
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is the adjoint of the wavelet transform. The advantage of
biorthogonal wavelet transform (BWT) is it allows more
degrees of freedom compared to orthogonal wavelet [37].

In this study, we chose the biorthogonal 4.4 wavelet.
Its filters and functions for decomposition are shown in
Figure 3 and Figure 4, respectively. The corresponding filters
and functions for reconstruction are not presented, since our
task only uses decomposition.

FIGURE 3. Filters of biorthogonal 4.4: (a) low-pass filter g; (b) high-pass
filter h.

FIGURE 4. Functions of biorthogonal 4.4: (a) scaling function; (b) wavelet
function.

Besides BWT, there are many other excellent wavelet
transform variants, such as wavelet packet transform [38],

relative wavelet energy [39], wavelet energy [40], scale-
discretized wavelet transform [41], stationary wavelet trans-
form [42], spherical wavelet transform [43], exponential
wavelet transform [44], dual-tree complex wavelet trans-
form [45], etc. Those advanced wavelet transforms are also
expected to give better performance than standard DWT.
In the future, we shall test their performances.

C. PRINCIPAL COMPONENT ANALYSIS
As an effective dimensionality reduction tool, principal com-
ponent analysis (PCA) can reduce the size of wavelet coef-
ficients from MR brain images [46]. Assume there is a
datasetC with size ofN and dimension of d , first we calculate
the sample mean mj of j-th feature as

mj =
1
N

N∑
i=1

C(i, j) (4)

Next, we calculate the zero-mean dataset B as

B = C − emT (5)

Here e represents an N × 1 vector of all ones [47].
Third, the d × d covariance matrix Z is generated

Z =
B∗B
N − 1

(6)

Fourth, the covariance matrix Z has an eigen decomposi-
tion expression as

Z = XYX−1 (7)

here X represents the eigenvector matrix, and Y represents
the eigenvalue matrix, which is also a diagonal matrix[48].

Y =


Y (1, 1)

Y (2, 2)
. . .

Y (d, d)

 (8)

Fifth, we rearrange X and Y , so that the eigenvalue is in a
decreasing way.

Y (1, 1) ≥ Y (2, 2) ≥ · · · ≥ Y (d, d) (9)

Sixth, we calculate cumulative variance for each eigenvec-
tor by

G(k) =
k∑
i=1

Y (i, i) (10)

Thus, we can form a vector as

G =
[
G(1) G(2) · · · G(d)

]
(11)

Seventh, assume the threshold is T , and thus we select L∗

that satisfies

L∗ = argmin
{
L

∣∣∣∣G(L)G(d)
≥ T

}
(12)

Finally, we output L∗ most important principal
components.
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D. KERNEL PCA
The shortcoming of PCA is it cannot extract non-linear struc-
ture information [49]. To solve this problem, scholars have
proposed a powerful variant of PCA—kernel PCA (KPCA).
The KPCA implements the same as PCA except transforming
the dataset C into a higher-dimensional space [50].

Two different KPCAs were studied. One is the polynomial
kernel PCA (PKPCA) defined as

k(x, y|PKPCA) = [a(x × y)+ b]c (13)

where a, b, and c are kernel parameters
The other is the RBF kernel PCA (RKPCA) [51] defined as

k(x, y|RKPCA) = exp

(
−
‖x − y‖2

d2

)
(14)

where d represents the scaling factor.
The optimal estimation of hyper parameters a, b, c, and d

can be obtained by grid search (GS) algorithm. GS is also
named as parameter sweep. It is an exhaustive searching
method within a manually specified subset of the hyper
parameter space.

E. LOGISTIC REGRESSION
Traditional regression analysis help the users understand the
relationship between a dependent variable and on or more
independent variables. Logistic regression is an improved
regression model that can handle the situation where depen-
dent variable is categorical [52]. In this study, we predict
a bran MR image as either MS or healthy. This prediction
output belongs to a binary categorical variable.

For a binary logistic regression, the output is usually
encoded as either 0 or 1 [53]. Following common convention,
we encode the particular noteworthy output as 1, here the MS
patient. We also encode the contrary output as 0, here as the
healthy. Table 1 shows the encoding strategy for the output.

TABLE 1. Output encoding.

