
Received October 8, 2016, accepted October 28, 2016, date of publication November 15, 2016, date of current version January 27, 2017.

Digital Object Identifier 10.1109/ACCESS.2016.2628801

A Scalable Turbo Decoding Algorithm for
High-Throughput Network-on-Chip
Implementation
RA’ED AL-DUJAILY1, AN LI1, ROBERT G. MAUNDER1, TERRENCE MAK2, (Member, IEEE),
BASHIR M. AL-HASHIMI2, (Fellow, IEEE), AND LAJOS HANZO, (Fellow, IEEE)
1Southampton Wireless, School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, U.K.
2Electronic and Software Systems Research Group,University of Southampton, Southampton, SO17 1BJ, U.K.

Corresponding author: L. Hanzo (lh@ecs.soton.ac.uk)

This work was supported in part by EPSRC, Swindon, U.K. under Grant EP/J015520/1 and Grant EP/L010550/1 and in part by TSB,
Swindon, U.K. under Grant TS/L009390/1. The research data for this paper is available at http://dx.doi.org/10.5258/SOTON/397738.

ABSTRACT Wireless communication at near-capacity transmission throughputs is facilitated by employing
sophisticated Error Correction Codes (ECCs), such as turbo codes. However, real-time communication at
high transmission throughputs is only possible if the challenge of implementing turbo decoders having
equally high processing throughputs can be overcome. Furthermore, in many applications, turbo decoders
are required to have the flexibility of supporting a wide variety of turbo code parametrizations. This
motivates the implementation of turbo decoders using networks-on-chip (NoCs), which facilitate flexible
and high-throughput parallel processing. However, turbo decoders conventionally operate on the basis of the
Logarithmic Bahl-Cocke-Jelinek-Raviv (Log-BCJR) algorithm, which has an inherently serial nature, owing
to its data dependencies. This limits the exploitation of the NoC’s computing resources, particularly as the
size of the NoC is scaled up.Motivated by this, we propose a novel turbo decoder algorithm, which eliminates
the data dependencies of the Log-BCJR algorithm and, therefore, has an inherently parallel nature. We show
that by jointly optimizing the proposed algorithm with the NoC architecture, a significantly improved utility
of the available computing resources is achieved. Owing to this, our proposed turbo decoder achieves a factor
of up to 2.13 higher processing throughput than a Log-BCJR bench marker.

INDEX TERMS Turbo codes, BCJR, network-on-chip, performance evaluation.

LIST OF ACRONYMS
3GPP 3rd Generation Partnership Project
ASIC Application Specific Integrated Circuit
ASIP Application-Specific Instruction-set Processor
AWGN Additive White Gaussian Noise
BCJR Bahl-Cocke-Jelinek-Raviv
BER Bit Error Rate
BPSK Binary Phase Shift Keying
CC Clock Cycle
DOR Dimension-Ordered Routing
ECC Error Correction Code
FIFO First In First Out
FPGA Field Programmable Gate Array
GPU Graphical Processing Unit
IC Integrated Circuit
IP Intellectual Property
LDPC Low-Density Parity-Check
LLR Log-Likelihood Ratio

Log-BCJR Logarithmic Bahl-Cocke-Jelinek-Raviv
LTE Long-Term Evolution
NI Network Interface
NoC Network on Chip
RA Repeat Accumulate
WiMAX Worldwide Interoperability for Microwave

Access

LIST OF SYMBOLS
N Number of bits in each message frame
M Number of trellis states
P Number of windows in each frame
K Number of bits in each window
I Number of iterations
Pr Probability
Eb/N0 Normalized signal to noise ratio per bit
Eb Energy per bit

9880
2169-3536
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 4, 2016

R. Al-Dujaily et al.: Scalable Turbo Decoding Algorithm

N0 Noise power spectral density
b1 Frame of message bits
b2 Frame of parity bits
b3 Frame of systematic bits
b̄1 Frame of received message soft bits
b̄2 Frame of received parity soft bits
b̄3 Frame of received systematic soft bits
αk Forward state metrics
βk Backward state metrics
γk A priori branch metrics
δk A posteriori branch metrics
π Interleaver
π−1 De-interleaver
a Superscript denoting a priori information
e Superscript denoting extrinsic information
u Superscript denoting upper decoder
l Superscript denoting lower decoder
p Superscript denoting a posteriori information
k Subscript denoting the bit index in a frame

