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ABSTRACT The widespread use of mobile networking devices, such as smart phones and tablets, has
substantially increased the number of nodes in the operational networks. These devices often suffer from the
lack of power and bandwidth. Hence, we have to optimize their message routing for the sake of maximizing
their capabilities. However, the optimal routing typically relies on a delicate balance of diverse and often
conflicting objectives, such as the route’s delay and power consumption. The network design also has to
consider the nodes’ user-centric social behavior. Hence, the employment of socially aware load balancing
becomes imperative for avoiding the potential formation of bottlenecks in the network’s packet-flow. In this
paper, we propose a novel algorithm, referred to as the multi-objective decomposition quantum optimiza-
tion (MODQO) algorithm, which exploits the quantum parallelism to its full potential by reducing the
database correlations for performing multi-objective routing optimization, while at the same time balancing
the teletraffic load among the nodes without imposing a substantial degradation on the network’s delay and
power consumption. Furthermore, we introduce a novel socially aware load balancing metric, namely, the
normalized entropy of the normalized composite betweenness of the associated socially aware network,
for striking a better tradeoff between the network’s delay and power consumption. We analytically prove
that the MODQO algorithm achieves the full-search based accuracy at a significantly reduced complexity,
which is several orders of magnitude lower than that of the full search. Finally, we compare the MODQO
algorithm to the classic non-dominated sort genetic algorithm II evolutionary algorithm and demonstrate that
the MODQO succeeds in halving the network’s average delay, while simultaneously reducing the network’s
average power consumption by 6 dB without increasing the computational complexity.

INDEX TERMS DTNs, routing, load balancing, quantum computing, NDQIO, BBHT-QSA, DHA, Grover’s
QSA, NSGA-II.
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I. INTRODUCTION
Back in 1991, Weiser [1] unveiled his vision for ubiqui-
tous computing, where most aspects of human life would
be supported by portable computing units, which he termed
as ‘‘pads’’. Twenty five years later, this vision has come to
fruition, since indeed our daily lives rely on ‘‘pads’’, which
are commonly known as tablets and smart phones. More
specifically, for the latter, there is a prediction by eMarketer1

that their market penetration will surpass 2 billion mark in
2016, accounting for about 30% of the world’s population.
Additionally, based on a recent report conducted by Share-
holic,2 31.24% of the overall network traffic in 2014 has
been generated by Online Social Networks (OSN), such as
Facebook and Pinterest, while having an increase of about
10% compared to the previous year. Additionally, from a
slightly different perspective, namely from that of the Internet
of Things (IoT) [2], networked devices perpetually proliferate
[3], [4] and they also tend to exhibit social behavior [5], [6].

Explicitly, the nodes’ social behavior combined with their
increased number results in a paradigm shift as to how the
networks are designed and maintained [7], leading to encap-
sulating Social Network Analysis (SNA) [8] tools into the
network’s design. From this perspective, networks, which are
often comprised by remote nodes having limited power, ought
to configure their end-to-end links for satisfying diverse and
often coflicting Quality-of-Service (QoS) criteria, such as the
Bit-Error-Ratio (BER), the Packet-Loss-Ratio (PLR), total
power dissipation or the overall delay. This requires the joint
optimization of the aforementioned QoS criteria. As a further
aspiration, Boldrini et al. pointed out in [9] that optimal mul-
tihop routing is more beneficial for socially aware networks
than for the socially oblivious ones.

The authors of [10]–[16] advocated routing schemes,
where both the specific QoS criteria and SNA-aided
design are considered. To elaborate further,
Bulut and Szymanski [13] proposed a routing scheme in the
context of Delay-Tolerant Networks (DTN) for maximizing
the associated routing efficiency by grouping the Mobile
Users (MU) into clusters based on their contact history. Fur-
thermore, Hui et al. [15] conceived a novel algorithm, namely

1http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-
Smartphones-by-2016/1011694

2https://blog.shareaholic.com/social-media-traffic-trends-01-2015/
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the so-called BUBBLE algorithm, which exploits the social
networking metrics of the centrality [17] routinely used in the
community detection [18] for the sake of performing socially
aware multi-cast routing in the context of DTNs. In a similar
context, namely that of Vehicular Social Networks (VSN),
Xia et al. [16] employed Bee Colony Optimization (BCO)
in the form of the so-called BEEINFO packet forwarding
scheme for the sake of the sake of maximizing the associated
packet delivery ratio.

Apart from the above-mentioned routing schemes con-
sidering SNA-related metrics, some contributions utilize the
structure of a twin-layer composite network [19], where the
top layer characterizes the users’ social relationships, hence
it is often referred to as an Online Social Network (OSN).
By contrast, the bottom one is constituted by the techno-
logical network. To elaborate further, in [20], each MU is
assumed to communicate with its contacts with a probability
that is inversely proportional to their respective geographic
distance [21], while the technological network is relies on a
grid-based network. The same OSN layer has been deployed
in [22] in conjunction with a mobile multi-cast network and
a hybrid routing scheme has been proposed for the sake of
improving the content dissemination among members of the
same community. Additionally, epidemic routing [23] has
been deployed [24], [25] in this specific cross-layer design,
where the nodes allow their messages to ‘‘flood’’ their newly
discovered contacts by mimicking the spread of a disease in
a community. This scheme has a low complexity and a low
delay, but it tends to use an excessive amount of resources,
because multiple copies of the packets are allowed to flood
the network.

Apart from optimal routing, the new socially aware design
paradigm has to account for the nodes’ social selfishness [26].
Explicitly, the nodes’ social selfishness stems from their
tendency to select specific routes for the sake of optimiz-
ing a specific utility, while being oblivious to the potential
degradation of the overall network’s performance inflicted
by their particular choice [27], [28]. Naturally, the nodes’
selfish route selection leads to the creation of bottlenecks
in the network flow, especially for the case of nodes hav-
ing a high centrality. This brings the requires socially-aware
load balancing [29]–[31].

For the sake of mitigating the effect of social selfish-
ness as well as the potential degradation [32] of the routing
efficiency metrics, a multi-objective optimization approach
can be employed by relying on the concept of Pareto-
optimality [33] borrowed from socially-oblivious treatises.3

Under this perspective, each pair of source and destination
nodes would have a set of optimal routes, in which none of
the parameters can be further improved without degrading the
rest of the optimization objectives. Explicitly, this set pro-
vides a compelling trade-off among the optimization objec-
tives. Nevertheless, identifying this set of Pareto-optimal

3To the authors’ knowledge, there does not exist any treatise advocating
the employment of Pareto-optimal routing.

solutions imposes an increased complexity, when compared
to single component optimization, owing the fact that the
Pareto-optimality problems are classified as NP-hard. To mit-
igate the increased complexity, evolutionary heuristic meth-
ods have been employed in [32] and [34]–[36] by relying on
near-optimal accuracy for improving the performance of the
associated socially-oblivious networking.

The recent advances in quantum computation [37]–[43]
and in quantum information processing [44]–[46] provides
us with an attractive framework, offering a significant com-
plexity reduction by exploiting the concept of Quantum
Parallelism (QP) [47]. In particular, Grover [37] proposed
a Quantum Search Algorithm (QSA), which is capable of
identifying the value sought in a database having uncor-
related entries by imposing a complexity on the order of
O(
√
N ), provided that the number of solutions4 is known

a priori. Based on Grover’s QSA, comprehensive studies
have been carried out in the context of quantum-assisted
socially-oblivious multi-objective routing [42], [43]. In par-
ticular, the so-called Non-Dominated Quantum Optimization
(NDQO) algorithm was proposed in [42] for the routing pro-
cess in Self-Organizing Networks (SONs) for jointly optimiz-
ing the route’s overall delay, its power dissipation and its BER
at a significant complexity reduction with the advent of QP.
An improved version of the NDQO algorithm, applied in the
context of Wireless Multihop Networks (WMHNs), has been
advocated in [43], where the so-calledNon-DominatedQuan-
tum Iterative Optimization (NDQIO) algorithm has been
shown to achieve optimal accuracy at the expense of an
even further complexity reduction compared to the NDQIO
algorithm by exploiting the hybrid synergies between QP and
Hardware Parallelism5 (HP).

The NDQIO algorithm provides us with some clear design
guidelines for the sake of addressing the joint multi-objective
routing and load balancing problem of socially-aware
networks. Explicitly, the hybrid framework exploiting the
synergy between the QP and the HP provides substantial
complexity reduction by a factor of O(K

√
N ) [43], where

the factor K corresponds to the number of parallel indepen-
dent quantum processes stemming from the HP, while N is
the database size. Nevertheless, as Zalka [48] pointed out,
Grover’s QSA and inherently all the Grover-based QSAs,
such as the BBHT-QSA, the DHA and the NDQIO algorithm,
are optimal in terms of their complexity reduction, as long as
the database entries are uncorrelated. Naturally, Zalka’s proof
of Grover’s QSA optimality provides us with a further design
consideration, namely the database correlation exploitation,
as portrayed in Fig. 1. We note that the actual complexity
reduction offered by the database correlation exploitation

4We define as a solution the database entries having the value sought by
the search process.

5We define as Hardware Parallelism the parallel activation of K indepen-
dent resource blocks supported by a specific hardware architecture. This type
of parallelism should not be confounded with the QP, where the ‘‘carrier’’ of
parallelism is the capability of quantum systems to be in the superposition of
their basis states.
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FIGURE 1. Eligible techniques of reducing the computational complexity.
Explicitly, QP is capable of reducing the number of database calls from N
on the order of O(

√
N), where N is the database length, while HP exhibits

a complexity reduction on the order of O(K ), where K denotes the
number of independent parallel processes. Finally, although the database
correlation exploitation is problem-dependent and its complexity
reduction cannot be readily quantified, it tends to rearrange the database
into an uncorrelated one, substantially reducing the complexity imposed
by both QP and HP, based on Zalka’s [48] proof of Grover’s QSA
optimality.

strictly depends on the optimization problem and, thus, its
achievable complexity reduction order is denoted by O(?) in
Fig. 1. Nevertheless, we can view this method as a means of
transforming the database into a series of shorter uncorrelated
ones, thus, effectively reducing the database length N for
pushing the complexity reduction offered by the hybrid HP
and QP framework to its full potential.

Based on these design considerations, our contributions are
summarized as follows:

1) We propose a quantum-assisted multi-objective opti-
mization algorithm, namely the Mutli-Objective
Decomposition-based Quantum Optimization
(MODQO) algorithm, which relies on a novel optimal
decomposition framework for jointly optimizing the
routing and performing load balancing in socially-
aware twin-layered networks.

2) We develop a novel framework for decomposing the
joint multi-objective routing and load balancing prob-
lem into a series of low-complexity sub-problems and
we prove that the Optimal Pareto Front of the decom-
posed problem is identical to the Optimal Pareto Front
of its composite counterpart.

3) We propose a new metric for characterizing the distri-
bution of the tele-traffic load, namely the normalized
entropy H̄ of the respective distribution, which circum-
vents the biasing towards the minimum delay solution
imposed by relying on the use of the standard deviation
of the respective distribution.

4) We analytically characterize the complexity imposed
by the MODQO algorithm, which is on the order

of O(
√
N ) and O(N

2N 2
MC

MR ) for networks having NMR

routers and NMC users in the best-case and the worst-
case scenarios, respectively, down from O(N 2N 2

MC )
imposed by the exhaustive search, with N � NMR
being the total number of Hamiltonian routes between
two specific users. Additionally, we demonstrate that
the average complexity of the MODQO algorithm is
multiple orders of magnitude lower than that of the
exhaustive search, when considering realistic network
sizes.

5) Finally, we compare the MODQO accuracy to that
of the Non-dominated Sort Genetic Algorithm II
(NSGA-II) [49] operating at an identical computa-
tional complexity and demonstrate that the MODQO
algorithm is capable of improving both the delay and
power consumption by at least that of two-hop dura-
tions and at least 4 dB, respectively, for networks hav-
ing 10 mesh routers.

The rest of this paper is organized as follows. In Sec. II
we will present the twin-layer network model considered and
then we will define the joint multi-objective routing and load
balancing problem. In Sec. III, we will provide a brief intro-
duction to the quantum search algorithms used. Subsequently,
our quantum-assisted approach to solving the joint routing
and load balancing problem is presented in Sec. IV. Finally,
in Sec. V we will provide the respective simulation results,
followed by our conclusions in Sec. VI. The paper’s structure
is portrayed in Fig. 2.

FIGURE 2. The structure of this paper.

Notation: Throughout this paper, the lower (upper)
boldface letters represent vectors (matrices), while the
superscripts ()† and ()T denote the complex conjugate
and simple matrix or vector transposition, respectively.
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Moreover, the upper case italic letters denote the transfer
matrices of quantum unitary operators. A single subscript
in the quantum register state is used for the global quantum
registers of the quantum circuit, whereas two subscripts, sep-
arated by comma, are used for the local quantum registers.
Additionally, in the discussion of the algorithms the notation
‘‘Step X .Y ’’ is used, in order to refer to the Y -th step of the
X -th algorithm.

FIGURE 3. (a) Exemplified topology with NMC = 4 MCs and NMR = 4 MRs
for the twin-layer network considered and (b) presentation of the two
layers of (a). In the OSN layer the arrows among the MCs manifest their
friendship status, whereas in the WMN layer the resective arrows
correspond to links satisfying the QoS criteria. The gray-colored arrows
denote the association of each MC with a specific MR.

II. NETWORK SPECIFICATIONS
We have considered a twin-layer network, which is shown
in Fig. 3. To elaborate further, the network is comprised by
a set of NMC users, which from now on will be referred to
aS Mesh Clients (MCs) and by a set of NMR wireless Mesh
Routers (MRs). The latter form the backbone of a Wireless
Mesh Network (WMN), which supports the communications
among the MCs. The WMN constitutes the bottom layer of
our network. On the other hand, the MCs are assumed to
exhibit a specific social behavior and, hence, they form an
OSN, which incorporates the upper layer of our network.

The locations of both the MCs and of the MRs are
assumed to be random, obeying a uniform distribution within
a (100× 100) m2 square block, which is the network’s cov-
erage area we considered for this scenario, for the sake of
approaching a the fully-connected scenario for in the WMN
layer. Additionally, each of the MCs is exclusively served by
its closest MR, as denoted by the gray arrows in Fig 3.

As far as the packet dissemination process is concerned, we
have assumed that the source and destination nodes belong
exclusively to the set of MCs. Therefore, the MRs of the
WMN layer can only act as intermediate relays forwarding
the packets of the source MC to the destination MC. Further-
more, the communication between MCs is only feasible via
MRs. For instance, let us consider the case, whereMC1 has to
send a packet toMC3. Despite the fact that in Fig. 3aMC1 and
MC3 are pretty close to each other, their communication can
only be realized through MR1 and MR3. Hence, the shortest

TABLE 1. Twin layer network parameters.

route in terms of the number of hops that the packet can follow
is the route MC1 →MR1 →MR3 →MC3. We note that our
twin-layer network parameters are summarized in Table 1.

Having defined the basic topology of the twin-layer net-
work considered in our case study, let us now proceed with a
brief description of the two layers comprising the network.

A. OSN LAYER
As we have mentioned in the previous subsection, the MCs
exhibit social behavior increasing the probability of their
communication with a specific set of other MCs. This set
of MCs is often referred to in WSN terminology as friends.
Hence, the MCs’ friendship status can be modeled by the
binary friendship matrix FMC that defines the set of MCs
being friends to a specific MC. Naturally, the friendship
matrixFMC is symmetric, with all the elements of its diagonal
being equal to zero. Equivalently, since eachMC is associated
with a specific MR, a binary friendship matrix FMR may be
defined in the context of MR as a cross-layer metric. The
elementsFMR,ij of the latter matrix indicate whether MRi and
MRj are associated with a pair of MCs having a friendship
relationship. We note that the FMR matrix is also symmetric;
however, its diagonal elements may not be strictly equal to
zero, corresponding the scenario where two friendly MCs are
associated with the same MR.

As for generating the FMC matrix, we have utilized the
well-studied social relationship of the Karate Club for the
sake of practicality, which was proposed by Zachary [50]
and is portrayed in Fig 4. To elaborate further, the MCs are
randomly generated similarly to the members of the Karate
Club, while the sole constraint imposed is that of having a
connected social graph for the sake of avoiding the potential
isolation of certain MCs. In this way, packet dissemination
emerging from a specific MC to the rest of the MCs is
enabled, regardless of whether they have a friendship rela-
tionship by forwarding a packet in a friend-by-friend basis.
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FIGURE 4. Complete karate club social relationship [50] used for
determining the social relationship of the MCs in the OSN layer.

As mentioned in the introduction, the social behavior of
the MCs provides us with the capability of employing SNA
tools for analyzing the performance of socially-aware net-
works. In fact, the betweenness centrality Bsinmetric has been
proposed by Freeman in [51] for quantifying the information
flow of each node MRk of the WMNs. In this context, each
node has been considered to have a social friendship with the
specific nodes it can reliably communicate with using a single
hop. The betweenness centralitymetric actually quantifies the
usage of each node MRk as an intermediate relay. Explicitly,
the betweenness centrality Bsin is defined as [51]:

Bsin(MRk ) =
M∑
i = 1
i 6= k

M∑
j = 1
j 6= i, k

gMRi,MRj (MRk )

gMRi,MRj
, (1)

where gMRi,MRj (MRk ) represents the number of times the
node MRk is involved in the shortest routes - in terms of the
number of hops - spanning from the node MRi to the node
MRj, while gMRi,MRj denotes the number of the optimal routes
andM corresponds to the total number of MRs. We note that
the normalized betweenness centrality B̄sin(MRk ), defined in
Eq. (2), corresponds to the probability of MRk being used as
a relay and it is formulated as:

B̄sin(MRk ) = Bsin(MRk )/
M∑
i=1

Bsin(MRi). (2)

We can adapt the betweenness centrality to the context
of twin-layer networks by defining the so-called composite
betweenness centrality. For the later, the friendship relation-
ship is defined in a rather generic manner. To elaborate fur-
ther, since the links between MCs that share a friendship are
established on a exclusive basis, the composite betweenness
centrality calculation is restricted to these specific routes.