Suppose we have L principal components as [x1, x2, . . . ,xL]
as the independent variable, and we have one dependent
variable y either 0 or 1 indicating healthy orMS patient. Then,
we can create the binary logistic regression model as to find
the optimal vector β =[β0, β1, β2, . . . , βL] that best fits

y =

{
1 β0 + β1x1 + β2x2 + . . .+ βLxL + ε > 0
0 otherwise

(15)

here ε represents the unobservable error.
To achieve above model, a challenge arise as to smash the

input (with values from negative to positive infinity) to the
output (with values between 0 and 1). The logistic function

FIGURE 5. Logistic function.

σ (t) can solve this problem [54]. σ (t) is defined below with
a curve plot shown in Figure 5.

σ (t) =
1

1+ exp(−t)
(16)

In this study, t can be regarded as a latent variable, which
is a linear weighted combination of independent variable x as

t ← β0 + β1x1 + β2x2 + . . .+ βLxL (17)

Thus, the binary logistic model is:

F(x) =
1

1+ exp [− (β0 + β1x1 + β2x2 + . . .+ βLxL)]
(18)

where F(x) represents the probability of dependent variable
y = 1, i.e., corresponding to a MS patient. β0 is the inter-
cept. [β1, β2, . . . , βL] represents the regression coefficient
for [x1, x2, . . . , xL].

There are other advanced classifiers besides LR, such as
feed forward neural network [55], association rule learn-
ing [56], decision tree [57], dynamic Bayesian network [58],
nonparallel support vector machine [59], reinforcement
learning [60], twin support vector machine [61], extreme
learning machine [62], etc. Those classifiers have a radically
different mechanism with the LR, but they may also give
satisfying performances. In the future, we shall apply them
to MS detection.

F. STATISTICAL ANALYSIS
Before we step into the experiment, we need to point out the
importance of statistical analysis and its relationship to the
hyper parameters of [a, b, c, d].
We used a ten-fold cross validation (TFCV) as shown in

Fig. 6. The whole dataset was segmented into 10 folds (A
to J). In every trial, eight folds out of 10 folds were used for
training, one fold for validation, and the final fold for test. The
purposes of the three sets are listed in Table 2. Note that the
classifier needs to be retrained for each trial. To further reduce
the randomness, we ran the TFCV ten times, and report the
average and the standard deviation in terms of sensitivity,
accuracy, and specificity.
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FIGURE 6. Illustration of TFCV.

TABLE 2. Purpose of training, validation and test sets.

TABLE 3. Comparison of different dimensionality reduction methods
(Threshold = 95% of total variance).

TABLE 4. Sensitivities over 10 runs.

IV. RESULTS AND DISCUSSIONS
Our experiment was performed on Dell laptop with 3.20 GHz
i5-3470 CPU and 4GB RAM. Programs were developed
in-house and ran on Windows 10 Operating System.

TABLE 5. Specificities over 10 runs.

FIGURE 7. Two samples for biorthogonal decomposition. (a) Sample I.
(b) Sample II.

A. BIORTHOGONAL DECOMPOSITION
Figure 7 presents two samples. We performed three-
level bior 4.4 decomposition over these two sample
images. The decompositions results are offered in
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FIGURE 8. BWT Decomposition of Sample I (Hot color map was added).
(a) 1-level. (b) 2-level. (c) 3-level.

Figure 8 and Figure 9, respectively. For better view of coef-
ficients, we use hot pseudo color map.

Some literature combined entropy with discrete wavelet
transform [63], [64]. In this condition, the entropy operation
can be regarded as a means to reduce features. Nevertheless,
we already used KPCA in this study; thus it is unnecessary
for us to perform entropy operations.

B. PCA VERSUS KPCA
In this section, we compared PCA with KPCA. The wavelet
coefficients of each brain image were realigned as a row vec-
tor with length of 73056. This value is a bit more than 256^2=
65536 due to the border and down sampling. Afterwards, the
1556 images will form a matrix with size of 1556× 73056.

FIGURE 9. BWT Decomposition of Sample II (Hot color map was added).
(a) 1-level. (b) 2-level. (c) 3-level.