I. INTRODUCTION
During the last two decades, wireless communication has
been revolutionized by turbo codes [1] and other iterative
ECCs, such as Low Density Parity Check (LDPC) [2] and
Repeat Accumulate (RA) codes [3]. Like these other iterative
ECCs, turbo codes provide resilience to the transmission
errors that are caused by noise, interference and fading dur-
ing wireless communication. This is achieved by using a
turbo encoder to process each frame of message bits before
their transmission, and then employing a corresponding turbo
decoder in the receiver to detect and correct transmission
errors. In contrast to non-iterative ECCs, the error correction
capability of turbo codes is so strong that they facilitate reli-
able communication, even when employing a transmission
throughput that closely approaches the theoretical capacity
of the wireless channel. However, in order to facilitate real-
time communication with a high transmission throughput,
the turbo encoder and decoder must be designed to have
equally high processing throughputs. This is a particular
challenge when designing the turbo decoder, since its com-
plexity is typically much higher than that of the encoder,
which is almost insignificant in comparison. Furthermore,
in many wireless communication applications, the design of
turbo decoders with high processing throughputs is com-
plicated by the requirement to support numerous different
turbo code parametrizations. For example, the turbo decoder
employed by the Long Term Evolution (LTE) standard [4]
for cellular telephony is required to support 188 different
parametrizations, each corresponding to a different message
frame length in the range spanning from 40 to 6144 bits.
Furthermore, state-of-the-art mobile devices typically sup-
port numerous wireless communication standards, each
employing different turbo code parametrizations, or different
iterative ECCs altogether. This motivates the employment of
high-throughput Application-Specific Instruction-set Proces-
sors (ASIPs), allowing mobile devices to flexibly employ

the same hardware to implement various turbo decoders and
other iterative ECC decoders.

In recent years, the continued scaling of integration tech-
nologies has enabled the implementation of hundreds or even
thousands of ASIPs within a single Integrated Circuit (IC),
hence facilitating flexible high-throughput processing. How-
ever, to avoid a bottleneck the structure of interconnecting
these ASIPs has to be carefully designed. This becomes
a particular challenge as the amount of inter-ASIP com-
munication is increased beyond the bandwidth of classical
models of on-chip interconnection, such as point-to-point
and bus-based connections. This motivates a NoC architec-
ture [5], which comprises a network of ASIPs, each hav-
ing a router that is connected to those of the neighboring
ASIPs. Communication among the ASIPs is achieved using
packet-switching, whereby the messages are dynamically
routed from the source ASIP to the destination ASIP along
a path formed of interconnected routers. Recently, NoCs
have been proposed [6]–[9] as the basis of multi-core ICs
for implementing flexible, high-throughput turbo decoders.
These efforts have focused on optimizing the NoC architec-
ture to suit the Log-BCJR algorithm [10], [11], which is the
basis of a conventional turbo decoder’s operation. However,
in this paper we show that the inherently-serial nature of the
Log-BCJR algorithm’s data dependencies results in a low
utility of a NoC’s computing resources, as the number of
ASIPs is scaled up.

Against this background, this paper proposes a novel turbo
decoding algorithm, which eliminates the data dependencies
of the Log-BCJR algorithm. This grants the turbo decoder
an inherently-parallel nature, which is better suited to NoC-
implementations. In particular, we propose a novel technique
for self-regulating the exchange of information within the
NoC, in order to avoid congestion. More specifically, rather
than adhering to rigidly-defined schedules like that of the con-
ventional Log-BCJR turbo decoding algorithm, the operation
of each ASIP in the NoC is adapted in response to the delivery
of information across the NoC. Each ASIP makes the most
beneficial and timely use of the delivered information, hence
maximizing the quality of the information that it generates
for delivery over the NoC. The delivery of that information
to the connected ASIP stimulates its operation, causing the
schedule to cascade organically, with the processing stim-
ulating the networking and the networking stimulating the
processing. Compared to the classic Log-BCJR benchmarker,
the proposed turbo decoder achieves a significantly improved
utility of the NoC’s computing resources. Owing to this,
our proposed turbo decoder achieves a significantly higher
processing throughput than the Log-BCJR benchmarker, par-
ticularly as the number of ASIPs in the NoC is scaled up.