Therefore, the composite betweenness centrality Bcom(MRk )
is defined as [52]

Bcom(MRk ) =
NMC∑
i=1

NMC∑
j = 1
j 6= i

gMCi,MCj (MRk )

gMCi,MCj
FMCi,MCj , (3)

where FMCi,MCj denotes the friendship relationship between
MCi as well as MCj and it is equal to the element of the i-th
row and the j-th column of the FMC matrix. Additionally, the
term gMCi,MCj (MRk ) corresponds to the number of optimal
routes betweenMCi andMCj involvingMRk , while gMCi,MCj
is the total number of optimal routes for the same source and
destination pair. Equivalently to the normalized betweenness
centrality, the normalized composite betweenness centrality
B̄com(MRk ) quantifies the probability of a specificMRk being
used as an intermediate relay, in the context of the socially-
aware network considered. The latter metric is defined as:

B̄com(MRk ) = Bcom(MRk )/
M∑
i=1

Bcom(MRi). (4)

The vector B̄com contains the probability distribution of
the specific MRs being used as intermediate relays. There-
fore, instead of optimizing a specific parameter, such as the
sum-rate considered in [53], we can readily manipulate this
distribution by selecting the appropriate routes. To guar-
antee fairness in terms of the forwarded tele-traffic load
amongst the MRs, we will consider to be the desired set of
route-solutions those that result in the normalized composite
betweenness B̄com approaching the uniform distribution.

A direct approach of equally distributing the relayed load
amongst the MRs would be to minimize the standard devi-
ation σB̄com of the normalized composite betweenness. Nev-
ertheless, there exist cases, where none of the active routes
utilizes intermediate MRs, which results in an all-zero nor-
malized composite betweenness distribution, i.e. we have
B̄com(MRk ) = 0, ∀k ∈ {1, . . . ,NMR}. This kind of distri-
bution yields a standard deviation equal to σB̄com = 0, which
is optimal; however, these route-solutions often exhibit poor
performance in terms of their power consumption or BER.

Therefore we will propose a novel metric, namely the
normalized entropy H̄ (B̄com) of the normalized composite
betweenness, which is defined as follows:

H̄ (B̄com) =
H (B̄com)
log2(NMR)

, (5)

where H (B̄com) corresponds to the Shannonian entropy,
which is defined as follows [54]:

H (B̄com) =
NMR∑
k=1

B̄com(MRk ) log2[B̄com(MRk )]. (6)

We note that the normalization factor of Eq. (5) is used
to make the normalized entropy value independent of the
number of MRs, NMR and bounds its value to the range
[0, 1]. Explicitly, the entropy of a distribution can be viewed
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as a metric of proximity of a specific distribution to the
uniform one. This could be justified by the fact that the
entropy of a specific distribution is inversely proportional to
the Kullback-Leibler divergence DKL(B̄com||U ) [55], where
U denotes the uniform distribution of NMR events. This is
formally expressed as follows [56]:

H (B̄com) = log2(NMR)− DKL(B̄com||U ), (7)

where the Kullback-Leibler divergence DKL(B̄com||U ) is
defined as [56]:

DKL(B̄com||U ) =
NMR∑
k=1

B̄com(MRk ) log2

[
B̄com(MRk )
U (MRk )

]
. (8)

Explicitly, it has been proven by Hobson [57] that the
Kullback-Leibler divergence constitutes an appropriate met-
ric of the difference between two different distributions.
Hence, based on Eq. (8) the value of the divergence
for the distributions B̄com and U is bound to the range
[0, log2(NMR)]. The upper bound of this region denotes com-
plete divergence of the examined distributions, while its lower
bound yields a perfect convergence of the two distributions.
This can equivalently be translated into normalized entropy
H̄ (B̄com) terms, where the perfect matching of the normalized
composite betweenness distribution and the uniform one is
achieved, when we have H̄ (B̄com) = 1, whereas they are
uncorrelated when H̄ (B̄com) = 0. This metric circumvents the
problem of the all-zero normalized composite betweenness
distribution, since in this case its normalized entropy is equal
to H̄ (B̄com) = 0. Therefore, efficient load balancing relies
upon the maximization of the normalized entropy, leading
to the optimization problem in terms of the active routes S
formulated as:

argmax
∀S

H̄
[
B̄com(S)

]
. (9)

Observe that the optimization problem of Eq. (9) is uncon-
strained, and hence it does not take into account any other
QoS criteria, such as the network delay or power consump-
tion. This results in the route-solutions defined by Eq. (9) that
either exhibit excessive delay or excessive power consump-
tion or cannot be established at all owning to a maximum
transmit power violation. In fact, the aforementioned QoS
criteria, which stem from theWMN layer, are presented in the
next subsection. From a cross-layer optimization perspective,
they will be encapsulated in Eq. (9) in the form of a set of con-
straints, for the sake of guaranteeing an optimal performance
in terms of the QoS criteria considered.

B. WMN LAYER
As mentioned at the beginning of this Section, the WMN
layer is constituted by that specific set of the MRs, which
facilitate communications among the MCs by forwarding the
respective packets, as portrayed in the bottom layer of Fig. 3.
Their locations are random, which is typical for an ad hoc
deployment, but then are considered to be stationary. By con-
trast the MCs are mobile. Additionally, a rather strong Line-
of-Sight (LoS) component [58] is assumed to be encountered

by each MR to MR link and, thus, only the link’s path-loss
is taken into account. The path-loss Li,j for a link between
MRi andMRj is calculated using the classicPath-LossModel,
which is formally formulated as [59]:

Li,j ≡
Pti,j
Pri,j
= L0

(
di,j
d0

)α
, (10)

where α corresponds to the path-loss exponent. Explicitly
we set α = 3, where di,j is the Euclidean distance between
MRi and MRj, while L0 denotes the reference path-loss at
the reference distance d0 = 1 m and Pri,j and Pti,j denote
the transmitted and received power, respectively. The refer-
ence path-loss L0 is quantified using the free-space path-loss
formula [58] of:

L0 =
(
4πd0fc
c

)2

, (11)

where fc is the carrier frequency, which is set to fc = 2.4 GHz
and c corresponds to the speed of light.

As far as the forwarding scheme is concerned, we have
utilized theDecode-and-Forward (DF) scheme [42], [60] due
to the scheme’s capability of encapsulating the routing infor-
mation into the packet header. In this context, the modulation
scheme adopted was QPSK [59]. As for the transmission
environment, the links among the MRs are subjected to only
Additive White Gaussian Noise (AWGN), while the links
between the MCs and their associated MRs are established
for transmission over Rayleigh Fading channels [58]. Addi-
tionally, we have adopted an adaptive power control scheme,
where each link, either between two MRs or between MCs
and their associated MRs, can be successfully established
as long as the link’s Bit Error Ratio (BER) is lower than a
certain threshold Pthe . This constraint is imposed for the sake
of guaranteeing that the packets are successfully recovered
from the intermediate MRs, hence mitigating the need for
retransmission. In our scenario, we have set this BER thresh-
old to Pthe = 10−2, which corresponds to the uncoded BER
of each link, because powerful state-of-the-art channel coding
schemes a capable of further reducing the BER to infinitesi-
mally low values [59]. Therefore, at each link we will attempt
to match the link BER value to that of its threshold, hence
minimizing the potential interference experienced by the rest
of the nodes owing to excessive interferences. This yields
an equivalent Signal to Noise plus Interference Ratio (SINR)
threshold γ thi,j , which is equal to:

γ thi,j =
Pri,j

N0 + Imax
=


2(1− 2Pthe )

2

1− (1− 2Pthe )2
i or j are MCs,

Q−1
(
Pthe
)

otherwise,

(12)

where the function Q−1(·) corresponds to the inverse of the
Q-function,N0 is the thermal noise power and Imax is themax-
imum tolerable interference power level. The thermal noise
power is set to N0 = −114 dBm, corresponding to a band-
width ofW = 1MHz. Therefore, based on Eqs. (10) and (12)
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the transmit power Pt,reqi,j required for satisfying the BER
threshold is equal to:

Pt,reqi,j = Li,j(N0 + Imax)γ thi,j . (13)

We have imposed a further constraint regarding the actual
transmitters’ maximum power level Pt,acti,j . In fact, it is con-
sidered to be upper-bounded to Pt,actmax = 20 dBm, which is a
typical value for the IEEE 802.11b/g protocol. Based on this
constraint, we can define the adjacency matrix A as follows:

ai,j = u(Pt,reqi,j − P
t,act
max ), (14)

where ai,j corresponds to the element of the matrix A located
at the i-th row and the j-th column, while u(·) is the Heaviside
function defined in [61]. Therefore, the actual transmitted
power Pt,acti,j required for establishing the link between the
nodes i and j is equal to:

Pt,acti,j = Pt,reqi,j /ai,j. (15)

Based on Eq. (15), the cost in terms of power for the link
spanning from the i-th node to the j-th one will be equal
to the power required for achieving a BER equal to the
threshold value should the required power be less or equal
to the maximum transmit power value. Otherwise, the cost is
set to +∞, implying that the link cannot be established.

As far as the maximum tolerable interference power level
Imax is concerned, it is defined as the maximum interference
level that allows theMRs to establish at least a single linkwith
the rest of the WMNwith a probability of 99%. Therefore, its
value can be determined from the CDF of the connectivity
of MRs versus the value of Imax . The Imax values guaran-
teeing 99% connectivity and associated with socially-aware
networks consisting of 5 to 10 MRs are presented in Table 1
along with the MRs’ average connectivity degree. Explicitly,
observe in Table 1 that the Imax value decreases as the WMN
becomes more densely populated by MRs due to the inherent
decrease in the minimum distance between the MRs. As for
their degree corresponding to Imax, it increases as the num-
ber of MRs increases ; however, the WMN becomes more
sparsely connected than the fully-connected case scenario.
The latter justifies the employment of a routing scheme, since
a heuristic method has to be employed for identifying the
realizable routes, i.e. routes consisting of links that can be
established, based on the adjacency matrix A.
Having defined the physical layer parameters of the WMN

layer, let us now proceed by defining our multiple-objective
optimization problem. Firstly, let us consider the set of Nr
active routes S =

[
x(1), . . . , x(i), . . . , x(Nr )

]
, where x(i) is the

i-th active route and corresponds to a unique pair of MCs.
Since each MC is associated with a unique MR, each active
route is defined as follows:

x(i) = [MCk ,MRl, . . . ,MRm,MCn] , (16)

where the i-th active route corresponds to a transmission
from MCk to MCn, while the source and destination MCs
are associated with MRl and MRm, respectively. As our first

objective, we will consider the average route delay D, which
is quantified as follows:

D(S) =
Nr∑
i=1

D(i)(S)
Nr

, (17)

where S is the set of the active routes andD(i)(S) corresponds
to the delay of the i-th active route. For the sake of simplicity,
we have chosen to quantify the latter as the number of hops
incorporated by the route x(i). Hence, the route delay D(i)(S)
is formulated as follows:

D(i)(S) =

∣∣x(i)∣∣−1∑
j=1

(
a−1
x(i)j , x

(i)
j+1

)
− 1, (18)

where the factor
∣∣x(i)∣∣ denotes the number of nodes involved

by the route x(i), while x(i)j corresponds to the route’s j-th
node. Observe in Eq. (18) that the sum of the inverse of the
adjacencymatrix elements guarantees that all the route’s links
can be established. Otherwise, the route delay will be set to
D(i)(S) = +∞, hence classifying the route x(i) as infeasible.
We note that the nodes’ specific buffer packet length could be
readily encapsulated in Eq. (18) in order to account for delays
the imposed by buffered packets.

Apart from the average delay D, we have also considered
the routes’ average power consumptionP, which is quantified
as follows:

P(S) =
Nr∑
i=1

P(i)(S)
Nr

, (19)

where P(i)(S) corresponds to the power consumption of the
route x(i), which is in turn formulated based on Eq. (15) as
follows:

P(i)(S) =

∣∣x(i)∣∣−1∑
j=1

Pt,act
x(i)j , x

(i)
j+1

. (20)

Observe in Eq. (20) that the adjacency matrix elements
a−1
x(i)j , x

(i)
j+1

are taken into account in Eq. (20) with the aid of

Eq. (15). Explicitly, a route comprised by links that cannot
guarantee satisfying the BER threshold will require a power
set to Pi(S) = +∞, based on Eq. (20). This is in line
with the route’s delay, which is at the same time set to +∞.
Therefore, we have encapsulated the BER constraint in both
of our optimization objectives, which we will refer to as
Utility Functions (UF). Based on these UFs let us now define
the optimization Utility Vector (UV), which we will use for
jointly optimizing both the average delay and the average
power consumption, as follows:

f(x(1), . . . , x(Nr )) ≡ f(S) = [D(S),P(S)] . (21)

C. MULTIPLE-OBJECTIVE OPTIMIZATION MODEL
The evaluation of the UV used for quantifying the perfor-
mance of the twin-layer network considered can be under-
taken with the aid of the Pareto Dominance concept [33],
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which is encapsulated in Definitions 1 and 2, while the cor-
responding Pareto-optimality conditions are given in Defini-
tions 3 and 4. We note that Definitions 1 and 2 are tailored for
jointly minimizing the UFs, since our design objective is to
establish the active routes with theminimum possible average
delay and power consumption. Nevertheless, they can be
readily invoked for maximization problems by substituting
the ‘‘less (than)’’ operators by ‘‘greater (than)’’.
Definition 1 (Weak Pareto Dominance [33]): A particu-

lar solution x1, associated with the UV f(x1) =

[f1(x1), . . . , fK (x1)], where K corresponds to the num-
ber of optimization objectives, is said to weakly domi-
nate another solution x2, associated with the UV f(x2) =
[f1(x2), . . . , fn(x2)], iff f(x1) � f(x2), i.e. we have fi(x1) ≤
fi(x2) ∀i ∈ {1, . . . ,K } and ∃j ∈ {1, . . . ,K } such that fj(x1) <
fj(x2).
Definition 2 (Strong Pareto Dominance [33]): A partic-

ular solution x1, associated with the UV f(x1) =

[f1(x1), . . . , fK (x1)], where K corresponds to the number
of optimization objectives, is said to strongly dominate
another solution x2, associated with the UV f(x2) =
[f1(x2), . . . , fK (x2)], iff f(x1) � f(x2), i.e. we have fi(x1) <
fi(x2) ∀i ∈ {1, . . . ,K }.

FIGURE 5. A graphical example portraying the dominance relationship of
the route-solutions

{
xi

}6
i=2 with respect to the route-solution x1 for a

generic Pareto-optimality problem with K = 2 UFs.

Let us now describe the use of the weak and strong Pareto
dominance, encapsulated in Defs. 1 and 2, respectively, with
the aid of a graphical example, which is shown in Fig. 5.
We note that the example presented in Fig. 5 portrays a
Pareto-optimality problem associated with K = 2 UFs. As a
reference, we use the route-solution x1, which is associated
with the UV f(x1), and we will assess its dominance rela-
tionship with respect to the route-solutions {xi}6i=2, which are
associated with the UVs {f(xi)}6i=2. It is clear that the route-
solution x2 is both strongly and weakly dominated by the
route-solution x1, since we have fi(x1) < fi(x2), ∀i ∈ {1, 2}.
The difference between strong and weak Pareto dominance
becomes visible, when we assess the dominance relation-
ship between the route-solution x3 and that of x1. Since we
have f1(x1) = f1(x3), there is no strong dominance relation-
ship between those two route-solutions; however, x1 weakly

dominates x3, since we have f2(x1) < f2(x3). Explicitly, the
solution x1 weakly dominates all the potential route-solutions
that lie in the plane defined by the boundaries [f1(x1),+∞]
and [f2(x1),+∞] including the boundaries, while it does not
strongly the boundaries. As for the rest of the route-solutions
shown in Fig. 5, there is no dominance relationship among
x1, x4 and x5, since we have f1(x5) < f1(x1) < f1(x4),
while f2(x5) > f2(x1) > f2(x4). Finally, the route-solution x6
dominates, both weakly and strongly, the route-solution x1,
since we jointly have f1(x6) < f1(x1) and f2(x6) < f2(x1).
Definition 3 (Weak Pareto-Optimality [33]): A particu-

lar solution xi, associated with the UV f(xi) =

[f1(xi), . . . , fN (xi)], where N corresponds to the number of
optimization objectives, is considered as strongly (or weakly)
Pareto-optimal iff there exist no solution that strongly domi-
nates xi, i.e. iff @xj such that f(xj) � f(xi).
Definition 4 (Strong Pareto-Optimality [33]): A partic-

ular solution xi, associated with the UV f(xi) =

[f1(xi), . . . , fN (xi)], where N corresponds to the number of
optimization objectives, is considered as strongly Pareto-
optimal iff there exist no solution that weakly dominates xi,
i.e. iff @xj such that f(xj) � f(xi).

FIGURE 6. Distribution of the route-solutions into fronts based on the
number of route-solutions that dominate a specific route-solution for a
generic Pareto-optimality problem with K = 2 UFs.