Using three dimensionality reduction methods (PCA,
PKPCA, RKPCA) and setting the threshold as 95%, we plot
the cumulated explained variances versus selected PCs in
Figure 10. Here we know that PCA selects 424 PCs, PKPCA
selects 405 PCs, and RKPCA selects 396 PCs. Dividing them
by the total coefficients, we know that PCA selects 0.58% of
total coefficients, PKPCA selects 0.55%, and RKPCA selects
0.54%, which are listed in Table 3. Therefore, we find that
RKPCA selects the least number of PCs while attaining the
same threshold.

C. STATISTICAL ANALYSIS
The sensitivities, specificities, and accuracies over all 10 runs
are listed below in Table 4, Table 5, and Table 6, respectively.
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FIGURE 10. Selected PCs by different algorithms.

TABLE 6. Accuracies over 10 runs.

Here Fmeans fold, Rmeans run.We can observe that our pro-
posedmethod yields a sensitivity of 97.12±0.14, a specificity
of 98.25±0.16, and an accuracy of 97.76±0.10.

D. COMPARISON TO STATE-OF-THE-ART METHODS
We submitted a 1556x396 matrix to the classifier of LR. Here
1556 is the number of total image, 396 is the number of PCs.
TwoMatlab commands ‘‘mnrfit’’ and ‘‘mnrval’’ were used to
accelerate the program developing.

We compared our BWT+RKPCA+ LRmethod with five
state-of-the-art approaches: MAMFM + SVM [18], WE +
HBP [19], DWT + PCA + LS-SVM [20], DWT + PPCA +
RF [21], and SWE + DT [22]. Table 7 presents the compar-
ison results. Note that our method runs 10 times, so we also
report the standard deviation. The unit of data in Table 7 is
percentage.

TABLE 7. Algorithm comparison.

From the data in Table 7, we see that our BWT +
RKPCA + LR method achieves the highest sensitivity and
accuracy of all six algorithms. For the specificity, our method
achieves an average value of 98.25%, slightly lower than the
SWE + DT [22] method of 98.30%. It is worthy to note that
sensitivity is more important than specificity, since detecting
MS can provide early treatment. We can conclude that our
method is superior to other five state-of-the-art approaches.

V. CONCLUSION
In this study, our team presents a novel MS detection method
on the basis of BWT, RKPCA, and LR. The experiments
results showed that this BWT + RKPCA + LR method was
superior to five state-of-the-art methods.

In the future, we shall apply our method to brain CT [65],
retinal image [66], low-dose X-ray [67], PET, and SPECT.
The structure extraction [68] method will also be tested.

CONFLICT OF INTEREST
We have no conflict of interest to disclose, with regard to the
subject matter of this paper.

REFERENCES
[1] D. Alali, K. Ballard, and H. Bogaardt, ‘‘Treatment effects for dysphagia in

adults with multiple sclerosis: A systematic review,’’ Dysphagia, vol. 31,
pp. 610–618, Oct. 2016.

[2] L. S. Tejedor, T. Skripuletz, M. Stangel, and V. Gudi, ‘‘Mesenchymal stem
cells require the peripheral immune system for immunomodulating effects
in animal models of multiple sclerosis,’’ Neural Regenerat. Res., vol. 11,
pp. 90–91, Jan. 2016.

VOLUME 4, 2016 7573



S.-H. Wang et al.: Biorthogonal Wavelet Transform, RBF Kernel Principal Component Analysis, and Logistic Regression

[3] T. D. Faizy et al., ‘‘Heterogeneity of multiple sclerosis lesions in multislice
myelin water imaging,’’ PLoS ONE, vol. 11, Mar. 2016, Art. no. e0151496.

[4] A. P. Kallaur et al., ‘‘Immune-inflammatory and oxidative and nitrosative
stress biomarkers of depression symptoms in subjects with multiple sclero-
sis: Increased peripheral inflammation but less acute neuroinflammation,’’
Molecular Neurobiol., vol. 53, no. 8, pp. 5191–5202, Oct. 2016.

[5] A. Lúcio et al., ‘‘Pelvic floor muscle training with and without electrical
stimulation in the treatment of lower urinary tract symptoms in women
with multiple sclerosis,’’ J. Wound Ostomy Continence Nurs., vol. 43,
pp. 414–419, Jul./Aug. 2016.