The rest of this paper is organized as follows. Section II
reviews our previous work [12]–[15] on the fully-parallel
turbo decoder, which forms the basis of the proposed algo-
rithm. Following this, our novel NoC-optimized turbo decod-
ing algorithm is proposed in Section III of this paper. Fur-
thermore in Section IV of this paper, we propose a NoC

VOLUME 4, 2016 9881

R. Al-Dujaily et al.: Scalable Turbo Decoding Algorithm

FIGURE 1. Schematic characterizing the proposed turbo decoding algorithm for NoC implementation.

architecture, which we jointly optimize with the proposed
turbo decoding algorithm. We present our simulation results
in Section V, before we offer our conclusions in Section VI.

II. BACKGROUND
In this section, we provide a background discussion on the
computations performed by the fully-parallel turbo decoding
algorithm of our previous work [12]–[15], which serve as the
basis of the novel NoC-optimized turbo decoding algorithm
of Section III. We commence by introducing our notation in
Section II-A. The schematic of a turbo decoder is described
in Section II-B. Following this, Section II-C describes the
preprocessing invoked for initializing the turbo decoder.
The proposed NoC-optimized turbo decoding algorithm of
Section III operates on the basis of algorithmic blocks, which
are described in Section II-D.

A. PRELIMINARIES
In this section, we introduce the notation used throughout
this paper when referring to the operation of the LTE turbo
encoder and the turbo decoder. The LTE turbo encoder [4]
may be employed to encode a frame [bu1,k]

N
k=1 comprising N

message bits, each having a binary value bu1,k ∈ {0, 1}. Here,
188 different values in the range spanning from 40 to 6144
are supported for the frame length N . The message frame
[bu1,k]

N
k=1 is provided to an upper convolutional encoder.

In response, this produces a frame [bu2,k]
N
k=1 comprising N

parity bits, as well as a frame [bu3,k]
N
k=1 comprisingN system-

atic bits. In addition to this, the upper convolutional encoder
produces three termination message bits [bu1,k]

N+3
k=N+1, as well

as three termination parity bits [bu2,k]
N+3
k=N+1. Meanwhile, the

message frame [bu1,k]
N
k=1 is interleaved, in order to obtain

the interleaved message frame [bl1,k]
N
k=1. This is provided

to a lower convolutional encoder, which produces a frame
[bl2,k]

N
k=1 comprising N parity bits, as well as three ter-

mination message bits [bl1,k]
N+3
k=N+1 and three termination

parity bits [bl2,k]
N+3
k=N+1. Note that the lower convolutional

encoder does not produce any systematic bits. The LTE

turbo encoder has a coding rate of R = N/(3N + 12)
since it outputs a total of (3N + 12) bits, namely [bu2,k]

N
k=1,

[bu3,k]
N
k=1, [b

l
2,k]

N
k=1, [b

u
1,k]

N+3
k=N+1, [b

u
2,k]

N+3
k=N+1, [b

l
1,k]

N+3
k=N+1

and [bl2,k]
N+3
k=N+1. Throughout the remainder of this paper,

the superscripts ‘u’ and ‘l’ are used only when necessary to
explicitly distinguish the upper and lower components of the
turbo code, but they are omitted when the discussion applies
equally to both.

Following their modulation and transmission over a wire-
less channel, the (3N+12) turbo-encoded bits may be demod-
ulated and provided to the turbo decoder. Owing to the effect
of noise in the wireless channel however, the demodulator
will be uncertain of the correct values for these turbo-encoded
bits. Therefore, instead of providing a hard-valued decision
for each bit, the demodulator provides soft-valued decisions,
in the form of a prioriLogarithmic LikelihoodRatios (LLRs).
More specifically, the a priori LLR pertaining to the bit bj,k
is defined by

b̄aj,k = ln
Pr(bj,k = 1)
Pr(bj,k = 0)

. (1)

In this notation, the diacritical bar indicates a soft-valued
decision, while the superscript ‘a’ corresponds to a priori
information. In the remainder of this paper, the alternative
superscripts ‘e’ and ‘p’ are used to indicate extrinsic and a
posteriori information, respectively.

B. SCHEMATIC
The algorithm proposed for the NoC implementation of the
LTE turbo decoder may be characterized by the schematic
of Figure 1, which is provided with (3N + 12) a priori
LLRs, namely [b̄u,a2,k]

N
k=1, [b̄

u,a
3,k]

N
k=1, [b̄

l,a
2,k]

N
k=1, [b̄

u,a
1,k]

N+3
k=N+1,

[b̄u,a2,k]
N+3
k=N+1, [b̄l,a1,k]

N+3
k=N+1 and [b̄l,a2,k]

N+3
k=N+1. As shown in

Figure 1, these a priori LLRs are input to the algorithmic
blocks arranged in two rows, each comprising (N + 3) algo-
rithmic blocks. Here, each algorithmic block operates on the
basis of the LTE turbo code’s state transition diagram, which
is depicted in Figure 2.