Based on Definitions 1 and 2, it is possible to group the
route-solutions based on the number of route-solutions that
dominate them. Such groups of route-solutions form fronts
in the solution space, which are often referred to as Pareto
Fronts (PF). Naturally, the entire set of Pareto-optimal route-
solutions will form a single PF, since all of these route-
solutions share the characteristic of being either strongly or
weakly dominated by no route-solution, based on Defini-
tions 3 and 4,respectively. We note that this specific front is
often referred to as theOptimal Pareto Front (OPF). A graph-
ical example of the formation of various PFs is presented in
Fig. 6 for a generic minimization Pareto-optimality problem
associated with K = 2 UFs. Still referring to the same figure,
observe that the curves formed by the route-solutions of a
specific PF dominate the respective curves associated with
higher rank PFs, i.e. PFs formed by route-solutions that are
dominated by a higher number of route-solutions.
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Explicitly, the OPF is composed by route-solutions having
UFs, which cannot be further optimized individually with-
out degrading the fitness of the rest of the UFs, as it can
be observed in Fig. 6. As far as our specific application is
concerned, when considering weak OPFs, there exist route-
solutions classified as Pareto-optimal which may have the
same metric, say in terms of their average delay D, yet
exhibiting a different performance in terms of their aver-
age power consumption P. Nevertheless, the route-solution
that exhibits lower average power consumption seems to
outperform the other one, since it jointly minimizes both
UFs. This specific caveat is rectified by the employment of
strong Pareto-optimality, since the route-solution associated
with lower average power consumption would dominate the
other route-solution and, hence, the latter will not be included
in the respective OPF. Based on this observation, we will
utilize the concept of strong Pareto-optimality for the sake
of constraining the load balancing problem, which is formu-
lated in Eq. (9). Consequently, our optimization problem is
formulated as follows:

SOPF = argmax
∀Si∈Slegit

H̄ (B̄com(Si)),

subject to @j : f(Sj) � f(Si), (22)

where SOPF represents the optimal active route allocation
based on our constrained optimization problem and Slegit
corresponds to the set containing all the potential sets of
active routes, which are strictly comprised by individual
Hamiltonian routes, i.e. by routes that visit each of theMRs at
most once. In a nutshell, the optimization problem of Eq. (22)
attempts to distribute the intermediate relay tele-traffic load
among the MRs as close as possible to the ideal uniformly
distributed load, whist ensuring that the associated network
performance is Pareto-optimal in terms of its average delay
and power consumption. Assuming a total number of MRs is
equal to NMR, the total number N of Hamiltonian routes for a
specific pair source and destination MCs is given by [42]:

N =
NMR−2∑
i=0

(NMR − 2)!
(NMR − 2− i)!

. (23)

Therefore, for the sake of verifying as to whether a single set
of active routes satisfies the optimization problem constraint,
we have to perform precisely N Pareto dominance compar-
isons. Let us now consider that the total number of pairs of
source and destination MCs is exactly Nr = |S|. Then the
total number Ntot of sets of active routes is given by:

Ntot = NNr =

[NMR−2∑
i=0

(NMR − 2)!
(NMR − 2− i)!

]Nr
. (24)

Since it can be observed in Eq. (24) that the total number of
the sets of active routes Ntot increases exponentially as the
number of MRs NMR increases, our constrained optimization
problem defined in Eq. (22) is classified as NP-hard. Conse-
quently, sophisticated quantum-assisted methods are required
for the sake of confining the escalating complexity.

FIGURE 7. Exemplified twin-layer network topology with NMC = 5 MCs
and NMR = 7 MRs for a coverage area of (100× 100) m2 square block.
The association of a specific MC with a specific MR is annotated using the
dashed lines. The presence of a central inteligence cluster head node is
assumed, albeit not portrayed in this figure.

D. A 12-NODE TUTORIAL EXAMPLE USING
EXHAUSTIVE SEARCH
In the context of this tutorial, let us consider the twin-layer
network comprised by NMR = 7 MRs and NMC = 5 MCs,
which relies on the topology portrayed in Fig. 7, where the
association of each of the MCs to their respective MR is
represented by the dashed lines connecting each of theMCs to
their closest MR. We may consider this topology as a random
snapshot of our general network topology, where theMCs are
mobile, whilst the MRs are considered to be static.

The transmission power matrix Pt,act defined in Eq. (15)
for the exemplified topology of Fig. 7 is shown in Table 2,
where we can observe that the transmission power levels of
several links are set to infinity, indicating that the specific
links are infeasible. We note that the elements of the trans-
mission power matrix Pt,act in Table 2 are quantified in dBm.
Naturally, the transmission power of the links among theMCs
is set to infinity, since they cannot directly communicate with
each other, only through their associated MRs. Additionally,
observe in Table 2 that for the links established between a
specific MC and the MRs, there exists only a single link
having a finite transmission power, owing to the constraint
that a specific MC can only connect to the rest of the network
through its closest MR. As far as the links among theMRs are
concerned, recall that according to Table 1 the links requiring
a transmission power of infinity are unable to satisfying the
BER threshold of Pthe = 10−2 at the maximum transmission
power Pt,actmax = 20 dBm.

Having presented the specifics of the tutorial example
WMN layer, let us now proceed by elaborating on the details
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TABLE 2. Transmission power matrix Pt,act quantified in dBm for the exemplified topology of Fig. 7.

of its OSN layer. As we have mentioned in Subsec. II-A,
the MCs exhibit an identical social relationship to that of the
members of a Karate Club, which is portrayed Fig. 4. Based
on this relationship, we have randomly picked 5 Karate Club
members, whose social relationship can be encapsulated in
the following MC friendship matrix FMC:

FMC =


0 1 1 1 1
1 0 0 0 1
1 0 0 0 0
1 0 0 0 0
1 1 0 0 0

, (25)

where we can observe that the MC1 shares a social rela-
tionship with all the remaining MCs, MC2 shares a social
relationship with MC1 and MC5, MC3 and MC4 share a
social relationship solely with MC1, while MC5 has a social
relationship with both MC1 as well as MC2. Based on the
friendship relationship FMC of Eq. (25), we will consider
in this tutorial the following set Sact of active source and
destination pairs:

Sact =


MC2→ MC1
MC1→ MC3
MC4→ MC1
MC5→ MC1
MC2→ MC5

 . (26)

In our scenario, there exists N = 326 Hamiltonian
routes between each specific source and destination MCs,
based on Eq. (23), while there exist about Ntot = N 5

'

3.682 · 1012 legitimate route-combinations in total, based
on Eqs. (24) and (55). The exhaustive search method relies
upon evaluating each of the legitimate route-combinations
for the sake of checking as to whether they are strongly
Pareto-optimal, hence satisfying the constraint of Eq. (22).
Subsequently, if a specific route-combination is identified
as being strongly Pareto-optimal, the value of the nor-
malized entropy of its associated normalized composite
betweeness is evaluated as well, aiming for identifying
the specific route-combination that maximizes this utility.

Therefore, the exhaustive search has to carry out N 2
tot

weak Pareto-dominance checks just for identifying the
strongly Pareto-optimal route-combinations, plus NOPF
single-objective comparisons for determining the maximum
normalized entropy route-combination, where NOPF is the
number of strongly Pareto-optimal route-combinations.

FIGURE 8. Solution space of the route-combinations of the
socially-aware network of Fig. 7 in terms of their average power
consumtpion P̄ ,quantified in dBm per route, and their average delay D̄,
quantified in number of hops per route. For the sake of simplicity, we
have opted for only portraying the 100 lowest-rank PFs.

The strongly Pareto-optimal routes exported by the exhaus-
tive search are portrayed with the aid of the square markers
in Fig. 8 along with the route-combinations belonging to
the 100 lowest-rank PFs, which are represented by the dot
markers. We note that we have opted for including only the
100 lowest-rank PFs in Fig. 8 for the sake of simplicity. Still
referring to the same figure, the specific route-combination
that maximizes the normalized entropy of its associated nor-
malized composite betweenness is denoted by the diamond
marker. Additionally, a more detailed presentation of the
strongly Pareto-optimal route-combinations is included in
Table 3, where the Pareto-optimal route-combinations SOPFi
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TABLE 3. Pareto-optimal route-combinations identified by the exhaustive search for the socially-aware network of Fig. 7 corresponding to the OPF seen
in Fig. 8. The individual routes SOPF

MC,i,j in the second column are defined in Table 5.

are sorted according to their order of being identified as being
as Pareto-optimal by the exhaustive method. We note that the
database of the route-combinations is constructed by combin-
ing the databases combining the individual routes’ databases,
which are in turn constructed by storing the respective routes
in lexicographical ordering using Lehmer encoding [42].
Hence, we are able to observe in Table 3 the evolution of
the maximum value of the normalized entropy observed by
the exhaustive search, which converges to its maximum value
for the seventh route-combination SOPF7 of Table 3. Observe
in this table that although the maximum value is observed
after identifying seven Pareto-optimal route-combinations,
the exhaustive search has to identify the entire set of Pareto-
optimal route-combinations to classify this value as the max-
imum observed.

Before delving into the presentation of our proposed algo-
rithm, we provide a brief introduction to the existing quantum
search and optimization algorithms, which will constitute the
building blocks of our novel algorithm.

III. QUANTUM SEARCH AND
OPTIMIZATION ALGORITHMS
In classical computing, the state of a single bit can exclu-
sively be either at the state ‘‘0’’ or at the state ‘‘1’’.
By contrast, the state |ψ〉 of a quantum bit (qubit) [47] can be
at the superposition of the two basis states, which is formally
formulated as |ψ〉 = α |0〉 + β |1〉, where α, β ∈ C and
|α|2 + |β|2 = 1. Upon measurement [62], the qubit is
observed as being in the states of |0〉 and |1〉 with proba-
bilities equal to |α|2 and |β|2, respectively. However, after
themeasurement operation the superposition collapses and its
post-mesurement state becomes equal to the observed state.
A qubit’s state is manipulated using unitary operators. For
instance, the Hadamard gate H [47] maps the state |0〉 to
the state |+〉 ≡ H |0〉 = (|0〉 + |1〉)/

√
2 and the state |1〉

to the state |−〉 ≡ H |1〉 = (|0〉 − |1〉)/
√
2. Naturally,

the employment of these unitary operators combined with
the qubits’ capability of being at the superposition of their
basis states provides a form of parallelism, which is often
referred to as Quantum Parallelism (QP). Additionally, it is

possible to form quantum registers out of individual qubits.
Assuming two qubits in the states of |ψ〉1 = |+〉1 and
|ψ〉2 = |+〉2, the resultant composite sytem state |ψ〉12 is
equal to |ψ〉12 = |ψ〉1⊗|ψ〉2 = (|00〉+|01〉+|10〉+|1〉)/2.
If the states of multiple qubits cannot be described separately
as in the aforementioned example, the qubits are then termed
as entangled qubits [47]. Quantum entanglement stems from
controlled operators, such as the Controlled-NOT (CNOT)
gate [47], which has two qubits or registers as its inputs,
namely the states |c〉 and |t〉, and performs a classical XOR
operation of the two inputs, storing the XOR result in the
second qubit or register, while leaving the first intact. The

CNOT operation is encapsulated by |c〉 |t〉
CNOT
−→ |c〉 |c⊕t〉.

Having provided a brief description6 of the quantum com-
puting postulates [47], let us now proceed with a short
introduction to some of the classic Quantum Search Algo-
rithms (QSA) [37]–[39], [43], which constitute the building
blocks of our novel algorithm.

A. GROVER’S QSA
Grover’s QSA [37] is applicable for searching in unsorted
or uncorrelated databases, where the value δ sought as well
as the number t of solutions are known beforehand. The
algorithm is based on a specific unitary operator, namely
the so-called Grover operator G. This operator is capable of
increasing the amplitudes and, hence, the respective proba-
bility of finding the valid solutions x, i.e. the solutions that
satisfy the condition f (x) = δ, whilst reducing the amplitudes
of the invalid solutions. Due to this specific attribute, this
operator is invoked in most of the existing QSAs, since it
mitigates the deleterious effect of the measurement operation
on the QP. The Grover operator G for a database of N = 2n

elements is defined as follows [37]:

G = HnP0HnO, (27)

where Hn is the n-qubit Hadamard gate [47], P0 is a unitary
operator that flips the phase of all the states apart from the all-

zero state, i.e. we have |x〉
P0
→−|x〉 if |x〉 6= |0〉⊗n and theO is

6The readers should refer to [62] for a more detailed tutorial.
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the so-called quantum Oracle gate [47]. The latter ‘‘marks’’
the valid solutions by flipping their phase, while leaving the

phase of the invalid solutions intact, i.e. we have |x〉
O
→−|x〉

if f (x) = δ. Grover’s QSA initializes the quantum system
state |ψ〉init to the equal superposition of all the possible

states, i.e. we have |ψ〉init =
N−1∑
x=0
|x〉/
√
N . Then, it applies

the Grover operator G L consecutive times, forming the final
state |ψ〉 = GL |ψ〉init. Subsequently, the algorithm observes
the state ψ and outputs the observed result as the solution.

The optimal number Lopt of G applications has been proven
to be equal to [38]:

Lopt =

⌊
π

4

√
N
t

⌋
, (28)

yielding a probability of observing a valid solution equal to
Ps = sin2[(2Lopt + 1)θ], where we have θ = arcsin(

√
t/N ).

Since a single application of the Oracle gate O invokes the
comparison f (x) = δ once, Grover’s QSA has a complexity
in terms of the number of comparisons, which is on the order
of O(
√
N ), based on Eq. (28).

B. BOYER-BRASSARD-HØYER-TAPP QSA
The Boyer-Brassard-Høyer-Tapp QSA (BBHT-QSA) [38]
constitutes an extension of Grovers’s QSA, since it is capable
of addressing search problems, where the exact number t
of valid solutions is unknown to the optimization process,
whereas the sought entry δ is known. The only difference with
respect to Grover’s QSA presented in Sec. III-A is that the
optimal number of G applications is unknown. Therefore, a
number of attempts are carried out until a valid solution is
observed, where the number of G applications is generated
randomly by obeying a uniform distribution from a range
[0, bmc] that increases by a factor λ, if no valid solution
is observed. Boyer et al. [38] have proven that by setting
the initial upper bound of the selection range m to m = 1
and the exponential expansion factor λ to λ = 6/5, the
BBHT-QSA succeeds in finding a valid solution with∼100%
probability, while requiring a maximum of 4.5

√
N Grover

operator applications.
As for its associated complexity quantified in terms of

upper and lower bounds both in the Quantum Domain (QD)
and in the Classic Domain (CD), they have been proven to be
equal to [42]:

Lmin
BBHT = 4.5

√
N + logλ

(
4.5

λ− 1
m

√
N + 1

)
+ 1,(29)

Lmax
BBHT = 10

√
N + logλ

√
N − 1. (30)

Observe in Eqs. (29) and (30) that the complexity quantified
in terms of the number of dominance comparisons imposed
by the BBHT-QSA is on the order of O(

√
N ).

C. Durr-HØYER ALGORITHM
A further extension of the BBHT-QSA of Sec. III-B has
been proposed by Durr–Høyer [39] in the form of the

so-called Durr-Høyer Algorithm (DHA). This algorithm is
applicable either to the minimization or to the maximization
of single-objective problems, where neither the number t of
valid solutions nor the valid solution value δ itself has to
be known. Initially, it considers a random solution for the
entire search space as the reference solution and invokes the
BBHT-QSA for identifying solutions that have a either a high
or a lower utility than the reference solution in the context
of maximization and minimization problems, respectively.
Should a valid solution be observed at the BBHT-QSA’s
output, the reference route is updated to this output and a new
BBHT-QSA process is invoked. This process is repeated until
an invalid solution is observed at the BBHT-QSA’s output,
implying that the reference route is the globally optimum
one, which is then exported by the DHA. It has been proven
by Durr and Høyer [39] that the DHA succeeds in finding
a valid solution with ∼100% probability, while requiring a
maximum of 22.5

√
N Grover operator applications. Addi-

tionally, the DHA’s associated complexity quantified in terms
of upper and lower bounds both in the QD and in the CD has
been proven to be bounded by [43]:

Lmin
DHA = 4.5

√
N+logλ

(
4.5
λ− 1
m

√
N + 1

)
+2 = O(

√
N ),

(31)

Lmax
DHA = 50

√
N+5 logλ(

√
N ). (32)

D. NON-DOMINATED QUANTUM ITERATIVE
OPTIMIZATION ALGORITHM
The Non-Dominated Quantum Iterative Optimization
(NDQIO) algorithm [43] constitutes the multi-objective
extension of the DHA. It has been designed for identifying
the entire OPF in weakly Pareto-optimal routing, where
the objectives have to be jointly minimized. Initially, the
DHA is invoked once per objective for identifying the global
minimum of each objective. These specific route-solutions,
which are Pareto-optimal are inserted into the OPF. Subse-
quently, a BBHT-QSA process, which is termed as Backward
BBHT-QSA (BW-BBHT-QSA) [43], is activated in order
to search for route-solutions that are not dominated by
the hitherto generated OPF. Should a valid route-solution
be identified by the BW-BBHT-QSA process, this specific
valid route-solution is set as the reference route for a new
BBHT-QSA process, which searches for route-solutions that
dominate the reference one. Should the BBHT-QSA find a
valid route-solution that dominates the reference one, the
latter is updated to this valid route-solution and a valid new
BBHT-QSA is activated. This chain of BBHT-QSAs [42],
which resembles the DHA, terminates as soon as a
BBHT-QSA iteration fails to identify a valid route-solution,
implying that the reference route-solution is Pareto-optimal.
Hence, the reference route-solution is included in the
OPF and an OPF repair process [43] takes place, which
successively removes the suboptimal routes that have
been erroneously included in the OPF. The series of the
BW-BBHT-QSA followed by the BBHT-QSA chain and the
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OPF repair process is repeated until the BW-BBHT-QSA
fails to observe a route-solution that is not dominated by
the hitherto generated OPF. Therefore, the NDQIO algorithm
concludes that it has identified the entire OPF and terminates
by exporting the OPF.

Finally, the complexity imposed by the NDQIO in terms
of the number of dominance comparisons, which from now
on will be referred to as Cost Function Evaluations (CFEs),
can be formulated as a function of the total number NOPF of
Pareto-optimal route-solutions as follows [43]:

LNDQIO =
1
2K

N 2
OPF +

1
K

(
LDHA + 2LBBHT −

1
2

)
NOPF

+ (1− K )
[
2
K
LBBHT +

1
2

]
, (33)

where LDHA and LBBHT correspond to the complexities
imposed by the BBHT-QSA and DHA sub-processes, quan-
tified in terms of the number of dominance comparisons,
whereas K is the number of utility functions considered.
Since both LDHA and LBBHT are on the order of O(

√
N )

[38], [39], the NDQIO complexity is on the order of
O(NOPF

√
N ), based on Eq. (33), if we have O(NOPF) �

O(N ); otherwise, it will be on the order of O(N 2) for the sake
of providing a full-search-based accuracy [43].