[6] N. Aghaei, S. Karbandi, M. A. H. Gorji, M. B. Golkhatmi, and B. Alizadeh,
‘‘Social support in relation to fatigue symptoms among patients with
multiple sclerosis,’’ Indian J. Palliative Care, vol. 22, pp. 163–167,
Apr./Jun. 2016.

[7] A. Manca et al., ‘‘Effect of contralateral strength training on muscle
weakness in people with multiple sclerosis: Proof-of-concept case series,’’
Phys. Therapy, vol. 96, pp. 828–838, Jun. 2016.

[8] A. Beer et al., ‘‘Tissue damage within normal appearing white matter in
early multiple sclerosis: Assessment by the ratio of T1-and T2-weighted
MR image intensity,’’ J. Neurol., vol. 263, pp. 1495–1502, Aug. 2016.

[9] I. de Kouchkovsky, E. Fieremans, L. Fleysher, J. Herbert, R. I. Grossman,
and M. Inglese, ‘‘Quantification of normal-appearing white matter tract
integrity in multiple sclerosis: A diffusion kurtosis imaging study,’’ J.
Neurol., vol. 263, pp. 1146–1155, Jun. 2016.

[10] Y. Zhang and L. Wu, ‘‘Classification of fruits using computer vision
and a multiclass support vector machine,’’ Sensors, vol. 12, no. 9,
pp. 12489–12505, 2012.

[11] C. Nguyen, W. C. Feng, and F. Liu, ‘‘Hotspot: Making computer vision
more effective for human video surveillance,’’ Inf. Visualizat., vol. 15,
pp. 273–285, Oct. 2016.

[12] S. Balochian, ‘‘Artificial intelligence and its applications,’’ Mathemat-
ical Problems in Engineering, vol. 2014, Apr. 2014, Art. no. 840491,
doi: 10.1155/2014/840491.

[13] J. G. Liu and H. Y. Wang, ‘‘Research on the computer vision imaging
techniques based on artificial intelligence,’’ in Proc. 3rd Int. Conf. Adv.
Soc. Sci., Humanities, Manage., Guangzhou, China, 2015, pp. 1180–1188.

[14] Y. Zhang and S.Wang, ‘‘Detection of Alzheimer’s disease by displacement
field and machine learning,’’ PeerJ, vol. 3, Sep. 2015, Art. no. e1251.

[15] N. V. K. Medathati, H. Neumann, G. S. Masson, and P. Kornprobst, ‘‘Bio-
inspired computer vision: Towards a synergistic approach of artificial and
biological vision,’’ Comput. Vis. Image Understand., vol. 150, pp. 1–30,
Sep. 2016.

[16] R. J. Friedman et al., ‘‘The diagnostic performance of expert dermoscopists
vs a computer-vision system on small-diameter melanomas,’’ Arch. Der-
matol., vol. 144, pp. 476–482, Apr. 2008.

[17] Y. Zhang, P. Agarwal, V. Bhatnagar, S. Balochian, and X. Zhang, ‘‘Swarm
intelligence and its applications 2014,’’ Sci. World J., vol. 2014, Jun. 2014,
Art. no. 204294.

[18] V. Murray, P. Rodriguez, andM. S. Pattichis, ‘‘Multiscale AM-FM demod-
ulation and image reconstruction methods with improved accuracy,’’ IEEE
Trans. Image Process., vol. 19, no. 5, pp. 1138–1152, May 2010.

[19] Y. Zhang, S. Wang, Z. Dong, P. Phillip, G. Ji, and J. Yang, ‘‘Pathologi-
cal brain detection in magnetic resonance imaging scanning by wavelet
entropy and hybridization of biogeography-based optimization and parti-
cle swarm optimization,’’ Prog. Electromagn. Res., vol. 152, pp. 41–58,
Mar. 2015.

[20] M. F. Siddiqui, A. W. Reza, and J. Kanesan, ‘‘An automated and intelligent
medical decision support system for brainMRI scans classification,’’ PLoS
ONE, vol. 10, Aug. 2015, Art. no. e0135875.

[21] D. R. Nayak, R. Dash, and B.Majhi, ‘‘BrainMR image classification using
two-dimensional discrete wavelet transform and AdaBoost with random
forests,’’ Neurocomputing, vol. 177, pp. 188–197, Feb. 2016.