9882 VOLUME 4, 2016

R. Al-Dujaily et al.: Scalable Turbo Decoding Algorithm

FIGURE 2. State transition diagram of the LTE turbo code, depicting all
legitimate transitions between the M = 8 possible values of the previous
state Sk−1 ∈ {0,1,2, . . . ,M − 1} and the subsequent state
Sk ∈ {0,1,2, . . . ,M − 1}. The binary value c(Sk−1,Sk) ∈ {0,1} indicates
whether a transition between the states Sk−1 and Sk is legitimate. Each
legitimate transition implies message, parity and systematic bit values of
b1(Sk−1,Sk) ∈ {0,1}, b2(Sk−1,Sk) ∈ {0,1} and b3(Sk−1,Sk) ∈ {0,1},
respectively.

Note that the first N algorithmic blocks in each row
of Figure 1 are interconnected through the interleaver. During
the turbo decoding process, these algorithmic blocks operate
as described in Section II-D. They exchange LLRs in an
iterative manner, which is suited to the implementation of
the NoC, as described in Section III. However, before com-
mencing this iterative decoding process, it must initialized
using a small amount of preprocessing. More specifically,
the last three algorithmic blocks in each row are isolated and
only have to be operated once, before the iterative decoding
process commences. This may be performed externally to the
NoC, as described in Section II-C.

C. PREPROCESSING
Before iterative decoding is commenced, the last three
algorithmic blocks in each row of Figure 1 apply some pre-
processing to the LLRs [b̄a1,k]

N+3
k=N+1 and [b̄a2,k]

N+3
k=N+1, which

pertain to the termination bits. These LLRs are converted into
the state metrics [β̄k]

N+2
k=N , where β̄k = [β̄k (Sk)]

M−1
Sk=0

pertains
to the M = 8 possible values of the state Sk , as shown in
Figure 2. This is achieved using the conventional Log-BCJR’s
backwards recursion, which commences with the operation
of the algorithmic block having the index k = N + 3, before
activating the blockwith index k = N+2 and then concluding
with the operation of the block having the index k = N + 1.
When operating each of these algorithmic blocks, an a priori
metric is computed for each of the transitions in Figure 2,
according to

γ̄k (Sk−1, Sk) =
2∑
j=1

[
bj(Sk−1, Sk) · b̄aj,k

]
, (2)

where the notation bj(Sk−1, Sk) is defined in the caption of
Figure 2. Following this, an extrinsic backwards metric is
computed for each of the M = 8 possible states in Figure 2,
according to

β̄k−1(Sk−1) = max*
{Sk |c(Sk−1,Sk)=1}

[
γ̄k (Sk−1, Sk)+β̄k (Sk)

]
, (3)

where the notation c(Sk−1, Sk) is defined in the caption of
Figure 2. This backwards recursion is initialized using
β̄N+3 = [0,−∞,−∞, . . . ,−∞], since termination guaran-
tees having a final state of SN+3 = 0. Note that (3) employs
the Jacobian logarithm of [16], which is defined for two
operands as

max*(δ̄1, δ̄2) = max(δ̄1, δ̄2)+ ln
(
1+ e−|δ̄1−δ̄2|

)
(4)

and may be extended to more operands by exploiting its asso-
ciative property. The above process generates the state met-
rics β̄N of Figure 1, which are used throughout the iterative
decoding process of Section III. Note that the state metrics
ᾱ0 = [0,−∞,−∞, . . . ,−∞] are also used throughout the
iterative decoding process, since the initial state of S0 = 0 is
guaranteed.

D. ALGORITHMIC BLOCK OPERATION
As described in Section II-B, the proposed turbo decoder
algorithm operates the first N algorithmic blocks in each row
according to a novel iterative decoding schedule, as will be
described in Section III. Regardless of when an algorithmic
block is activated during this schedule, its operation follows
the same process, as detailed in the following discussion.