IV. DESIGN METHODOLOGY
Based on the complexity of the NDQIO algorithm quantified
in terms of the number of dominance comparisons, which is
defined in Eq.(33), invoking the NDQIO algorithm for the
optimization problem of Eq. (22) impose a complexity, which
is on the order ofO(NOPFNNr/2), where N corresponds to the
total number of Hamiltonian routes from a specific pair of
source and destination MCs. Naturally, this is significantly
lower than O(N 2Nr ) imposed by the exhaustive search. This
complexity reduction, albeit substantial, may not be sufficient
for near-real-time applications, when the nodes’ locations
rapidly change over time. In fact, Zalka [48] has proven that
Grover’s QSA is optimal in terms of the number of CFEs
imposed by the algorithm. Since Grover’s QSA has been
the most popular technique in the family quantum amplitude
amplification algorithms [38], [39], [63], which includes the
NDQIO algorithm, we cannot achieve a complexity reduction
more than that of a factor on the order of O(

√
N ).

Having said this, all the QSA-based algorithms are totally
oblivious of the optimization problem’s structure, and hence
they are incapable of exploiting the correlation of the ele-
ments in a database. Consequently, our design objective is
twofold: on the one hand, we have to transform our compos-
ite optimization problem into a series of independent sub-
problems, which exhibit a potentially uncorrelated search
space; on the other hand, we have to develop a reduced-
complexity quantum-assisted process for merging the results
of the respective sub-processes, whilst minimizing the poten-
tial complexity overhead of the merging process. Naturally,
this approach confines the initial search space considered,
hence yielding a substantial reduction in complexity.

Having defined our algorithmic design targets in broad
terms, let us now proceed with a tutorial example using the
exhaustive search for the sake of a better understanding of the
the joint routing and loab balancing optimization problem,
defined in Eq. (22).

A. WEAK PARETO DOMINANCE OPERATOR
Before delving into the aforementioned transformation
specifics, we will introduce the unitary operator Ugw , which
carries out a single weak Pareto dominance comparison and
will be used as the Oracle gate of the Grover operator G
deployed in our proposed algorithm. Due to the universality
of the quantum gate-based computation [47], we have to
derive a binary function for implementing the weak Pareto
dominance operator. For this reason, let us define the com-
parison functions f •k (x, i) in terms of the k-th objective as
follows:

f •k (x, i) =

{
1, fk (x)•fk (i),
0, otherwise,

(34)

where the operator • is the generic comparison operator
corresponding to the operators ≤,=,< etc. This comparison
function is implemented by the quantum unitary operatorUf •k
defined as follows:

|x〉 |i〉 |t〉
Uf •k
−→|x〉 |i〉

∣∣t⊕f •k (x, i)〉 , (35)

where the quantum registers |x〉, |i〉, |t〉 are often referred to
asQuantum Index Register (QIR),Quantum Control Register
(QCR) and Oracle Workspace (OW), respectively [42]. The
application of Uf •k results in entangling the states of the
aforementioned registers.

We may readily create the binary expression of the weak
dominance comparison using the generic comparison func-
tions of Eq. (34). Based on Definition 1, the x-th route will
be dominated by the reference route associated with the i-th
index, provided that we have f ≤k (x, 1) = 1, ∀k ∈ {1, . . . ,K },
while at the same time we have ∃k ∈ {1, . . . ,K } so that
f <k (x, 1) = 1 is satisfied. Explicitly, the second requirement is
that we have to exclude the specific route-solutions validated
by the first requirement but have their UFs equal to the respec-
tive of the i-th route-solution, i.e. we have f =k (x, i) = 1, ∀k ∈
{1, . . . ,K }. Consequently, the weak dominance comparison
function gw(x, i) is defined as follows:

gw(x, i) =
K⋂
k=1

f ≤k (x, i)⊕
K⋂
k=1

f =k (x, i) ≡

{
1, f(x) � f(i)
0, otherwise.

(36)

Having expressed the weak Pareto dominance comparison
function gw(x, i) as a function of the f •k (x, i) function, we
may readily employ the Uf •k operators for constructing the
quantum circuit of the Ugw operator, which is presented in
Fig. 9. Observe in this figure that a series of CNOT gates [47]
are used for the sake of entangling both the input QIR and
input QCR to the respective local quantum registers of each
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FIGURE 9. Quantum circuit of the unitary operator Ugw implementing the
weak Pareto dominance comparison.

of the {U≤fk }
K
k=1 and {U

=
fk }

K
k=1 operators. Explicitly, the route-

solutions’ indices are stored in form of their superposition in
the input QIR, while the index of the reference route-solution
is stored in the QCR. As for the {U≤fk }

K
k=1 and {U=fk }

K
k=1

operators, they implement the comparison functions defined
in Eq. (34) with respect to the k-th UF. Subsequently, all
the local OW registers states of the {U≤fk }

K
k=1 operators are

combined by the Toffoli gate T [43], [47], which performs
an exclusive-OR (XOR) between the input OW register |t〉3
and the intersection product of the states of all the local OW
registers. Therefore, after the first Toffoli gate the composite
quantum system state is formulated as:

|x〉1 |i〉2
∣∣t ′′〉3 = |x〉1 |i〉2

∣∣∣∣∣t ⊕
K⋂
k=1

f ≤(x, i)

〉
3

. (37)

A second Toffoli gate is then used for the sake of combining
the local OW registers of the {U=fk }

K
k=1 operators. Hence, the

resultant composite quantum system state is equal to:

|x〉1 |i〉2
∣∣t ′〉3 = |x〉1 |i〉2

∣∣∣∣∣t ⊕
K⋂
k=1

f ≤(x, i)⊕
K⋂
k=1

f =(x, i)

〉
3

,

= |x〉1 |i〉2 |t ⊕ gw(x, i)〉3 . (38)

Explictly, Eq. (38) proves that the circuit of Fig. 9 implements
the weak dominance comparison function gw(x, i).
As for the circuit’s complexity quantified in terms of the

number of CFEs, we will define a single CFE as the com-
plexity imposed by the strong Pareto dominance operator
proposed in [42], which constists of a series of Uf <k opera-
tors serially connected, for the sake of continuity. Therefore,
assuming that both the CNOT and the Toffoli gates have an

instant responce as in [43] and that theUf •k comparison opera-
tors impose identical complexity, the complexity imposed by
the quantum circuit of Fig. 9 is equal to 1/K CFEs. This is
justified by the parallel activation of theUf •k operator through
the employment of the synergistic framework between the QP
and the HP, which was introduced in [43] and it is comprised
by the series of CNOT gates and the Toffoli gates at the Uf •k
comparison operators’ input and output, respectively.
At this point, let us emphasize that in the context of this

treatise the proposed Ugw operator will be used as the Oracle
gate in the NDQIO algorithm’s sub-processes, so that the
algorithm becomes capable of identifying the OPF formed
by strongly Pareto-optimal route-solutions.

B. MULTI-OBJECTIVE DECOMPOSITION
QUANTUM OPTIMIZATION
As we mentioned in the introduction of this section, our
design objective for the proposed algorithm is to transform
the problem to a series of sub-problems having databases
exhibiting the minimum amount of correlation among their
elements. By a close inspection of Eqs. (17) and (19), which
correspond to the average route delay and power consump-
tion, respectively, we can conclude that both UFs considered
in the constraint of Eq. (22) share the same generic form of:

fk (S) = fk (x(1), x(2), . . . , x(Nr )) =
Nr∑
n=1

ak,nfk (x(n)), (39)

where S denotes the set of Nr active routes, x(n) corresponds
to the n-th active route and ak,n is a constant, which may
be different for each UF but obeys the constraint ak,i > 0.
In our scenario, we have ak,i = N−1r for both UFs and ∀i ∈
{1, . . . ,Nr }. This specific form of the UFs can be exploited
in the context of Pareto-optimality problems for reducing the
search space, based on Proposition 1.
Proposition 1: Let us assume having Nr independent

strong Pareto-optimality problems, each associated with the
UVs fn(x(n)) =

[
f1(x(n)), . . . , fK (x(n))

]
, where K corresponds

to the number of UFs, and that their OPF solutions form
the sets

{
SOPFn

}Nr
n=1. Let us furthermore consider the com-

posite Pareto-optimality problem of their convex combina-
tion, which is associated with the utility vector f(S) =

f(x(1), . . . , x(Nr )) =

[
Nr∑
n=1

a1,nf1(x(n)), . . . ,
Nr∑
n=1

aK ,nfK (x(n))

]
,

with ak,n > 0 ∀n ∈ {1, . . . ,Nr } and ∀k ∈ {1, . . . ,K }, and
that the OPF solutions of this problem form the set SOPF. The
set SOPF is a subset of the union of the sets

{
SOPFn

}Nr
n=1, i.e.

we have:

SOPF ⊆
Nr⋃
n=1

SOPFn . (40)

We note that the inverse of Proposition 1 does not apply,
since there may exist solutions, which are composed by
Pareto-optimal solutions in all the respective independent
problems, but are suboptimal in the composite problem.
Despite this limitation, Proposition 1 provides us with useful
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FIGURE 10. Multi-Objective Decomposition Quantum Optimization
(MODQO) algorithm flowchart. We note that the in parentheses numbers
at the begining of each block correspond to the identification number of
each block.

insight into a potential transformation of our search space for
sake of reducing the total number Ntot of sets of active routes
considered, which was defined in Eq. (24).

Explicitly, we do not have to consider all the possible sets
of active routes S; instead, we only have to identify the routes
belonging to the union of the OPFs of all the active pairs of
source and destinationMCs. This actually constitutes a divide
and conquer approach, since the sub-problems created for
finding the OPF of a specific pair of source and destination
MCs are independent of each other, yielding a reduction in the
total complexity required by the exhaustive search, which is
on the order of O(NrN 2), down from O(N 2Nr ). Nevertheless,
the solutions identified are not Pareto-optimal as yet, as we
know based on Proposition 1; we still need a process for iden-
tifying the composite OPF SOPF from the union of the OPFs
of the independent sub-problems

{
SOPFn

}Nr
n=1, which yields

an additional overhead on the order of O(N̄ 2Nr
OPF) in terms of

complexity imposed by the exhaustive search, where N̄OPF
corresponds to average number of Pareto-optimal routes for
each of the sub-problems. Therefore, the total complexity
imposed by the exhaustive search using this transformation

method is on the order of O(NrN 2
+ N̄ 2Nr

OPF), which is far less
than O(N 2Nr ), assuming that O(N̄OPF)� O(N ).

Explicitly, the exhaustive search method is far from effi-
cient, despite the use of the search space transformation
method, which was analyzed in the previous paragraph. For
this reason, we will exploit the hybrid hardware and quan-
tum parallelism offered by the NDQIO algorithm for further
reducing the complexity of both the search space transfor-
mation step and the merging step, which will be referred to
from now on as the inner step and outer step, respectively.
The flowchart of our proposed algorithm, namely the Multi-
Objective Decomposition Quantum Optimization (MODQO)
algorithm, is shown in Fig. 10, where it can be observed that
the execution of the algorithm is comprised by four distinct
sub-processes or blocks.

To elaborate further, since our routing algorithm requires a
centralized quantum-computer the presence of a cluster head
is assumed, which monitors and controls the dissemination
of the packets throughout the network. For the sake of per-
forming optimal joint routing and load balancing, the cluster
head needs to gather all the necessary data for constructing
FMR, FMC, ZMR, ZMC and IMC , corresponding to the MRs’
friendship matrix, the MCs’ friendship matrix, the MR loca-
tions, the MC locations and the MC to MR association vec-
tor, respectively. This information is essential for accurately
evaluating the routes’ UVs and, in the context of this treatise,
we will assume perfect estimation of the aforementioned
parameters at the cluster head. This process is shown in
Block 1 of Fig. 10.

Subsequently, the cluster head performs the inner step
optimization, as described by Block 2 of Fig. 10, where
the routing table SOPFMC containing the Pareto-optimal routes
of all the active source and destination MC pairs, which
are identified independently through a NDQIO sub-process,
based on Alg. 1. The routes contained in SOPFMC are then
combined through several iterations for producing the SOPF

set, which contains the Pareto-optimal route-combinations
in terms of the network’s average delay and average power
consumption. This process constitutes the outer step of the
MODQO algorithm and it is denoted by Block 3 of Fig. 10
and it is detailed in Alg. 2. Finally, the MODQO algorithm
outputs the identified OPF routing table SOPF along with
the solution Sopt ∈ SOPF that maximizes the normalized
entropy of the normalized composite betweenness distribu-
tion. We note that we do not have to invoke a new search pro-
cess for the latter; instead, during the last iteration of Alg. 2,
the normalized entropy value of the normalized composite
betweenness distribution of each SOPF element is evaluated
as long as the specific set of active routes is identified as
Pareto-optimal. It is then compared to the maximum hitherto
observed value and this value is updated, should the observed
value be greater than the maximum value observed so far.
This process imposes a further overhead in terms of com-
plexity equal to the number

∣∣SOPF∣∣ of elements comprising
the OPF.

Having presented an overview of the MODQO algo-
rithm let us now provide some further discussions regarding
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Algorithm 1 Inner Step of the Multi-Objective
Decomposition Quantum Optimization (MODQO)
Algorithm, Introduced in Block 2 of Fig. 10

1: # Building MR Routing Table SOPFMR :
2: Set SOPFMR ← [ ].
3: for i = 0 to NMR do
4: for j = i+ 1 to NMR do
5: if FMR,i,j 6= 0 then
6: Invoke the NDQIO process of [43, Alg. 4] with

source node the MRi and destination node the
MRj and store the OPF routes to SOPFMR,i,j and the
reciprocal of these routes to SOPFMR,j,i.

7: end if
8: end for
9: end for

10: # Building MC Routing Table SOPFMC :
11: Set SOPFMC ← [ ] and n← 0.
12: for i = 0 to NMC do
13: for j = i+ 1 to NMC do
14: if FMC,i,j 6= 0 then
15: Set n← n+ 1, l ← IMC,i and m← IMC,j.
16: if l 6= m then
17: for k = 1 to

∣∣∣SOPFMR,i,j

∣∣∣ do
18: Set SOPFMC,n,k = [MCi, SOPFMR,l,m,k ,MCj].
19: end for
20: else
21: Set SOPFMC,n← [MCi,MRl,MCj].
22: end if
23: end if
24: end for
25: end for
26: Export the SOPFMC and exit.

the inner (Block 2) and the outer (Block 3) steps in
Subsections IV-C and IV-D, respectively.

C. BUILDING THE MC ROUTING TABLES
During the inner step, our design objective is to construct
the routing table SOPFMC for all the active pairs of source and
destination MCs. The formal statement of the inner process
introduced in Block 2 of Fig. 10 is presented in Alg. 1. We
note that the n-th element SOPFMC,n of the routing table SOPFMC ,
which appears in Alg. 1, contains the Pareto-optimal routes
of the n-th pair of source and destination MCs, while SOPFMC,n,k
corresponds to the k-th identified Pareto-optimal route
of SOPFMC,n.

Based on the assumption that the MRs operate in full-
duplex with the aid of a sufficient number of orthogo-
nal spreading codes and channels both in the frequency
domain, we are ready to independently address each of
the routing sub-problems for a specific pair of source and
destination MCs. Explicitly, this specific assumption pro-
vides us with the upper bounds of the twin-layer network’s

Algorithm 2 Outer Step of the Multi-Objective
Decomposition Quantum Optimization (MODQO)
Algorithm, Introduced in Block 3 of Fig. 10

1: Sort SOPFMC in terms of their number of OPF routes in
ascending order.

2: Initialize SOPF← SOPFMC,1 and remove SOPFMC,1 from SOPFMC .
3: repeat
4: Calculate LCM(n), LrefQM,min(n) and LrefQM,max(n),

defined in (49), (50) and (51) respectively,
∀n ∈

{
1, . . . ,

∣∣SOPFMC

∣∣}.
5: Evaluate nopt from Eq (53).
6: if LrefQMmin(nopt) < LrefCM(nopt) then
7: Consider jointly the solutions formed by merging

SOPF and {SOPFMC,n}
nopt
n=1 and activate a NDQIO process

of [43, Alg. 4] storing the identified OPF to SOPF

and removing the elements {SOPFMC,n}
nopt
n=1 from SOPFMC .

8: else
9: Consider jointly the solutions formed by merging

SOPF and SOPFMC,1 and store the identified OPF by
exhaustive search to SOPF, removing SOPFMC,1 from
SOPFMC .

10: end if
11: until

∣∣SOPFMC

∣∣ > 0.
12: Export the SOPF and exit.

achievable performance. Additionally, we can achieve a fur-
ther reduction in the complexity imposed by the inner step,
if we exploit the fact that each of the MCs is assigned to its
closest MR. Based on this allocation scheme, different source
MCs assigned to the same MR have identical sets of Pareto-
optimal routes leading to the specific destination MCs that
are also assigned to the same MR. Therefore, we can directly
perform the routing optimization directly among the MRs
based on their friendship matrix FMR, hence constructing
the respective routing table SOPFMR . This process is performed
in Steps 3-9 of Alg. 1, where the NDQIO process of [43,
Algorithm 4] is activated in Step 6 of Alg. 1, as long as the
source MRi and destination MRj share a social relationship,
i.e. we have FMR,i,j 6= 0. In this way, we have managed
to reduce the number of NDQIO activations to ||FMR||2 /2
from ||FMC||2 /2, where the ||·||2 operator corresponds to the
power-2 norm of a matrix [61].

After successfully constructing the MR routing table SOPFMC ,
the cluster can readily construct the respective MC routing
table SOPFMC from SOPFMC , the active MC association vector IMC
to MRs and the MC friendship FMC in Steps 11-25 of Alg. 1.
The exception of the source and destination MCs that are
associatedwith the sameMR is examined in Step 16 of Alg. 1.
Naturally, should the source and destination MCs be associ-
ated with different MRs, the MODQO algorithm will rely on
the MR routing table to construct the Pareto-optimal set of
MC routes, as shown in Step 18 of Alg. 1. Otherwise, the
two MCs are directly connected through their associated MR
without the inclusion of intermediate MRs based on Step 21

VOLUME 4, 2016 10009



D. Alanis et al.: Quantum-Assisted Joint Multi-Objective Routing and Load Balancing

of Alg. 1, since there exists no other valid Hamiltonian route
that does not traverse the specific MR twice.