[22] Y. Zhang, ‘‘Comparison of machine learning methods for stationary
wavelet entropy-based multiple sclerosis detection: Decision tree, k-
nearest neighbors, and support vector machine,’’ Simulation, vol. 92,
pp. 861–871, Sep. 2016.

[23] S. S. Negi and Y. S. Bhandari, ‘‘A hybrid approach to image enhancement
using contrast stretching on image sharpening and the analysis of various
cases arising using histogram,’’ in Proc. Recent Adv. Innov. Eng. (ICRAIE),
Jaipur, India, 2014, pp. 1–6.

[24] D. Barina, P. Musil, M. Musil, and P. Zemcik, ‘‘Single-loop approach
to 2-D wavelet lifting with JPEG 2000 compatibility,’’ in Proc. Int.
Symp. Comput. Archit. High Perform. Comput. Workshop (SBAC-PADW),
Florianópolis, Brazil, 2015, pp. 31–36.

[25] T. Çevik, A. M. A. Alshaykha, and N. Çevik, ‘‘Performance analysis of
GLCM-based classification on wavelet transform-compressed fingerprint
images,’’ inProc. 6th Int. Conf. Digit. Inf. Commun. Technol. Appl., Konya,
Turkey, 2016, pp. 131–135.

[26] D. R. Nayak, R. Dash, and B. Majhi, ‘‘Classification of brain MR images
using discrete wavelet transform and random forests,’’ in Proc. 5th Nat.
Conf. Comput. Vis., Pattern Recognit., Image Process. Graph., Patna, India,
2015, pp. 1–4.

[27] S. Wang et al., ‘‘Wavelet entropy and directed acyclic graph support vector
machine for detection of patients with unilateral hearing loss in MRI
scanning,’’ Frontiers Comput. Neurosci., vol. 10, Oct. 2016, Art. no. 160.

[28] Y.-D. Zhang et al., ‘‘Pathological brain detection in MRI scanning
by wavelet packet Tsallis entropy and fuzzy support vector machine,’’
SpringerPlus, vol. 4, Nov. 2015, Art. no. 716.

[29] S. Kadu, C. Naveen, V. R. Satpute, and A. G. Keskar, ‘‘Discrete wavelet
transform based video watermarking technique,’’ in Proc. Int. Conf.
Microelectron., Comput. Commun. (MicroCom), Durgapur, India, 2016,
pp. 6–11.

[30] Y. Zhang, ‘‘Preliminary research on abnormal brain detection by wavelet-
energy and quantum- behaved PSO,’’ Technol. Health Care, vol. 24,
pp. S641–S649, Apr. 2016.

[31] A. Chaiwachiragompol and N. Suwannata, ‘‘The features extraction of
infants cries by using discrete wavelet transform techniques,’’ in Proc. Int.
Elect. Eng. Congr., Amsterdam, The Netherlands, 2016, pp. 285–288.

[32] S. Wang et al., ‘‘Detection of dendritic spines using wavelet-based con-
ditional symmetric analysis and regularized morphological shared-weight
neural networks,’’ Comput. Math. Methods Med., vol. 2015, Sep. 2015,
Art. no. 454076, doi: 10.1155/2015/454076.

[33] R. Thanki andK. Borisagar, ‘‘Multibiometric template generation using CS
theory and discrete wavelet transform based fusion technique,’’ inProc. 5th
Nirma Univ. Int. Conf. Eng., Ahmedabad, India, 2015, pp. 143–149.

[34] S. Wang, X. Yang, Y. Zhang, P. Phillips, J. Yang, and T.-F. Yuan, ‘‘Iden-
tification of green, Oolong and black teas in China via wavelet packet
entropy and fuzzy support vector machine,’’ Entropy, vol. 17, no. 10,
pp. 6663–6682, 2015.

[35] M. Schiurunack, S. Nguyen, and P. Mercorelli, ‘‘Anatomy of HaarWavelet
Filter and Its Implementation for Signal Processing,’’ IFAC Papers Online,
vol. 49, no. 6, pp. 99–104, 2016.