Whenever the block in the upper row having the index
k ∈ {1, 2, 3, . . . ,N } is operated during this iterative process,
it accepts L = 3 a priori LLRs as inputs, as shown in
Figure 1. More specifically, the block accepts the a priori
message LLR b̄u,a1,k that has beenmost recently provided by the
interleaver, while the a priori parity and systematic LLRs b̄u,a2,k
and b̄u,a3,k are accepted from the demodulator. By contrast, the
block in the lower row having the index k ∈ {1, 2, 3, . . . ,N }
accepts only L = 2 a priori LLRs when it is operated,
namely the a priori message and the a priori parity LLRs
b̄l,a1,k and b̄

l,a
2,k . Furthermore, each block having the index k ∈

{1, 2, 3, . . . ,N } accepts the vector of a priori forward state
metrics ᾱk−1 = [ᾱk−1(Sk−1)]

M−1
Sk−1=0

, as well as the vector of

a priori backward state metrics β̄k = [β̄k (Sk)]
M−1
Sk=0

that have
been most recently provided by the neighboring algorithmic
blocks. Note that at the start of the iterative decoding process,
zero values are employed for the above-mentioned inputs
if the interleaver or the neighboring blocks have not yet
provided any updated values. The operation of each block
having the index k ∈ {1, 2, 3, . . . ,N } is completed using
the equations provided in (5) – (8). More specifically, (5) is
employed for combining the inputs, in order to obtain an a
posteriori metric δ̄(Sk−1, Sk) for each transition in the state
transition diagram of Figure 2. These a posteriori transition
metrics are then combined by (6), (7) and (8), in order to

VOLUME 4, 2016 9883

R. Al-Dujaily et al.: Scalable Turbo Decoding Algorithm

produce the vector of extrinsic forward state metrics
ᾱk = [ᾱk (Sk)]

M−1
Sk=0

, the vector of extrinsic backward state
metrics β̄k−1 = [β̄k−1(Sk−1)]

M−1
Sk−1=0

and the extrinsic mes-
sage LLR b̄e1,k , respectively. These extrinsic state metrics are
provided for the neighboring algorithmic blocks, while the
extrinsic message LLR b̄e1,k is provided for the interleaver π ,
so that it can be delivered to a block in the other row and used
as an a priori message LLR, where b̄l,a1,k = b̄u,e1,π (k).

III. TURBO DECODING ALGORITHM PROPOSED
FOR NoC IMPLEMENTATION
In this section, we propose our novel NoC-optimized
algorithm for the implementation of the LTE turbo
decoder [4]. This is achieved by scheduling the computations
of the algorithmic blocks described in Section II-D in a
manner that is particularly suited to NoC operation. This is
possible, since the algorithmic blocks of Section II-D are
not bound by a strict scheduling that requires their operation
according to forward and backward recursions, as in the
conventional Log-BCJR turbo decoding algorithm [17]. In
our previous work [12]–[15], this property was exploited
to achieve fully-parallel operation, in which all algorithmic
blocks are operated concurrently, in every clock cycle. More
specifically, while [12] introduced the fully-parallel turbo
decoding algorithm, [13]–[15] considered the implementa-
tion of that algorithm in Application Specific Integrated
Circuit (ASIC), Field Programmable Gate Array (FPGA) and
Graphical Processing Unit (GPU) applications, respectively.
In contrast to this previous work, the novel scheduling pro-
posed in this section is specifically designed for mapping
onto an NoC, in which each ASIP performs the operations
of Section II-D for different algorithmic blocks in different
Clock Cycles (CCs). In particular, the proposed scheduling
self-regulates the exchange of information within the NoC,
in order to avoid congestion, where the operation of each
ASIP in the NoC is adapted in response to the arrival of infor-
mation delivered by the NoC. More specifically, rather than
scheduling the operation of the algorithmic blocks according
to strict forward and backward recursions, the proposed turbo
decoder algorithm schedules their operation according to the
exchange of information within the NoC. Here, the operation
of the algorithmic blocks generates information for delivery
over the NoC, while the delivery of that information to the
connected algorithmic blocks stimulates their operation and
so on. In this way, the processing stimulates the networking
and the networking stimulates the processing, causing the
schedule to grow organically.

As described in Section II-B, the iterative decoding process
of the proposed turbo-decoding algorithm may be completed
using an NoC, comprising an interconnected network of
Intellectual Property (IP) cores. Here, each IP core is respon-
sible for the operation of a different subset of the first N
algorithmic blocks in each row of Figure 1. We refer to
these subsets as windows, with each window comprising K
number of adjacent algorithmic blocks, as shown in Figure 3.