Finally, we note that should half-duplex and a finite num-
ber of either orthogonal codes or orthogonal channels be
considered, our MODQO algorithm will still be applicable;
however, a further constraint has to be imposed regarding
the priority of each active route. This leads to a modified
inner step, where the MC routing table is directly con-
structed, rather than exported from the respective MR routing
table SOPFMR .

D. MERGING THE MC ROUTES
Having identified the Pareto-optimal routes SOPFMC,i for each
individual active pair of source and destination MCs, we
now have to combine the routes for identifying the network’s
Pareto-optimal sets of routes in terms of the network’s aver-
age delay and its average power dissipation. Naturally, the
conceptually simplest method of combining the individual
routes would be to consider them jointly. Therefore, assuming
Nr active pairs of source and destination MCs having on
average N̄OPF Pareto-optimal routes, the resultant complexity
imposed by the exhaustive search is equal to:

LouterES = N̄ 2Nr
OPF. (41)

Observe in Eq. (41) that the complexity imposed by the
exhaustive search increases exponentially, as the number of
active routes increases. By contrast, when an NDQIO process
is utilized, the resultant complexity quantified in terms of
the number of CFEs will be on the order of O(N̄Nr

OPF), owing
to the complexity reduction offered by the QP, based on
Eqs. (29)-(33). Explicitly, this problem is NP-hard, since it
belongs to the class of Multi-Objective Knapsack Problems
[64]. Hence, for the sake of efficiently identifying the Pareto-
optimal route-combinations, a heuristic approach has to be
adopted.

In fact, the solution space formed by the combinations of
the independent of the sub-problems Pareto-optimal routes
can be portrayed as the irregular trellis diagram [65] of
Fig. 11a. Explicitly, an irregular trellis diagram is utilized,
since the trellis paths can reach different total number of states
at the n-th stage, which is denoted by

∣∣∣SOPFMC,n

∣∣∣. Still referring
to Fig. 11a, a specific trellis path representing a particular
route-combination is formed once a trellis transition traverses
a specific trellis node, which correspods to a specific route.
For instance, at the 3rd stage of Fig. 11a a trellis path visiting
the trellis nodes SOPFMC,1,2, S

OPF
MC,2,1 and SOPFMC,3,5 represents the

particular route-combination formed by the second identified
Pareto-optimal route of the first active pair of source and
destination MCs, the first identified Pareto-optimal route of
the second active pair of source and destination MCs and the
fifth identified Pareto-optimal route of the third active pair of
source and destination MCs.

Owing to the irregular trellis structure of the outer problem,
we may readily employ the classic Viterbi Algorithm [66].
However, we have to modify it so that it becomes applicable

for multi-objective Cost Functions (CF), since it has been
initially designed for single-objective CFs in the context of
decoding Forward Error Correction (FEC) schemes [67].
Explicitly, we have proven in Proposition 1 that a route-
combination is potentially Pareto-optimal, when all of the
routes comprising the route-combination are Pareto-optimal
in their respective individual sub-problems. Naturally, due to
the specific form of the utility functions of the UV defined in
Eq. (39) it is possible to group n sub-problems into a smaller
composite sub-problem x, which is defined as follows:

x =
[
x(1), . . . , x(n)

]
, (42)

while its k-th respective UF is given by:

fk (x) =
n∑
i=1

ak,nfk (x(i)). (43)

Based on Eq. (42) the composite problem’s solution S is now
defined as follows:

S =
[
x, x(n+1), . . . , x(Nr )

]
, (44)

and based on Eq. (43), the route-combination S has a k-th UF
that attains the form of Eq. (39). This is the critical condition
for Proposition 1 to be valid and, hence, we have:

SOPF ⊆ SOPF(n) ∪

 Nr⋃
i=n+1

SOPFMC,i

, ∀n,Nr ∈ N∗, (45)

where we have n ≤ Nr and SOPF(n) corresponds to the OPF of
the Pareto-optimality routing sub-problem with route solu-
tions having the form x =

[
x(1), . . . , x(n)

]
. Naturally, if we

have n = Nr , Eq. (45) is reduced to SOPF = SOPF(Nr )
, while if

we set Nr = n+ 1, Eq. (45) is transformed into the following
recursive closed form:

SOPF(n+1) ⊆ SOPF(n) ∪ S
OPF
MC,n+1, (46)

where the equality of the sets is satisfied, as long as the set
SOPFMC,n+1 consists of a single Pareto-optimal route, i.e. we have∣∣∣SOPFMC,n+1

∣∣∣ = 1.
Explicitly, Eq. (46) provides us with a reduced-complexity

optimal merging method for the sake of iteratively combining
the OPF SOPFMC,n of each stage to form the network’s overall
OPF SOPF. To elaborate further, at the n-th horizontal step
or stage of Fig. 11a we only have to consider the arrival of
hitherto Pareto-optimal route-combinations for the previous
(n − 1) stages, i.e. the route-combinations belonging to the
set SOPF(n−1). Subsequently, these routes visit each of the nodes
of the n-th stage, thus constructing the set SOPF(n−1) ∪ S

OPF
MC,n of

route-combinations. Since the OPF of the n-th stage route-
combinations SOPF(n−1) is a subset of S

OPF
(n−1)∪S

OPF
MC,n we will have

to identify the new OPF for the sake of discarding the sub-
optimal routes and, thus, confining the search space for the
sake of reducing the complexity imposed without degrading
the associated accuracy. As far as the initialization of the OPF
of route-combinations is concerned, it is set to SOPF(0) = [ ],
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FIGURE 11. Trellis diagram of the merging process solely using (a) CM and (b) QM methods for the outer step optimization.

We note that at each stage only
∣∣∣SOPF

∣∣∣ routes continue propagating towards the End node, as denoted by the dotted arrows,

while traversing precisely
∣∣∣SOPF

MC,i

∣∣∣ nodes at the i -th step.

which represents an empty set. The aforementioned iterative
process is repeated until the route-combinations have encap-
sulated routes from all the active pairs of source and destina-
tion MCs. The intermediate products of this iterative process
are portrayed in Fig. 11a with the aid of dotted arrows; these
arrows demonstrate the routes that horizontally propagate at
the next stage.

In a nutshell, this iterative process resembles the classic
Viterbi Algorithm, since they both attempt to reduce the
search space using a series of iterations. The most notable
difference in our approach compared to the classic Viterbi
Algorithm is that the number of propagating routes in our sce-
nario is variable and it depends on the number

∣∣∣SOPF(n)

∣∣∣ of the
Pareto-optimal route-combinations at the n-th stage. There-
fore, the complexity of this method, which will be referred to

from now on as Classical Merging (CM), is bounded by:

LouterCM,min = (Nr − 1)N̄ 4
OPF = O(Nr N̄ 4

OPF), (47)

LouterCM,max =

Nr∑
n=2

N̄ 2n
OPF =

N̄ 2(Nr+2)
OPF − N̄ 4

OPF

N̄ 2
OPF − 1

= O(N̄ 2(Nr+1)
OPF ),

(48)

where N̄OPF corresponds to the average number of OPF in
the independent sub-problems, while LouterCM,min and LouterCM,max
are the lower and upper bounds of the CM method. The
lower bound of Eq. (47) corresponds to the best-case sce-
nario, where the number of route-combinations that propa-
gate across the irregular trellis stages is equal to the number
of the respective states at the specifc trellis stage, i.e. equal to∣∣∣SOPFMC,n

∣∣∣ for the n-th stage, while the upper bound of Eq. (48) is
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encountered in the worst-case scenario, where all the possible
route-combinations are Pareto-optimal. Observe in Eqs. (47)
and (48) that although the CMmethod imposes a substantially
lower amount of complexity in the best-case scenario than the
exhaustive search, in the worst-case scenario the CM method
actually imposes a higher complexity, owing to the design
assumption of having sub-optimal route-combinations that
will be eliminated during the intermediate stages. In the next
section we will provide the critical condition for the CM to
outperform the exhaustive search.

Furthermore, we can readily empower the CMmethodwith
the quantum-aided framework of [43], which was invoked in
the inner step, for the sake of achieving a further reduction in
the complexity imposed by the outer step. A naive approach
would be to invoke the NDQIO algorithm at each stage;
however, this approach would only be efficient for a high
number of route-combinations, whilst its potential applica-
tion would impose a higher complexity than the convetional
CM method. For the sake of circumventing this problem,
we have introduced an additional degree of freedom for the
NDQIO process. In particular, we have designed the NDQIO
sub-process to be capable of jointly considering multiple
stages of the irregular trellis, set to an optimal number of
stages nopt, as it is portrayed in Fig. 11b. We note that from
this point on this process will be referred to as the Quantum
Merging (QM) process. Observe in Fig. 11b that the NDQIO
process jointly considers the route-combinations formed by
the OPF sets

{
SOPFMC,n

}nopt
n=1

, as marked by the dashed-line-
bordered rectangle.

Based on this, we have to define the selection criterion
regarding the value of the parameter nopt, which would allow
the NDQIO sub-process to impose a lower complexity than
the CMmethod. For this reason, let us first define a metric for
quantifying the complexity imposed by the CM. Explicitly,
for accurately quantifying the complexity imposed by the CM
method, the number of Pareto-optimal route-combinations
has to be known prior to the optimization. Since the optimiza-
tion process is incapable of estimating the number of Pareto-
optimal route-combinations at each stage without actually
solving the respective Pareto-optimality sub-problems, we
will attempt to approximate the complexity imposed by the
CMmethod using its lower bound. Hence, we set the number
of Pareto-optimal route-combinations at each stage equal to
the number of nodes of that stage. Based on this assumption,
the reference complexity LrefCM imposed by the CM method
quantified in terms of the trelis stage index n is equal to:

LrefCM(n) =

∣∣SOPFMC

∣∣∑
n=2

∣∣∣SOPFMC,n−1

∣∣∣2 ∣∣∣SOPFMC,n

∣∣∣2. (49)

Based on the same assumption and Eq. (33), we are capable
of deriving the upper and lower bounds of the complex-
ity imposed by the NDQIO algorithm, when n stages are
considered jointly. Explicitly, the aforementioned bounds of
complexity quantified in terms of the number of CFEs are

equal to:

LrefQM,min(n) = (2K )−1
∣∣∣SOPFMC,n

∣∣∣2 + K−1 {Lmin
DHA[N̂ (n)]

+ 2Lmin
BBHT[N̂ (n)]−

1
2

} ∣∣∣SOPFMC,n

∣∣∣
+ (1− K )

{
2
K
Lmin
BBHT[N̂ (n)]+

1
2

}
, (50)

LrefQM,max(n) = (2K )−1
∣∣∣SOPFMC,n

∣∣∣2 + K−1 {Lmax
DHA[N̂ (n)]

+ 2Lmax
BBHT[N̂ (n)]−

1
2

} ∣∣∣SOPFMC,n

∣∣∣
+ (1− K )

{
2
K
Lmax
BBHT[N̂ (n)]+

1
2

}
, (51)

where Lmin
BBHT[N̂ (n)] and Lmax

BBHT[N̂ (n)] correspond to the
lower and upper bounds of the complexity imposed by the
BBHT-QSA for a database of N̂ (n) elements, as defined in
Eqs. (29) and (30), respectively, whereas Lmin

DHA[N̂ (n)] and
Lmax
DHA[N̂ (n)] are the respective complexity bounds of the

DHA, which are defined in Eqs. (31) and (32), respectively.
Additionally, recall that the parameter K represents the num-
ber of utility functions considered, which is set equal to
K = 2 utility functions in our scenario. We note that the
database length N̂ (n) is quantified in terms of the number n of
joint stages considered by the NDQIO algorithm as follows:

N̂ (n) =
n∏
i=1

∣∣∣SOPFMC,i

∣∣∣. (52)

We note that we are using the upper and lower bounds of
complexity for the NDQIO algorithm due to the stochastic
nature of both the DHA and of the BBHT-QSA. Having
derived these bounds, we may now assess the criteria for an
efficient deployment of the NDQIO algorithm. Our ultimate
design target is to determine at each iteration the optimal
number nopt of joint stages for ensuring that the NDQIO algo-
rithm outperforms the CMmethod, while imposing the lowest
possible complexity. Therefore, the optimal value nopt occurs
at the specific trellis stage, where the lower bound of the
complexity reduction with respect to the CM is maximized.
This can be formulated as follows:

nopt = argmax
n∈{1,...,

∣∣SOPFMC

∣∣}
{

LrefCM(n)

LrefQM,max(n)

}
. (53)

Nonetheless, we should also ensure that the NDQIO pro-
cess achieves a beneficial complexity reduction compared
to the partial CM method, for this optimal value of nopt.
Explicitly, this can be verified by comparing the lower bound
LrefQM,max(nopt) of the complexity imposed by the NDQIO
algorithm to the respective value LrefCM(nopt) of the CM
method: should the NDQIO lower bound for the specific
value of nopt derived by Eq. (53) be lower than that of the CM
method, then we may conclude that the NDQIO process is
potentially capable of outperforming the CM method. Other-
wise, it is clear that the CMmethod should be invoked. At this
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point, we would like to point out that we have opted for uti-
lizing the lower bound of the NDQIO’s average complexity,
since it tends to be closer to average case, when compared to
its upper bound counterpart, as presented in [43].

Based on this framework, which relies on a synergistic
hybrid of classical and quantum optimization, let us now
describe the outer step of the MODQO algorithm, which is
formally presented inAlg 2. Prior to constructing the irregular
trellis structure of Fig. 11b, we have to sort the MC Pareto-
optimal routing tables {SOPFMC,n}

Nr
n=1 based on their number∣∣∣SOPFMC,n

∣∣∣ of the independent Pareto-optimal routes, as it is

shown in Step 1 of Alg. 2. This can be justified by the fact that
the number of route-combinations will eventually increase,
as more stages of the trellis diagram are examined. Naturally,
this sorting is consistent with the design assumption that the
number of Pareto-optimal routes at the end of each stage is
equal to the number of the specific states at that trellis stage.
Subsequently, the set of Pareto-optimal route-combinations
SOPF is initialized to the first set SOPFMC,1 of Pareto-optimal
routes in the MC routing table, which is then removed from
SOPFMC in Step 2 of Alg. 2 followed by the iterative process
of Steps 3-11 of Alg. 2. This iterative process is invoked
for the sake of determining as to whether a single NDQIO
activation is capable of imposing a lower complexity than the
CM method for the same number of trellis stages. Hence,
the more efficient method is activated at each iteration.
To elaborate further, the respective reference complexities are
quantified in terms of the trellis stage index n and the its
optimal value nopt with respect to the maximum complex-
ity reduction achieved by the QM over the CM method in
Steps 4-5 of Alg. 2, respectively. Should the algorithm con-
clude that the QM method is potentially capable of operating
at a lower complexity than the CM, nopt stages are consid-
ered jointly with the Pareto-optimal route-combinations SOPF

gleaned from the previous iterations in Step 7 of Alg. 2; it then
updates the OPF route-combinations SOPF and removes the
encapsulated stages from the MC routing table. Otherwise, a
single CM iteration is applied, i.e. the first set SOPFMC,1 of the
MC routing table is jointly considered with the SOPF gleaned
from the previous iterations and Alg. 2 removes the set SOPFMC,1
from the MC routing table after updating the OPF of route-
combinations SOPF in Step 9 of Alg. 2. We note that a single
CM is applied, rather than nopt for the sake of allowing the
algorithm to iteratively calibrate itself for all the potential
outcomes of all Pareto-optimal route-combinations.

For the sake of simplicity, we have not included the specific
process, appearing in Block 4 of Fig. 10, which identifies the
specific Pareto-optimal route-combination Sopt exhibiting the
maximum value of the normalized entropy of the normalized
composite betweenness. In fact, this specific process can be
incorporated during the last iteration of Alg. 2, where the
normalized entropy H̄ [B̄com(S)] of the normalized composite
betweenness is evaluated, when a route-combination is iden-
tified as being Pareto-optimal. This value of H̄ [B̄com(S)] is
then compared to the maximum observed H̄max value, which

is updated depending on the comparison outcome. In this way,
we can reach the optimal route-combination Sopt with respect
to the optimization problem of Eq. (22) by imposing a modest
overhead of

∣∣SOPF∣∣ CFEs.
E. A 12-NODE TUTORIAL EXAMPLE USING MODQO
Having fully described the MODQO algorithm’s the inner
and the outer sub-processes, let us now elaborate on its func-
tion with the aid of a low-paced tutorial example. We note
that the following tutorial assumes knowledge of the NDQIO
algorithm. Therefore, the readers new to this subject should
refer to the tutorial section of [43]. Additionally, we will
assume an identical twin-layer network to that of the tutorial
using the Exhaustive Search presented in Sec. II-D.

Based on the friendship matrix FMC of Eq. (25), the MCs’
locations ZMC, the MRs’ locations ZMR and the MCs to MRs
association vector IMC, which are shown in Fig. 7, the cluster
head invokes the MODQO algorithm seen in Fig. 10. Firstly,
based onBlock 1 of theMODQOflowchart seen in Fig. 10 the
MR friendship matrix FMR is constructed, whose elements
indicate which pairs of MRs are associated with MCs that
share a social relationship. In our scenario, the MR friendship
matrix FMR is equal to:

FMR =



0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 1 1 1

0 0 0 0 0 0 0

0 0 1 0 0 1 0

0 0 1 0 1 0 0

0 0 1 0 0 0 0


, (54)

where we can observe that the MR1 and MR4 share no social
relationship with the rest of the MRs, since they are not
associated with any of the MCs. To elaborate further, MR2
and MR7 shares a social relationship only with MC3, MR3 in
turn shares a friendship relationship with MR2, MR5, MR6
and MR7, since it is associated with the social by-minded
MC1, while MR5 and MR6 share a social relationship both
with each other and with MR3.
After the construction of the MR friendship matrix FMR,

the MODQO algorithm proceeds with its inner step, accord-
ing to Block 2 of the MOQDO flowchart seen in Fig. 10.
In this step, theMODQO algorithm initializes theMR routing
table to an empty matrix based on Step 2 of Alg. 1. It then acts
on the upper triangular part of theFMR matrix by activating a
NDQIO sub-process in Steps 3-9 of Alg. 1 for the sake of
identifying the entire set of Pareto-optimal routes between
MRi and MRj as long as FMR,i,j = 1, i.e. MRi and MRj
have a social relationship. We note that the NDQIO sub-
process activates the weak Pareto dominance operator Ugw
portrayed in Fig. 9. Based on Eq. (54) for our scenario,
the NDQIO sub-process will be activated ||FMR||2 /2 = 6
times, namely for the elements FMR,2,3, FMR,2,3, FMR,3,5,
FMR,3,6, FMR,3,7 and FMR,5,6, thus exporting the sets of
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TABLE 4. MR routing table SOPF
MR exported by Alg. 1.