[36] A. K. Abbas, R. Bassam, and R. M. Kasim, ‘‘Mitral regurgitation
PCG-signal classification based on adaptive Db-wavelet,’’ in Proc. 4th
Kuala Lumpur Int. Conf. Biomed. Eng., Kuala Lumpur, Malaysia, 2008,
pp. 212–216.

[37] P. M. K. Prasad, D. Y. V. Prasad, and G. S. Rao, ‘‘Performance analysis of
orthogonal and biorthogonal wavelets for edge detection of X-ray images,’’
in Proc. 4th Int. Conf. Recent Trends Comput. Sci. Eng., Amsterdam,
The Netherlands, 2016, pp. 116–121.

[38] Y. Zhang, Z. Dong, S. Wang, G. Ji, and J. Yang, ‘‘Preclinical diagnosis of
magnetic resonance (MR) brain images via discrete wavelet packet trans-
form with Tsallis entropy and generalized eigenvalue proximal support
vectormachine (GEPSVM),’’Entropy, vol. 17, no. 4, pp. 1795–1813, 2015.

[39] M. García, J. Ródenas, R. Alcaraz, and J. J. Rieta, ‘‘Application of the
relative wavelet energy to heart rate independent detection of atrial fib-
rillation,’’ Comput. Methods Programs Biomed., vol. 131, pp. 157–168,
Jul. 2016.

[40] G. Yang et al., ‘‘Automated classification of brain images using wavelet-
energy and biogeography-based optimization,’’ Multimedia Tools Appl.,
pp. 1–17, May 2015, doi: 10.1007/s11042-015-2649-7.

[41] J. D. McEwen, P. Vandergheynst, and Y. Wiaux, ‘‘On the computation
of directional scale-discretized wavelet transforms on the sphere,’’ Proc.
SPIE, vol. 8858, Sep. 2013, Art. no. 88580I.

[42] Y. Zhang, ‘‘Magnetic resonance brain image classification via station-
ary wavelet transform and generalized eigenvalue proximal support vec-
tor machine,’’ J. Med. Imag. Health Informat., vol. 5, pp. 1395–1403,
Nov. 2015.

[43] M. Zimbres, R. A. Batista, and E. Kemp, ‘‘Using spherical wavelets to
search for magnetically-induced alignment in the arrival directions of
ultra-high energy cosmic rays,’’ Astroparticle Phys., vol. 54, pp. 54–60,
Feb. 2014.

[44] Z. Dong, P. Phillips, G. Ji, and J. Yang, ‘‘Exponential wavelet iterative
shrinkage thresholding algorithm for compressed sensing magnetic reso-
nance imaging,’’ Inf. Sci., vol. 322, pp. 115–132, Nov. 2015.

[45] S.Wang, S. Lu, Z. Dong, J. Yang, M. Yang, and Y. Zhang, ‘‘Dual-tree com-
plex wavelet transform and twin support vector machine for pathological
brain detection,’’ Appl. Sciences, vol. 6, no. 6, 2016, Art. no. 169.

7574 VOLUME 4, 2016



S.-H. Wang et al.: Biorthogonal Wavelet Transform, RBF Kernel Principal Component Analysis, and Logistic Regression

[46] Y. Zhang and L. Wu, ‘‘An MR brain images classifier via principal com-
ponent analysis and kernel support vector machine,’’ Prog. Electromagn.
Res., vol. 130, pp. 369–388, Sep. 2012.

[47] Y. Ikemiya, K. Itoyama, andK.Yoshii, ‘‘Singing voice separation and vocal
F0 estimation based on mutual combination of robust principal component
analysis and subharmonic summation,’’ IEEE/ACM Trans. Audio Speech
Lang. Process., vol. 24, no. 11, pp. 2084–2095, Nov. 2016.

[48] M. R. Mowla, S. C. Ng, M. S. A. Zilany, and R. Paramesran, ‘‘Single-trial
evoked potential estimation using iterative principal component analysis,’’
IEEE Sensors J., vol. 16, no. 18, pp. 6955–6960, Sep. 2016.

[49] D. Feng, M. Xiao, Y. Liu, H. Song, Z. Yang, and L. Zhang, ‘‘A kernel
principal component analysis–based degradation model and remaining
useful life estimation for the turbofan engine,’’ Adv. Mech. Eng., vol. 8,
no. 5, May 2016, Art. no. 1687814016650169.

[50] O. Taouali, I. Jaffel, H. Lahdhiri, M. F. Harkat, and H. Messaoud, ‘‘New
fault detection method based on reduced kernel principal component anal-
ysis (RKPCA),’’ Int. J. Adv. Manuf. Technol., vol. 85, pp. 1547–1552,
Jul. 2016.

[51] A.A. Joseph, T. Tokumoto, and S. Ozawa, ‘‘Online feature extraction based
on accelerated kernel principal component analysis for data stream,’’ Evol.
Syst., vol. 7, pp. 15–27, Mar. 2016.

[52] C. Thrane, ‘‘Norwegian students’ package trip propensity in 2007
and 2014—A logistic regression analysis,’’ Tourism Econ., vol. 22,
pp. 1141–1150, Oct. 2016.

[53] F. M. Ali et al., ‘‘Ordinal logistic regression andMonte Carlo simulation in
the mapping of DLQI scores to EQ-5D utility values,’’ J. Invest. Dermatol.,
vol. 136, pp. S163–S163, Sep. 2016.

[54] N. Kyurkchiev and S. Markov, ‘‘On the Hausdorff distance between the
Heaviside step function and Verhulst logistic function,’’ J. Math. Chem.,
vol. 54, pp. 109–119, Jan. 2016.

[55] Y. Zhang, P. Phillips, S. Wang, G. Ji, J. Yang, and J. Wu, ‘‘Fruit clas-
sification by biogeography-based optimization and feedforward neural
network,’’ Expert Syst., vol. 33, no. 3, pp. 239–253, 2016.

[56] F. Erlandsson, P. Bródka, A. Borg, and H. Johnson, ‘‘Finding influential
users in social media using association rule learning,’’ Entropy, vol. 18,
May 2016, Art. no. 164.

[57] Y. Zhang, S. Wang, P. Phillips, and G. Ji, ‘‘Binary PSOwith mutation oper-
ator for feature selection using decision tree applied to spam detection,’’
Knowl.-Based Syst., vol. 64, pp. 22–31, Jul. 2014.

[58] J. J. Dabrowski, C. Beyers, and J. P. de Villiers, ‘‘Systemic banking crisis
early warning systems using dynamic Bayesian networks,’’ Expert Syst.
Appl., vol. 62, pp. 225–242, Nov. 2016.

[59] Y.-D. Zhang, S. Chen, S.-H. Wang, J.-F. Yang, and P. Phillips, ‘‘Magnetic
resonance brain image classification based on weighted-type fractional
Fourier transform and nonparallel support vector machine,’’ Int. J. Imag.
Syst. Technol., vol. 25, pp. 317–327, Nov. 2015.

[60] B. Tegelund, H. Son, and D. Lee, ‘‘A task-oriented service personalization
scheme for smart environments using reinforcement learning,’’ in Proc.
Int. Conf. Pervas. Comput. Commun. Workshops, Sydney, NSW, Australia,
2016, pp. 6–11.

[61] S. Wang, ‘‘Morphological analysis of dendrites and spines by hybridiza-
tion of ridge detection with twin support vector machine,’’ PeerJ, vol. 4,
Jul. 2016, Art. no. e2207.

[62] S. Lu and Z. Lu, ‘‘A pathological brain detection system based on ker-
nel based ELM,’’ Multimedia Tools Appl., pp. 1–14, May 2016, doi:
10.1007/s11042-016-3559-z.

[63] D. R. Nayak, R. Dash, B. Majhi, and J. Mohammed, ‘‘Non-linear cellular
automata based edge detector for optical character images,’’ Simulation,
vol. 92, pp. 849–859, Aug. 2016.

[64] P. Sun, ‘‘Pathological brain detection based on wavelet entropy and Hu
moment invariants,’’ Bio-Medical Mater. Eng., vol. 26, pp. 1283–1290,
2015.

[65] Y. Chen et al., ‘‘CT metal artifact reduction method based on improved
image segmentation and sinogram in-painting,’’ Math. Problems Eng.,
vol. 2012, Jun. 2012, Art. no. 786281.

[66] Y. Zhang et al., ‘‘Image processing methods to elucidate spatial character-
istics of retinal microglia after optic nerve transection,’’ Sci. Rep., vol. 6,
Feb. 2016, Art. no. 21816.