Pareto-optimal routes SOPFMR,2,3, S
OPF
MR,2,3, S

OPF
MR,3,5, S

OPF
MR,3,6,

SOPFMR,3,7 and S
OPF
MR,5,6, respectively. The aforementioned OPFs

constituting the MR routing table along with their associated
utility functions, namely their delay D(x) quantified in terms
of the number of established hops and their power con-
sumption P(x) quantified in dBm, are presented in Table 4.
Recall that the notation SOPFMR,i,j,k of Table 4 represents the k-
th Pareto-optimal route identified by the NDQIO sub-process
for producing the OPF SOPFMR,i,j, which in turn corresponds to
the set of Pareto-optimal routes spanning from MRi to MRj
and vice versa.

Subsequently, the inner process of the MODQO algo-
rithm builds up the respective MC routing table SOPFMC based
on the MR routing table SOPFMR of Table 4, on the MC
to MR association vector IMC and on the MC friendship
matrix FMR, which in our scenario is quantified in Eq. (25).
We note that in the context of this current treatise, we
have assumed that only the routes spanning from a specific
MCi to another specific MCj are active during a transmis-
sion period, but not the reverse of these routes. The latter
are considered to be activated during the next transmission
period, when the first ones are inactive. In our scenario, the
set Sact of active source and destination pairs considered is
equal to:

Sact =


MC2 → MC1
MC1 → MC3
MC4 → MC1
MC5 → MC1
MC2 → MC5

, (55)

TABLE 5. MC routing table SOPF
MC after Step 1 of Alg. 2.

where we can observe that the number Nr of active pairs of
source and destination MCs is equal to:

Nr =
||FMC||2

2
=
∣∣Sact∣∣ = 5. (56)

Based on the active set Sact defined in Eq (55) and on the
association vector IMC, which is portrayed with the aid of the
dashed lines in Fig. 7, the MODQO algorithm attempts to
construct the respectiveMC routing table SOPFMC in Steps 11-25
of Alg. 1. In particular, for the routes from MC2 to MC1
associated with MR6 and MR3, respectively, the set SOPFMC,3,6
consisting of a single route will be utilized, with the order
of its nodes reversed, and the source and destination MCs
are appended at the start and the end of the Pareto-optimal
route, as stated in Step 18 of Alg. 1. The same process is
repeated until the Pareto-optimal routes of the entire set of
active source and destination pairs have been constructed
forming the MR routing table SOPFMC .
The construction the MC routing table SOPFMC denotes the

end of the MODQO inner step presented in Alg. 1. Then,
the MODQO algorithm then invokes its outer step, which is
formally defined in Alg. 2. Initially, the MODQO outer step
sortsthe elements {SOPFMC,n}

5
n=1 of the MC routing in ascending

order according to their number
∣∣∣SOPFMC,n

∣∣∣ of the Pareto-optimal
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routes in Step 1 of Alg. 2. The sorted MC routing table
associated with our scenario along with the routes’ delay
and power consumption is presented in Table 5, where the
notation SOPFMC,i,j is used, denoting the j-th Pareto-optimal route
of the set SOPFMC,i, which in turn corresponds to the Pareto-
optimal routes’ set for the i-th active pair of source and des-
tination MCs. The MODQO algorithm then initializes the set
SOPF of Pareto-optimal route-combinations to the first set of
element in the MC routing table, i.e. we have SOPF = SOPFMC,1,
and it then removes this element from the MC routing table,
according to Step 2 of Alg. 2.

Subsequently, observe for the MODQO outer step’s iter-
ative process of Steps 3-11 of Alg. 2 that the route-
combinations’ OPF SOPF contains routes from all the active
pairs of source and destination MCs, as encapsulated by
Step 11 of Alg. 2. During the first iteration, the MODQO
outer procedure assesses the maximum achievable complex-
ity reduction offered by the NDQIO algorithm by jointly
considering multiple stages. After the initialization the MC
routing table consists of four elements, namely the elements
{SOPFMC,n}

5
n=2 of Table 5. According to Step 4 of Alg. 2, the ref-

erence complexity LrefCM(n) quantified in terms of the number
of CFEs as a function of n encapsulated stages imposed by
the CM method based on Eq. (49) is equal to:

LrefCM(n) =


9, n = 1,
90, n = 2,
234, n = 3,
490, n = 4,

(57)

while the upper bound of the reference complexity
LrefQM,max(n) quantified in terms of the number of CFEs as a
function of n encapsulated stages imposed by the QMmethod
based on Eq. (51) is equal to:

LrefQM,max(n) =


59, n = 1,
405, n = 2,
777, n = 3,
2016, n = 4.

(58)

Therefore, based on Eqs. (57) and (58) the lower bound of
the complexity reduction offered by the NDQIO with respect
to the CM method as a function of n encapsulated stages is
equal to:

LrefCM(n)

LrefQM,max(n)
=


0.1525, n = 1,
0.2222, n = 2,
0.3012, n = 3,
0.2431, n = 4.

(59)

Therefore, it is clear from Eq. (59) that the lower bound of the
complexity reduction offered by the NDQIO algorithm with
respect to the CM method is maximized for nopt = 3 joint
stages.

Having exported the optimal number nopt of the joint stages
to be considered by the NDQIO algorithm, the MODQO
outer step has to assess as to whether the NDQIO algorithm

is indeed capable of outperforming the CM method for this
specific optimal value. This action is undertaken by Step 6 of
Alg. 2, where the lower bound of the complexity imposed by
the NDQIO algorithm is compared to that of the CMmethod.
More particularly, for our scenario we have:

LrefQM,min(nopt) = 123 < 234 = LrefCM(nopt). (60)

Therefore, based on Eq. (60) the MODQO outer step
concludes that NDQIO may potentially impose a lower
number of CFEs than the CM method, and activates it for
nopt = 3 stages, according to Step 7 of Alg. 2, thus invoking
the process portrayed in Fig. 11b and the stages examined are
then removed from the MC routing table. At the end of the
NDQIO process the MODQO outer step reaches the end of
the fourth stage in Fig. 11b and, thus, the set SOPF of the
route-combinations is updated to the OPF exported by the
NDQIO process, which in turn constitutes the set7 SOPF(4) of
the surviving route-combinations of the fourth stage in the
irregular trellis of Fig. 11b. These eight route-combinations
along with their respective average delay and their respective
average power consumption are presented in Table 6, where
the route-combinations are represented using the IDs from
the first column of Table 5 containing the MC routing table.
For instance, the first surviving route-combination SOPF(4),1 of
the fourth stage is translated using Table 5 as follows:

SOPF(4),1 =


MC2 → MR6 → MR3 → MC1,
MC4 → MR7 → MR3 → MC1,
MC2 → MR6 → MR5 → MC5,

MC1 → MR3 → MR1 → MR2 → MC3

. (61)

Subsequently, the eight surviving route-combinations con-
tained in the set SOPF(4) continue their propagation to the final
stage of the irregular trellis diagram of Fig. 11b. A new iter-
ation of the MODQO outer step is invoked and the reference
complexities quantified in terms of the number of CFEs are
evaluated during Step 4 of Alg. 2, as follows:

LrefCM(n) = 1024, n = 1, (62)
LrefQM,max(n) = 1563 n = 1, (63)

LrefQM,min(n) = 291 n = 1, (64)

where the maximum complexity reduction offered by the
NDQIO algorithmwith respect to the CMmethod is achieved
for nopt = 1, in the absence of any other stages. Additionally,
since the lower bound of the NDQIO reference complexity
LrefQM,min is lower than that of the CM method, a NDQIO pro-
cess is activated for encapsulating the final stage into the eight
surviving route-combinations and, thus, updating the OPF of
the route combinations to SOPF = SOPF(5) . Naturally, since we
have nopt =

∣∣SOPFMC

∣∣ = 1, the outer step concludes that this is
the final stage. Hence, the normalized entropy of the normal-
ized composite betweenness H̄ [B̄com(S)] is calculated after
the identification of a Pareto-optimal route-combination by
the NDQIO algorithm and a record of the route-combination
exhibiting the highest H̄ [B̄com(S)] value is kept. For this

7In general, the notation SOPF(n) corresponds to the surviving route-
combinations of the n-th trellis stage.
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TABLE 6. Surviving route-combinations S of the outer step.

reason, the normalized entropy of the normalized composite
betweenness values of the Pareto-optimal route-combinations
are exclusively included in the last three columns of
Table 6, where we can observe that the Pareto-optimal route-
combination is the SOPF(5),6 one, which is translated using Table 5
as follows:

SOPF(5),6

=



MC2→ MR6→ MR3→ MC1,

MC4→ MR7→ MR4→ MR6→ MR3→ MC1

MC2→ MR6→ MR1→ MR5→ MC5

MC1→ MR3→ MR1→ MR5→ MR2→ MC3

MC5→MR5→MR1→MR4→MR6→MR3→MC1


.

(65)

Finally, the MOQDO algorithm outputs the specific
route-combination SOPF(5),6 that exhibits the highest load bal-
ancing metric along with the entire set SOPF of Pareto-
optimal route-combinations, as described in Block 4 of
the MODQO flowchart seen in Fig. 10. By a close
inspection, the eight routes of the last stage are iden-
tical to those of Table 3 exported by the exhaustive
search.

V. ACCURACY VERSUS COMPLEXITY DISCUSSIONS
Having provided a detailed description of the MODQO algo-
rithm in the previous section, let us now assess it performance
in terms of both its complexity imposed and its accuracy in
terms of the optimization metrics considered.

A. COMPLEXITY
As it can be observed in theMODQOflowchart of Fig. 10, the
MODQO algorithm’s operation is constituted by two distinct
steps, namely the inner and outer steps. Therefore, we have
to characterize the complexity associated with each step inde-
pendently for the sake of characterizing the total complexity
imposed by the MODQO algorithm. Let us commence with
the characterization of the MODQO inner step complexity.

1) INNER STEP
As far as the inner step is concerned, the NDQIO algorithm,
defined in [43, Algorithm 4], is activated by the cluster head
in Step 6 of Alg. 1 precisely ||FMR||2 /2 times, namely once
per two friendly MRs. This is justified by the fact that we can
utilize the Pareto-optimal routes spanning from MRi to MRj
for constructing the Pareto-optimal routes emerging from
MRj to MRi by inverting the sequence of the nodes at the cost
of no additional CFEs. Therefore, the total number NNDQIO
of the NDQIO process activations is equal to:

NNDQIO =
||FMR||2

2
, (66)

while the respective lower and upper bounds are equal to:

Nmin
NDQIO = 1, (67)

Nmax
NDQIO =

NMR(NMR − 1)
2

, (68)

where the lower bound Nmin
NDQIO corresponds to the best-

case scenario, and the MCs are associated with only two
different MR. By contrast, the upper bound Nmax

NDQIO occurs
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in the worst-case scenario, where each of the MRs shares a
friendship relationshipwith all the rest of theMRs. Therefore,
the complexity L innerMODQO quantified in terms of the number of
CFEs imposed by the MODQO inner step is equal to:

L innerMODQO =
||FMR||2 LNDQIO

2
, (69)

where the complexity LNDQIO imposed by a single NDQIO
algorithm activation has been quantified in Eq. (33) in terms
of the number of CFEs. We note that the Eq. (69) corre-
sponds to the general case of the complexity imposed by
the MODQO algorithm inner step. Explicitly, we can readily
derive its lower and upper bounds using Eqs. (67) and (68) as
follows:

L inner,min
MODQO (NOPF) = Lmin

NDQIO(NOPF) = O(NOPF
√
N ), (70)

L inner,max
MODQO (NOPF) =

NMR(NMR − 1)
2

Lmax
NDQIO(NOPF),

= O(N 2
MRNOPF

√
N ), (71)

where NOPF corresponds to the number of Pareto-optimal
route-solutions of each independent sub-problem and N is
the total number of legitimate routes between two MRs as
defined in Eq. (23). We note that the minimum complex-
ity imposed by the NDQIO algorithm can be derived by
considering that both the BBHT-QSA and the DHA sub-
processes impose the minimum possible amount of complex-
ity, namely Lmin

DHA and Lmin
BBHT defined in Eqs. (29) and (31),

respectively . Equivalently, the NDQIO algorithm’s maxi-
mum complexity is derived by considering that both the
BBHT-QSA and the DHA sub-processes impose the maxi-
mum amount of complexity, namely Lmax

DHA and Lmax
BBHT defined

in Eqs. (30) and (32), respectively.
Observe in Eq. (75) that the upper bound of the complexity

imposed by the MODQO algorithm becomes independent of
the number NMC of MCs, since it solely depends on the num-
ber NMR of MRs. Naturally, as the number of MCs increases
the number of friendly MRs per MR also increases up to a
maximum of the total number of MRs.

Additionally, it is possible to derive the upper and lower
bounds of the number NOPF of Pareto-optimal routes specif-
ically for our scenario. Explicitly, the lower bound corre-
sponds to the best-case scenario, where a single Pareto-
optimal route exists for all the possible pairs of source and
destination MCs. By contrast, the upper bound of the number
NOPF of Pareto-optimal routes corresponds to the worst-case
scenario, where a single Pareto-optimal route exists for all
the possible values of the delay due to the utilization of the
weak Pareto dominance operator of Definition 1. Since the
delay has been quantified in terms of the number of hops, its
maximum value is encountered when all the MRs participate
in the route establishment, i.e. we have Dmax(x) = NMR + 2
hops, while its minimum value corresponds to the case where
there are no intermediate MR involved in the route construc-
tion, i.e. we have Dmin(x) = 3 hops. This range provides
us with at most Dmax(x) − Dmin(x) = NMR − 1 possible

delay values. Therefore the upper and lower bounds of the
number of Pareto-optimal routes are quantified as follows:

Nmin
OPF = 1, (72)

Nmax
OPF = NMR − 1. (73)

Consequently, we may readily derive the strict upper
and lower bounds of the MODQO inner step complex-
ity by substituting the bounds of Eqs. (72) and (73) into
Eqs. (70) and (71), respectively. Hence, the resultant strict
MODQO inner step lower bound is equal to:

L inner,min
MODQO = Lmin

NDQIO(1) = O(
√
N ), (74)

while the respective strict upper bound is equal to:

L inner,max
MODQO =

NMR(NMR − 1)
2

Lmax
NDQIO(NMR − 1),

= O(N 3
MR

√
N ). (75)

FIGURE 12. Average MODQO inner step complexity quantified as a
function of the number of CFEs for twin-layer networks consisting of
NMR = {5,6, . . . ,10} MRs and NMR = {2,4,8,16} MCs. The MODQO
inner step complexity is compared to that of the exhaustive search and to
its respective upper and lower bounds. The results have been averaged
over 108 runs.

Based on this analysis, let us now proceed by presenting
the average MODQO inner step complexity results quan-
tified as a function of the number of CFEs for twin-layer
networks consisting of NMR = {5, 6, . . . , 10} MRs and
NMR = {2, 4, 8, 16} MCs, which is shown in Fig. 12,
where the MODQO algorithm’s average inner step complex-
ity is compared both to its lower and upper bounds, as they
were quantified in Eqs. (74) and (75), and that of to the
exhaustive search. We note that both the exhaustive search
and the MODQO algorithm have been deployed and their
complexity was averaged over identical twin-layer network
structures. Observe in Fig. 12 that the MODQO algorithm’s
average complexity increases exponentially with the number
NMR of MRs. Nevertheless, it increases with a substantially
lower gradient than that of the average complexity imposed
by the exhaustive search. In fact, the MODQO inner step
achieves a significant complexity reduction even for twin-
layer networks comprised by as few as NMR = 5 MRs,
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where the MODQO algorithm imposes a complexity, which
is four times lower than that of the exhaustive search, while
the complexity imposed by the MODQO algorithm’s inner
step becomes about six orders of magnitude lower than that
of the exhaustive search for twin-layer networks consisting of
NMR = 10 MRs.

Additionally, the complexity quantified in terms of the
number of CFEs imposed both by the MODQO inner step
and by the exhaustive search increases almost proportionally
to number of MCs as the the number NMC of MCs increases.
Naturally, as NMC increases, the average number of friends
of each of the MRs increases, since the associated number
of active pairs of source and destination MCs increases.
This results, in turn, in an increase in the number of the
NDQIO process activations, hence yielding an increase in the
MODQO’s inner step complexity. Nevertheless, this rate of
increase slows down as the network becomes more densely
populated by MCs, slowly approaching the upper bound of
Eq. (75), where all the MRs share a social relationship with
all the rest of the MRs.

2) OUTER STEP
As far as the complexity imposed by the MODQO outer step
is concerned, we first quantify that of the CM method, which
constitutes the upper bound of our proposed QM process. For
this reason, let us make the additional assumption that the
number of Pareto-optimal route-combinations increases by a
factor ρ after each state. This can be formally formulated as
follows: ∣∣∣SOPF(n)

∣∣∣ = ρn−1N̄OPF, (76)

where N̄OPF corresponds to the average number of Pareto-
optimal routes on the independent sub-problems, while SOPF(n)
is the set of Pareto-optimal route-combinations after n stages
of the irregular trellis diagram. We note that it is possible
to fully characterize N̄OPF with the aid of statistical anal-
ysis of offline data. Thus, we can estimate the complexity
imposed. Based on Eq. (76), we can quantify the complexity
in terms of the number of CFEs imposed by the CMmethod as
follows:

LouterCM =

Nr∑
n=2

ρ2(n−1)N̄ 4
OPF = N̄ 4

OPF
ρ2Nr − ρ2

ρ2 − 1
,

= O(ρ2Nr N̄ 4
OPF). (77)

Explicitly, the upper bound of the factor ρ, for which
the CM method is capable offering beneficial com-
plexity reduction compared to the exhaustive search, is
given by:

ρ < N̄
2Nr−2
2Nr−1
OPF . (78)

Consequently, the CM method is capable of offering a com-
plexity reduction, as long as the number of Pareto-optimal
route-combinations increases by a factor that is slightly less
than N̄OPF, based on Eq. (78).