[67] Y. Chen et al., ‘‘Bayesian statistical reconstruction for low-dose X-ray
computed tomography using an adaptive-weighting nonlocal prior,’’ Com-
put. Med. Imag. Graph., vol. 33, pp. 495–500, Oct. 2009.

[68] Y. Chen et al., ‘‘Curve-like structure extraction using minimal path prop-
agation with backtracking,’’ IEEE Trans. Image Process., vol. 25, no. 2,
pp. 988–1003, Feb. 2016.

SHUI-HUA WANG received the B.S. degree from
Southeast University in 2008, the M.S. degree
from The City University of New York in 2012,
and the Ph.D. degree from Nanjing University in
2016. She is currently an Assistant Professor with
Nanjing Normal University.

TIAN-MING ZHAN received the Ph.D. degree in
pattern recognition and intelligence system from
the Nanjing University of Science and Technol-
ogy, Nanjing, China, in 2013. He is currently an
Associate Professor with the school of technol-
ogy, Nanjing Audit University. His research inter-
ests include in medical imaging processing and
analysis.

YI CHEN received the Ph.D. degree from the
School of Computer Science and Technology,
Nanjing University of Science and Technology,
in 2012. His current research interests include
pattern recognition, compute vision, and image
processing.

YIN ZHANG was a Post-Doctoral Fellow with
the School of Computer Science and Technology,
Huazhong University of Science and Technology,
China. He is currently an Assistant Professor with
the School of Information and Safety Engineer-
ing, Zhongnan University of Economics and Law,
China. He has authored over 30 prestigious con-
ference and journal papers. His research interests
include data analysis, data mining, healthcare big
data, and social network. He serves as a Guest

Editor of the IEEE SEnsors JOurnal and the New Review of Hypermedia and
Multimedia. He also served as the TPC Co-Chair of the CloudComp 2015
and the Local Chair of the TRIDENTCOM 2014. He is the Vice-Chair of the
IEEE Computer Society Big Data STC.

MING YANG received the M.D. degree from
Southeast University in 2011. She is currently a
Radiologist with Nanjing Children’s Hospital. Her
research interest is fMRI.

VOLUME 4, 2016 7575



S.-H. Wang et al.: Biorthogonal Wavelet Transform, RBF Kernel Principal Component Analysis, and Logistic Regression

HUIMIN LU received the B.S. degree in elec-
tronics information science and technology from
Yangzhou University in 2008, the M.S. degree
in electrical engineering from the Kyushu Insti-
tute of Technology, the M.S. degree in electrical
engineering from Yangzhou University in 2011,
and the Ph.D. degree in electrical engineering
from the Kyushu Institute of Technology in 2014.
He is currently an Associate Professor with the
Kyushu Institute of Technology and also serves

as an Excellent Young Researcher of MEXT-Japan. His current research
interests include computer vision, robotics, artificial intelligence, and ocean
observing.

HAINAN WANG received the B.S. degree from
Yancheng Normal University in 2014. She is
currently pursuing the master’s degree with the
School of Computer Science and Technology,
Nanjing Normal University. She is also with the
Key Laboratory of Symbolic Computation and
Knowledge Engineering of the Ministry of Educa-
tion, Jilin University. Her research interest is image
processing and machine learning.

BIN LIU received the M.D. degree and the mas-
ter’s degree of Medical Imaging from Southeast
University, Nanjing, China, in 1990 and 2004,
respectively. His research interests focus on Func-
tional MRI.

PREETHA PHILLIPS received the B.Sc. degree
from Shepherd University in 2016. She is currently
pursuing the Doctor of Osteopathic Medicine
degree with the West Virginia School of Osteo-
pathic Medicine. She has conducted research in
Shepherd University in investigating the effects
of Roundup on the sex hormones in the aquatic
snail, Lymnaea palustris. She received an hon-
orable mention for a poster presentation for this
research in the West Virginia Academy of Science

that took place in Marshall University in 2016. She has also conducted
research on using magnetic resonance spectroscopy in diagnosing panic
disorder Columbia PresbyterianMedical Center. She has also helped conduct
research analyzing pain mechanisms in rats in Stony Brook University.

7576 VOLUME 4, 2016