Having characterized the CM method in terms of its com-
plexity, let us now proceed with the characterization of our
proposed QM method. To begin with, we will assess the
complexity reduction achieved by the QM method compared
to that of the CM one at a single iteration of the QM method.
For this reason, we ought to investigate the dynamics behind
the selection of the number nopt of joint stages. In general,
the complexity quantified in terms of the number of CFEs
imposed by the NDQIO process during a single iteration is
equal to:

LouterQM (n, nopt) = (2K )−1ρ2(n+nopt−1)N̄ 2
OPF + K

−1

·

[
LDHA(ρn−1N̄

nopt+1
OPF )

+ 2LBBHT(ρn−1N̄
nopt+1
OPF )−

1
2

]
·ρn+nopt−1N̄OPF

+ (1− K )
{
2
K
LBBHT(ρn−1N̄

nopt+1
OPF )+

1
2

}
,

(79)

with its order being equal to:

LouterQM (n, nopt)

=

{
O(ρ2nN̄ 2

OPF), nopt = 1,

O
[
ρ(3n+2nopt−3)/2N̄

(nopt+3)/2
OPF

]
, nopt > 1.

(80)

Futhermore, the respective complexity imposed by the CM
method, based on Eq. (77), is equal to:

LouterCM (n, nopt) =
n+nopt−1∑
n′=n

ρ2(n
′
−1)N̄ 4

OPF

= N̄ 4
OPF

ρ2(n+nopt) − ρ2n

ρ − 1
,

= O(ρ2(n+nopt)N̄ 4
OPF). (81)

Explicitly, we have to estimate the value of the optimal
number nopt of stages to be considered by the QM method.
Naturally, we can derive the orders of the respective reference
complexities by setting ρ = 1 in Eqs. (81) and (80), yielding:

LrefQM(n, nopt) = O
[
N̄

(nopt+3)/2
OPF

]
, (82)

LrefCM(n, nopt) = O(N̄ 4
OPF), (83)

where it is clear that the CM method’s order of reference
complexity is constant, whilst the QM method’s complexity
increases as the number nopt of joint stages increases. In fact,
after nopt = 5 stages the order of the QM method reference
complexity becomes equal to that of the CM method, imply-
ing that the NDQIO process will no longer offer any complex-
ity reduction. Based on this dynamic, we can conclude that
the optimal value of the number of joint stages considered by
the NDQIO process, which provides the maximum possible
complexity reduction is nopt = 1 stage. Therefore, the total
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complexity LouterMODQO imposed by the QM method of Alg. 2 is
equal to:

LouterMODQO =

Nr∑
n=2

LouterQM (n, 1),

=

Nr∑
n=1

O(ρ2nN̄ 2
OPF),

= O
[
N̄ 2
OPF

ρ2(Nr+1) − ρ4

ρ2 − 1

]
= O

[
ρ2(Nr+1)N̄ 2

OPF

]
. (84)

Hence, based on Eqs. (77) and (84) the QM method achieves
a complexity reduction, which is on the the order of
O
(
ρ−2N̄ 2

OPF

)
, when compared to the CM method, as long as

ρ < N̄OPF. We note that if we have ρ = N̄OPF, then the QM
method will match the complexity order of the CM method.
Additionally, a single NDQIO iteration invoked for all the
stages would result in a complexity that is equal to:

LouterNDQIO = LouterQM (1,Nr ),

= O
[
ρNr N̄ (Nr+3)/2

OPF

]
, (85)

where we can clearly observe that the QM method offers a
complexity reduction on order of O(NNr/2

OPF ρ
−Nr ), when com-

pared to that of a single NDQIO activation that jointly consid-
ers all the stages. Consequently, the QMmethod outperforms
the NDQIO algorithm that considers jointly all the trellis
stages, as long as we strictly have the following asymptotic
bound for the surviving route-combinations’ growth factor ρ:

ρ <
√
NOPF. (86)

For the sake of demonstrating the benefits of the QMmethod
against the single NDQIO algorithm activation for all the
stages, we have to statistically characterize the factor ρ for
our scenario considered. Explicitly, the average number N̄OPF
of Pareto-optimal routes in the MC routing quantified as a
function of the number NMR of MRs is shown in Fig. 13.
Observe in this figure that the average number lies far below
the asymptotic bound of Eq. (86) and it is inversely propor-
tional both to the number of MCs and to the number of MRs.
This is justified by the fact that the number of Pareto-optimal
route-combinations increases at a lower rate compared to
the number of active routes, i.e. compared to the number of
stages in the irregular trellis diagram of Figs. 11a and 11b,
both of which increase proportionally to the number of MCs.
Additionally, an increase in the number of MRs results in
an increase in the value of ¯NOPF and, thus, the number of
states per trellis stage; however, the number of Pareto-optimal
route-combinations tends to grow slower, hence, reducing the
order of the factor ρ with respect to N̄OPF as the number of
MRs increase.

Moving on to the upper and lower bounds of the com-
plexity imposed by the MODQO algorithm’s outer step, we

FIGURE 13. Order of the surviving route-combinations’ growth factor ρ
with respect to the average number N̄NOPF of Pareto-optimal routes in
the MC routing table for twin-layer networks comprised by
NMC = {4,8,16} MCs and NMR = {5, . . . ,10} MRs. The results have been
averaged over 108 runs.

will consider two extreme scenarios. In the best-case sce-
nario, we assume that the number of Pareto-optimal route-
combinations at the n-th stage is equal to the average number
of Pareto-optimal routes per stage, hence, we have ρ = 1.
We have assumed furthermore that all the quantum processes
impose the minimum possible complexity in terms of CFEs.
As for the lower bound of the number Nr of active routes,
since we have assumed that all of the MCs share a social
relationship with at least another MC, we have:

Nmin
r = NMC. (87)

Therefore, the lower bound of the complexity imposed by
a single iteration using the QM method as a function of
the average number N̄OPF of Pareto-optimal routes may be
expressed as follows:

LouterQM,min(N̄OPF) = (2K )−1N̄ 2
OPF + K

−1
{
Lmin
DHA(N̄

2
OPF)

+ 2Lmin
BBHT(N̄

2
OPF)−

1
2

}
N̄OPF

+ (1− K )
{
2
K
Lmin
BBHT(N̄

2
OPF)+

1
2

}
,

= O(N̄ 2
OPF). (88)

Hence, based on Eq. (88) the lower bound of the MODQO
outer step’s complexity, quantified in terms of the number of
CFEs and as a function of the average number N̄OPF of Pareto-
optimal routes, is equal to:

LouterMODQO,min(N̄OPF) =
Nmin
r∑
n=2

LouterQM,min(N̄OPF),

= (NMC − 1)LouterQM,min(N̄OPF),

= O(NMCN̄ 2
OPF). (89)

Consequently, the lower bound LouterMODQO,min of the MODQO
outer step occurs when the average number of Pareto-optimal
routes is strictly equal to NOPF = 1 for all the routes, based
on Eq. (72). However, in this particular case no CFEs are
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required for constructing the single Pareto-optimal route-
combination, since there is only a single possible route-
combination, yielding:

LouterMODQO,min = 0. (90)

We note that the same lower bound is valid for the CMmethod
as well, yielding:

LouterCM,min = 0. (91)

Subsequently, let us now derive the strict upper bound
of the MODQO outer step complexity. For this reason, we
will consider the worst case scenario, where all the potential
route-combinations identified by the MODQO inner step
are Pareto-optimal. In this scenario, the surviving route-
combinations’ growth factor is set to ρ = N̄OPF. Additionally,
the maximum number Nmax

r of the active pairs of source and
destination MCs occurs in the case, where all the MCs share
a friendship relationship with each other. Nevertheless, as the
number NMC of MCs increases, so does the probability of
two MCs being associated with the same MR. This results
in a single Pareto-optimal route and, thus, in a single state in
the respective stage of the irregular trellis diagram, where no
CFEs are required for encapsulating it in the set of Pareto-
optimal route-combinations. Therefore, the upper bound of
the number of active pair of source and destination MCs that
require at least a single CFE for their processing and for their
inclusion in the Pareto-optimal route combinations is derived
as follows:

Nmax
r =

1
2

[
(NMC(NMC − 1)−

⌊
NMC

NMR

⌋]
= O(N 2

MC). (92)

As for the upper bound LouterQM,max(n, N̄OPF) of the complexity
imposed by a single iteration using the QM method as a
function of the average number N̄OPF of Pareto-optimal routes
at the n-th stage of the irregular trellis diagram, it is derived
a follows:

LouterQM,max(n, N̄OPF) = (2K )−1N̄ 2n
OPF + K

−1 {Lmax
DHA(N̄

n
OPF)

+ 2Lmax
BBHT(N̄

n
OPF)−

1
2

}
N̄OPF

+ (1− K )
{
2
K
Lmax
BBHT(N̄

n
OPF)+

1
2

}
,

= O(N̄ 2n
OPF). (93)

Based on Eq. (93), the upper bound LMODQO,max(N̄OPF) of
the MODQO outer step complexity, quantified in terms of
the number of CFEs and as a function of the average number
N̄OPF of Pareto-optimal routes, is derived as follows:

LouterMODQO,max(N̄OPF) =
Nmax
r∑
n=2

LouterQM,min(n, N̄OPF),

= O

[
N̄ 2(Nmax

r +1)
OPF − N̄ 4

OPF

N̄ 2
OPF − 1

]
,

= O(N̄
2N 2

MC
OPF ). (94)

Consequently, the upper bound LouterMODQO,max of the MODQO
outer step’s complexity is encountered when the average
number of Pareto-optimal routes is strictly equal to NOPF =

NMR− 1 for all the routes. Then, based on Eq. (73), we have:

LouterMODQO,max = O
(
N

2N 2
MC

MR

)
. (95)

The respective upper bound of the CM method is derived by
setting ρ = N̄OPF = NMR − 1 in Eq. (77), yielding:

LouterCM,max = O
(
N

2N 2
MC

MR

)
. (96)

Consequently, both the MODQO QM method and the CM
method impose the same order of complexity in the worst-
case scenario, matching the exhaustive search complexity.
Explicitly, in the worst-case scenario there will be no com-
plexity reduction for either of these methods. We note though
that this specific scenario hardly occurs due to the trend of the
ρ parameter shown in Fig 13, which decreases as the number
NMC of MCs increases.

FIGURE 14. Average MODQO outer step complexity quantified as a
function of the number of CFEs for twin-layer networks consisting of
NMR = {5,6, . . . ,10} MRs and NMR = {2,4,8,16} MCs. The MODQO outer
step complexity is compared to that of the exhaustive search, that of the
CM method and to the lower bound of the NDQIO algorithm invoked
jointly for all the available stages. The portrayed results have been
averaged over 108 runs.

The average complexity quantified in terms of the number
of CFEs of the MODQO outer step is shown in Fig. 14
for twin-layer networks consisting of 5 to 10 MRs and of
2, 4, 8, and 16 MCs. The MODQO outer step complexity,
which is represented by the solid lines in Fig. 14 and denoted
as ‘‘MODQO with QM’’, is compared both to the average
complexity of the CM method, corresponding to the dotted
dotted lines and referred to as ‘‘MODQO with CM’’, as well
as to the lower bound of the NDQIO process considering all
the trellis stages jointly, which is marked by dashed lines and
finally to the average complexity imposed by the exhaustive
search, which is represented by the dashed and dotted lines.
In general, observe that the outer step complexity of all the
methods examined increases exponentially, as the number of
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MCs increases, whereas the respective gradient is substan-
tially reduced with number of MRs increases. This is justified
by the fact that the average number of Pareto-optimal routes
increases almost linearly with the number of MRs, while the
total number Nr of active source and destination MCs, which
is the exponent of the complexity function, increases almost
quadratically with the number of MCs, as it may be inferred
based on Eqs. (41), (77), (84) and (85).

For networks having 2 MCs, we can observe in Fig. 14
that all the methods considered impose an identical com-
plexity, since a single stage is encountered and no merging
takes place. Explicitly, this specific complexity is directly
determined by the number of Pareto-optimal routes between
the two MCs, since the algorithm has to identify the par-
ticular route that exhibits the highest value in terms of the
normalized entropy of its associated composite betweenness.
Naturally, the merging process imposes non-negligible com-
plexity for networks having 3 or more MCs. For the scenario
of NMC = 4 MCs, we can clearly observe in Fig. 14 that
the proposed MODQO outer step design, namely the one
that invokes the QM method, imposes a lower number of
CFEs that its counterparts. More specifically, for networks
consisting of NMR = 10 MRs the MODQO outer step
relying on the QM method imposes about half the com-
plexity imposed by the CM method and less than a third
of the exhaustive search as well as a thrid of the NDQIO
algorithm’s lower bound. We note that for this NMC value,
the exhaustive search imposes a lower complexity than the
minimum required by the NDQIO, which is indeed expected
owing to the rather low total number of route combinations,
hence not allowing the QP to excel. This trend is reversed
however for networks with a higher number of MCs. More
specifically for NMC = 8, the MODQO outer step operates
at a 2 times to 3.5 times lower complexity than that of
the CM method for larger networks having 5 and 10 MRs,
respectively, as seen in Fig 14. More dramatically, it imposes
a complexity that is two and four orders of magnitude lower
than the lower bound of the NDQIO algorithm and than the
average exhaustive search complexity. Finally, for networks
having NMC = 16 MCs, the MODQO outer step imposes
almost 6 times lower number of CFEs than that of the CM
method for NMR = 10 MRs and several orders of magnitude
less than the exhaustive search and the lower bound of the
NDQIO algorithm.

In a nutshell, we expect the complexity reduction offered
by the QMmethod of theMODQOouter step to increase even
further, as the number ofMCs increases. Recall that this com-
plexity reduction offered by the QM method of the MODQO
outer step is on the order of O

(
ρ−2N̄ 2

OPF

)
when compared

to the CM method, based on Eqs. (77) and (84). Explic-
itly, as the numbers of MRs and MCs increase, the aver-
age number N̄OPF of Pareto-optimal routes increases, while
the surviving route-combinations’ growth factor ρ decreases
with respect to N̄OPF, as we demonstrated in Fig. 13, which
drives the associated complexity reduction to even higher
levels.

3) TOTAL COMPLEXITY
Having characterized both the inner and the outer steps
of the MODQO algorithm, let us now provide some fur-
ther insights into the total complexity trends quantified in
terms of the number of CFEs. Explicitly, the MODQO algo-
rithm’s total complexity as a function of the average number
N̄OPF of Pareto-optimal routes and of the surviving route-
combinations’ growth factor ρ is derived as follows:

L totMODQO = L innerMODQO + L
outer
MODQO + ρ

Nr−1N̄OPF, (97)

where L innerMODQO and LouterMODQO correspond to the complexity
imposed by the MODQO algorithm’s inner and outer steps,
respectively, while the last factor ρNr−1N̄OPF is equal to the
number of Pareto-optimal route-combinations at the termi-
nation of the QM procedure. This specific factor accounts
for the selection of the route-combination S exhibiting the
highest value of normalized entropy for its normalized com-
posite betweenness H̄ [B̄com(S)] at the very last iteration of the
QM method. Consequently, we may readily derive the lower
and upper bounds associated with the best- and worst-case
scenarios, respectively, as follows:

L totMODQO,min = O(
√
N ), (98)

L totMODQO,max = O(N 3
MR

√
N + N

2N 2
MC

MR ), (99)

where Eq. (98) is derived by substituting Eqs. (74) and (90)
into Eq. (97), while Eq. (99) is derived by substituting
Eqs. (75) and (95) into Eq. (97). Therefore, a significant
complexity reduction is achieved even for the worst-case
scenario as opposed to the naive exhaustive search, which
would check every legitimate route-combination, constituted
by all the possible Hamiltonian routes, and would impose a
complexity on the order ofO(N 2N 2

MC ) withO(N )� O(NMR).
Additionally, the MODQO-CM method, which incorporates
first the MODQO inner step and then the CM method as
its outer step, exhibits the same upper and lower bounds as
those of the MODQO algorithm, based on Eqs. (48) and (47).
Nevertheless, since the MODQO algorithm’s lower bound
complexity is based on no complexity being imposed by its
outer step, theMODQO algorithm’s total complexity is upper
bounded by that of the MODQO-CM algorithm.

Both theMODQO and theMODQO-CM algorithms’ aver-
age complexities quantified in terms of their imposed number
of CFEs are presented in Fig. 15 for networks consisting of
5 to 10 MRs and of 2, 4, 8, and 16 MCs. The complexities of
these two algorithms are compared to that of the exhaustive
search, which carries out two separate exhaustive search pro-
cedures, namely one for the inner and one for the outer step
as represented by the black dashed and dotted lines. We note
that in Fig. 15 theMODQOalgorithm is labeled as ‘‘MODQO
using QM’’ and its average total complexity portrayed with a
blue solid line, whilst the MODQO-CM algorithm is labelled
‘‘MODQO using CM’’ and its average total complexity is
portrayed by a dotted line. For networks having NMC = 2
MCs, there will be a single active source and destination MC
pair, hence the MODQO and the MODQO-CM algorithms

VOLUME 4, 2016 10021



D. Alanis et al.: Quantum-Assisted Joint Multi-Objective Routing and Load Balancing

FIGURE 15. Average MODQO outer step complexity quantified as a
function of the number of CFEs for twin-layer networks consisting of
NMR = {5,6, . . . ,10} MRs and NMR = {2,4,8,16} MCs. The MODQO
average complexity is compared to that of the exhaustive search and that
of the MODQO using the CM method. The portrayed results have been
averaged over 108 runs.

impose an identical number of CFEs, which is more than four
orders of magnitude below the exhaustive search procedure’s
average total complexity. Indeed, this complexity advantage
increases even further as the number of MRs increases. This
is justified by the fact that their respective outer step requires
no CFEs to identify the Pareto-optimal route-combinations in
the presence of a single trellis stage. As the number of MCs
increases, the complexity reduction offered by the MODQO
algorithm with respect to the MODQO-CM increases. More
specifically, observe in Fig. 15 that for networks having
NMC = 4 MCs, our proposed MODQO algorithm imposes
3% fewer CFEs than the MODQO-CM. Explicitly, in this
case the order of both algorithms’ complexities is governed
by that of the inner step, which is one order of magnitude
higher than that of the algorithms’ outer steps, as seen in
Figs. 12 and 14.

This effect can be observed for networks comprised by a
higher number of MCs as well, yielding an interesting trade-
off. Explicitly, for networks having NMC = 16 MCs, observe
in Fig. 15 that the MODQO algorithm offers an almost
constant complexity reduction factor of 2.5 compared to the
MODQO-CM alg. for NMR values up to 8MRs. However, for
larger networks the complexity reduction is gradually eroded
due to the steep rise in the inner step’s complexity, which
dominates the total complexity. This drives theMODQO total
complexity to an asymptotic convergence woth that of the
MODQO-CM, as the number of MRs increases. However,
based on Fig. 15, in practical scenarios, where the total
number NMC of MCs is significantly higher than NMR, the
MODQO algorithm will outperform the MODQO-CM in
terms of the required number of CFEs and the complexity
reduction offered by theMODQOwill increase as the number
of MCs increases, which is owing to a better exploitation of
the QP.

B. ACCURACY
Having fully characterized the MODQO algorithm in terms
of its complexity, let us now proceed by assessing its accu-
racy. Explicitly, we have analytically proven that the search
space transformation relying on Proposition 1 attains a full-
search-based accuracy and it has been demonstrated in [43]
that the NDQIO algorithm approaches a full-search-based
accuracy as well. Consequently, we can surmise that the
MODQO also algorithm exhibits a full-search-based accu-
racy. Therefore, instead of comparing the MODQO algo-
rithm’s accuracy to that of the naive exhaustive search,
we will use as a benchmark algorithm the state-of-the-art
multi-objective evolutionary algorithm, namely the NSGA-II
[32], [49]. Explicitly, our accuracy case study will examine
as to whether the MODQO algorithm strikes an efficient
accuracy versus complexity trade-off when compared to the
NSGA-II. For this reason, we will compare these algorithms’
accuracy to each other, when both operate at the same com-
plexity, quantified in terms of CFEs.

1) BENCHMARKING ALGORITHM
Prior to proceeding with the MODQO algorithm and
NSGA-II accuracy comparison, let us provide a brief intro-
duction to the NSGA-II algorithm. In a nutshell, the NSGA-II
initializes a population of Npop/2 individuals, corresponding
to our route-combinations. Then a mating pool is constructed
using a binary tournament selection method for determining,
which of the individuals mate with each other. In total Npop/4
pairs of parent individuals are formed for producing Npop/2
offspring individuals by applying the classic crossover opera-
tion to the chromosome of the parent individual with a proba-
bility of Pc. The Npop/2 individuals have their chromosomes
mutated with a probability of Pm and they are incorporated
into the initial population. Subsequently, an ascending-order
non-dominated sorting is performed in the initial population,
where the individuals are sorted based on the number of
individuals that dominate them. For individuals that are dom-
inated by an identical number of route-combinations they are
sorted according to their so-called crowding distance8 [49]
in descending order. Based on this sorting scheme, the first
Npop/2 individuals are then selected for initializing the pop-
ulation of the next generation. This process is repeated for
Ngen generations and the OPF of route-combinations is then
exported.

We note that we have adapted the NSGA-II used in [42]
so that it can benefit from the search space transformation
of Proposition 1. To elaborate further, we have assumed
that each of the individuals is constituted by multiple chro-
mosomes, each corresponding to a Hamiltonian route for a
specific pair of source and destination MCs. Furthermore,
during the mating process independent crossover and muta-
tion operations are performed for each of the chromosomes.

8The crowding distance of a specific route-combination determines its
distance with respect to its neighboring route-solutions in the hyper-space
defined by their utility vectors. The readers should refer to [49] for a more
detailed description of this metric.
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For the sake of simplicity, we have assumed that the number
Npop of individuals per generation is equal to the numberNgen
of generetions, i.e. we have:

Npop = Ngen, (100)

yielding a total complexity in terms of the number of CFEs,
which is equal to:

LNSGA-II = N 3
pop, (101)

since the non-dominated sort requires precisely N 2
pop CFEs

for Npop generations. The simulation parameters considered
for the NSGA-II are presented in Table 7,9 where the num-
ber Npop of individuals was set to match the maximal total
complexity of MODQO algorithm observed throughout the
simulations that produced Fig. 15. The rest of the parameters
values used have been optimized through extensive simula-
tions.

TABLE 7. NSGA-II simulation parameters.

2) ACCURACY COMPARISON
Ideally we would have to compare the MODQO algorithm
and the NSGA-II in terms of the average of the identified
OPF formed by the Pareto-optimal route combinations as far
as the average network delay and the average network power
consumption are concerned. However, the visualization of
the OPF would complicate the representation of the results
rendering the related trends rather opaque. For the sake of
simplifying the presentation of the results, we will assess
both algorithms’ performance by providing the simulation
results for the Pareto-optimal solutions having four distinct
characteristics. First, we have to assess the networks’ limits
in terms of the WMN QoS criteria considered, namely the
average minimum network delay min{D̄(S)} and the average
minimum network power consumption min{P̄(S)}. In addi-
tion to these metrics, we will provide the Pareto-optimal solu-
tions of the maximum normalized entropy of the normalized
composite betweenness max{H̄ [B̄com(S)]} and compare it to
the one exhibiting the minimum standard deviation of the
normalized composite betweenness min{σB̄com} for the sake
of assessing the proposed load balancing strategy.

Let us now proceed by jointly assessing the MODQO
performance in terms of the QoS criteria considered for the
WMN layer, namely the average network delay performance
D̄ per route quantified in terms of the number of established
hops and average network power consumption P̄ per route in
dBm. The aforementionedmetrics are portrayed in Fig. 16 for

9Solely for NMC = 16 MCs.

FIGURE 16. Average network delay performance D̄ per route in terms of
the number of established hops (a) and average network power
consumption P̄ per route in dBm (b) for both the MODQO algorithm and
the NSGA-II for networks having from 5 to 10 MRs and 16 MCs. The
NSGA-II initialization parameters are presented in Table 7. The results
have been averaged over 108 runs.

networks having 5 to 10 MRs for 16 MCs. As far as the delay
is concerned, observe in Fig. 16a that the minimum delay
achieved by the MODQO algorithm slightly increases, as the
number NMR of MRs increases. This is justified by the fact
that as the number of MRs increases, the probability of two
specific MCs being associated with the same MR decreases,
hence reducing the probability of establishing a connection
with the minimum possible delay of two hops. On the other
hand, the minimum power consumption portrayed in Fig. 16b
is governed by a pair of conflicting dynamics. To elaborate
further, as the number NMR of MRs the distances between the
MRs decrease, hence the shorter links require a lower power,
while if the probability of two MCs being associated with
the same MR decreases, this virtually increases the average
distance among the MCs quantified in terms of the number of
hops. The latter is justified by the fact that the MCs tend to
be associated with their closest MRs; however, this does not
necessarily imply that the MR association is optimal in terms
of the routes’ power consumption, since an MR that is closest
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to the sourceMC can potentially be located further away from
the destination MC, hence increasing in the average power
consumption.

As for the load balancing metrics, namely the maximum
normalized entropy of the normalized composite between-
ness distribution and minimum standard deviation of the spe-
cific distribution, which are denoted by max{H̄} and min{σ },
respectively, observe in Fig. 16 that they both lie between
the two extreme strategies. Additionally, we can observe in
Fig. 16a that the specific min{σ }-strategy that minimizes the
standard deviation of the composite betweenness distribution
seems to be biased towards the minimum-delay solution. This
is justified by the fact that this strategy considers to be optimal
the specific route-combination that utilizes no intermediate
MRs in the construction of all the routes, while in its absence
it will identify as optimal the same route-combination as
the strategy aiming for maximizing the normalized entropy,
yielding max{H̄}. This explains the trend that the min{σ }-
strategy exhibits lower average delay in Fig. 16a and a
higher average power consumption in Fig. 16b than those of
the max{H̄}-strategy for networks having less than 8 MRs.
By contrast, for a higher number of MRs the performance
of the min{σ }-strategy asymptotically converges to that of
the max{H̄}-strategy. Explicitly, as the number NMR of MRs
increases, the probability of forming a Pareto-optimal route-
combination without the involvement of intermediate MRs
decreases, since the MCs tend to become more distant in
terms of the number of hops, as the network becomes pop-
ulated by more MRs.

Additionally, we can observe both in Fig. 16a and in
16b that the proposed maximum-entropy strategy yielding
max{H̄} exhibits an average delay that is about 0.3 hops lower
that of the strategy minimizing the average power consump-
tion, namely min{P̄}, for networks having NMR = 5 MRs.
This performance-discrepancy widens, as the number ofMRs
increases, reaching a reduction of 0.5 hops for networks hav-
ing NMR = 10 MRs. Naturally, this reduction comes at a cost
of about 0.3 dB in terms of the average power consumption, as
observed in Fig. 16b. Explicitly, this delay reduction exhibits
an underlying trade-off among the max{H̄}, the min{P̄} and
the min{D̄} strategies: the normalized composite entropy
asymptotically converges to the uniform distribution, as and
when more MRs become involved as intermediate relays and
reaches its minimum divergence for the route-combination of
the max{H̄} strategy. From this point onwards, an increase
in the number of MRs results in the central MRs becoming
bottlenecks, hence driving the normalized composite entropy
further away from the uniform distribution.

As for the NSGA-II performance we can observe that it
fails to converge to the Pareto-optimal route-combinations of
the MODQO algorithm owing to the latter’s extremely low
complexity. More specifically, based on Figs. 16a and 16b,
we can clearly observe that the route-combinations of all
four strategies identified by the NSGA-II are dominated by
the respective ones identified by the MODQO algorithm for
networks having more thanNMR = 7MRs. More specifically

FIGURE 17. Average normalized entropy of the normalized composite
betweenness H̄[B̄com(S)] (a) and standard deviation of the normalized
composite betweenness σB̄com

(b) for both the MODQO algorithm and
the NSGA-II for networks having from 5 to 10 MRs and 16 MCs. The
NSGA-II initialization parameters are presented in Table 7. The results
have been averaged over 108 runs.

for networks havingNMR = 10MRs, theMODQO algorithm
achieves a power-reduction of at least 4 dB and a delay-
reduction of at least 1.5 hops at the same number of CFEs.
Therefore, we can conclude that our proposedMODQO algo-
rithm exhibits a better performance versus complexity trade-
off associated with identifying the Pareto-optimal solutions.

Subsequently, the evaluation to the networks’ load bal-
ancing performance is characterized in Figs. 17a and 17b in
terms of the normalized entropy of the normalized compos-
ite betweenness distribution and the distribution’s standard
deviation, respectively. In a nutshell, we can observe that a
more efficient load balancing is performed, as the number of
MRs increases. The strategy minimizing the average network
delay constitutes an exception. On the one hand it exhibits
the lowest value of H̄ (B̄com) yielding that its respective route-
combinations’ B̄com distribution deviates more substantially
from the uniform distribution, based on Fig 17a. On the other
hand, as we can observe in Fig. 17b, this specific strategy
exhibits a lower standard deviation for the B̄com distribution
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in networks having NMR = 5 MRs, owing to the inclusion
of direct routes relying on no intermediate relays, which in
turn exhibit zero standard deviation. However, as the num-
ber NMR of MRs increases, the probability of these specific
routes being identified as Pareto-optimal decreases, yielding
an increase in the associated standard deviation, which then
obeys the trend of the rest of the strategies. This standard devi-
ation trend is observed in Fig. 17b for the min{σ } strategy,
where the standard deviation is seen to increase for networks
havingNMR = 7 up toMRs and then decreases as the number
of MRs increases further. We note that the respective value of
H̄ (B̄com) seen in Fig. 17a for the route-combinations exported
by this strategy is lower than those of both the max{H̄} and
max{P̄} strategies. This exhibits a poorer resemblance to the
uniform distribution of the min{σ } as well as to the max{H̄}
and max{P̄} strategies.
Finally, as far as the NSGA-II algorithm is concerned, we

can observe in both Figs. 17a and 17b that they exhibit a far
better load balancing performance than the MODQO algo-
rithm for all the strategies examined. This is justified by the
fact that the route-combinations exported by the NSGA-II do
not comply with the constraint of Eq. (22), since the Pareto-
optimal route-combinations identified the NSGA-II are sub-
optimal in comparison to the respective ones identified by the
MODQO algorithm. This results in an excessive involvement
of MRs for the sake of approximating the uniform distribu-
tion, which leads to both an excessive delay and an excessive
power consumption. Based on this fact, we can infer that load
balancing tends to degrade both the average network delay
and the average power consumption. Naturally, based on the
problem formulation in Eq. (22), load balancing is imposed
as a secondary optimization objective, whilst the constraint
of Eq. (22) constitutes the primary optimization criterion,
since it forces the optimization to additionally perform load
balancing, while explicitly considering Pareto-optimal route-
combinations.

VI. CONCLUSIONS
In this treatise, we have proposed an optimal quantum-
assisted algorithm, namely the MODQO algorithm, for
addressing the joint multi-objective routing and load balanc-
ing problem in socially-aware networks. The MODQO algo-
rithm benefits from both a framework exploiting the synergies
between the QP and HP, which is inherited by the NDQIO
algorithm as well as from the novel database transformation
framework advocated. The latter succeeds in transforming
the strongly correlated database into a series of weakly cor-
related ones, where the QP and HP synergistic framework
exploits the optimality of Grover’s QSA [48]. Additionally,
we have analytically proven that this transformation has no
negative impact on the MODQO accuracy. Furthermore, we
have introduced a novel socially-aware metric for character-
izing the load balancing, namely the normalized entropy of
the normalized composite betweenness distribution. We have
also demonstrated that it succeeds in mitigating the biasing

towards the minimum delay solution incurred by the employ-
ment of the standard deviation of the respective distribu-
tion. Furthermore, we have characterized the computational
complexity in terms of the number of CFEs imposed by the
MODQO algorithm, which is on the order of O(

√
N ) and

O(N
2N 2

MC
MR ) for networks having NMR MRs and NMC MCs in

the best- and the worst-case scenarios, respectively. Explic-
itly, we have achieved a significant complexity reduction
compared to the exhaustive search, which is on the order of
O(N 2N 2

MC ), with N � NMR being the total number of Hamil-
tonian routes between a pair of specific users. Additionally,
we demonstrated using extensive simulations that the average
complexity of the MODQO algorithm is multiple orders of
magnitude lower than that of the exhaustive search. Finally,
we have compared the MODQO algorithm’s accuracy to that
of the NSGA-II [32], [49], which constitutes the state-of-
the-art for socially-oblivious networks, for a scenario where
the network is sufficiently densely populated by MCs, i.e.
we have NMC = 16 MCs and have demonstrated that our
proposed MODQO algorithm is capable of improving both
the delay and the power consumption by about 2 hops and
4 dB, respectively, for networks having 10 routers, when com-
pared to the NSGA-II. This trend suggests that the MODQO
algorithm exhibits a better complexity versus accuracy trade-
off than the NSGA-II.

APPENDIX
PROOF OF PROPOSITION 1

Proof: Let us assume that the solution S =

[x(1), . . . , x(j), . . . , x(Nr )] of the composite Pareto-optimality
problem is Pareto-optimal and that the independent solutions
{x(n)} are Pareto-optimal in their respective independent prob-
lems except for the solution x(j), which is suboptimal in its
respective independent problem. Hence, there exits a solution

x ′(j) such that fj(x ′
(j)) � fj(x(j)), i.e. we have:

fk (x(j)) ≥ fk (x ′
(j)), ∀n ∈ {1, . . . ,K }. (102)

Therefore, if we multiply Eq. (102) by the factor ak,j and add
the terms ak,nfk (x(n)) associated with n 6= j, we will have
∀k ∈ {1, . . . ,K }:

Nr∑
n=1

ak,nfk (x(n))≥
Nr∑
n = 1
n 6= j

ak,nfk (x(n))+ ak,jfk (x ′
(j)), (103)

which can be written in the following compact form:

fk (S) ≥ fk (S ′), ∀k ∈ {1, . . . ,K } (104)

where S ′ = [x(1), . . . , x ′(j), . . . , x(Nr )]. Additionally, since
x ′(j) strongly dominates the solution x(j), we have that ∃k ′ ∈
{1, . . . ,K } such that:

fk ′ (x
(j)) > fk ′ (x

′(j)). (105)

If we now multiply Eq. (105) by the factor ak ′,j and add
the terms ak ′,nfk ′ (x(n)) with n 6= j, we will have for this
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specific k ′:
Nr∑
n=1

ak ′,nfk ′ (x
(n))>

Nr∑
n = 1
n 6= j

ak ′,nfk ′ (x
(n))+ ak ′,jfk ′ (x

′(j)), (106)

which can be written in the following compact form:

∃k ′ ∈ {1, . . . ,K } : fk ′ (S) > fk ′ (S
′). (107)

Hence, observe that Eqs. (104) and (107) encapsulate the
two critical conditions so that f(S ′) � f(S), based on Defini-
tion 1, yielding that the initial assumption of having S ∈ SOPF

is invalid. Hence, we have S = [x(1), . . . , x(Nr )] ∈ SOPF only
if x(n) ∈ SOPFn , ∀n ∈ {1, . . . ,Nr }. Therefore, all members of
SOPF are contained in the union of the sets

{
SOPFn

}Nr
n=1, hence

proving the claim of Eq. (40).
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