We assume that the IP cores are sufficiently powerful or
are specifically designed for requiring only a single clock
cycle for completing the processing of (5) – (8) for a single
algorithmic block, as detailed in Section II-D. Note however
that this implies that multiple algorithmic blocks within the
same window cannot be operated concurrently. During the
first (2K − 1) CCs, the iterative decoding process is ini-
tialized by performing a forward recursion and then a back-
ward recursion within each window of the upper row. More
specifically, as shown in Figure 3(a), the forward recursion
invokes the operations of Section II-D for the jth algorithmic
block in each window of the upper row during the jth clock
cycle, where j ∈ {1, 2, 3, . . . ,K − 1}. Following this, the
backward recursion invokes the operations of Section II-D for
the (2K − j)th algorithmic block during the jth clock cycle,
where j ∈ {K ,K + 1,K + 2, . . . , 2K − 1}. Note that the
extrinsic LLRs b̄u,e1,k that are generated during the forward
recursion are discarded and that only those obtained during
the backward recursion are provided to the interleaver. In the
NoC, interleaving is achieved by appropriately routing the
extrinsic LLRs between IP cores, which may take several
CCs, depending both on the path length and on the level of
congestion.

As shown in Figure 3(b), whenever the interleaving of
an extrinsic LLR is completed throughout the remainder
of the iterative decoding process, the resultant a priori
LLR b̄a1,k is immediately processed in that jth clock cycle
by the corresponding algorithmic block, as described in
Section II-D. However, the resultant extrinsic LLR b̄e1,k is not
provided to the interleaver, since it is extrinsic to b̄a1,k and
does not benefit from the corresponding a priori information.
Instead, the resultant extrinsic state metric vectors ᾱk and
β̄k−1 are provided for the adjacent algorithmic blocks, having
the indices of k + 1 and k − 1, respectively. In the following
(j+1)st clock cycle of Figure 3(b), one of these extrinsic state
metric vectors is processed as described in Section II-D by
the corresponding adjacent algorithmic block, provided that
it resides within the same window as the block with index k .
Here, a random selection is employed, if both adjacent blocks
reside within the same window as the block with index k .
Finally, it is the extrinsic LLR b̄e1,k+1 or b̄e1,k−1 produced
by this adjacent algorithmic block that is provided for the
interleaver. In this way, the delivery of each LLR through
the interleaver stimulates the generation of another LLR,
dynamically regulating the level of congestion within the
NoC.

Owing to the delays imposed by the interleaver, there may
be CCs in which none of the algorithmic blocks within a
particular window is engaged in the dynamically-regulated
process described above. During these CCs, it is still bene-
ficial to perform the operations of Section II-D for the algo-
rithmic blocks within the window, so that information may be
propagated using the extrinsic state metrics. In this way, the
IP core dedicated to each window is able to perform useful
computations in every clock cycle, achieving a hardware
resource utility of 100%. Note however that the interleaver

9884 VOLUME 4, 2016

R. Al-Dujaily et al.: Scalable Turbo Decoding Algorithm

The turbo decoding algorithm proposed for NoC implementation.

δ̄k (Sk−1, Sk) =

 L∑
j=1

[
bj(Sk−1, Sk) · b̄aj,k

]+ ᾱk−1(Sk−1)+ β̄k (Sk) (5)

ᾱk (Sk) =
[

max*
{Sk−1|c(Sk−1,Sk)=1}

[
δ̄k (Sk−1, Sk)

]]
− β̄k (Sk) (6)

β̄k−1(Sk−1) =
[

max*
{Sk |c(Sk−1,Sk)=1}

[
δ̄k (Sk−1, Sk)

]]
− ᾱk−1(Sk−1) (7)

b̄ej,k =
[

max*
{(Sk−1,Sk)|bj(Sk−1,Sk)=1}

[
δ̄k (Sk−1, Sk)

]]
−

[
max*

{(Sk−1,Sk)|bj(Sk−1,Sk)=0}

[
δ̄k (Sk−1, Sk)

]]
− b̄aj,k (8)

FIGURE 3. Data flow within a single window of the proposed NoC implementation for the cases of
(a) performing the first half-iteration, (b) participating in the dynamically regulated iterative decoding process
and (c) remaining active when the window would otherwise be idle. The clock cycle index j is shown in the
curly brackets.

is not provided with the extrinsic LLRs that are produced
when operating algorithmic blocks in this way, since this
would cause excessive congestion in the NoC. As shown
in Figure 3(c), during these otherwise-unutilized CCs, pri-
ority is given to propagating the information within the
a priori LLR b̄a1,k that has been most recently provided by the

interleaver. This is achieved by performing the operations of
Section II-D for the algorithmic blocks within the window
in order of decreasing proximity to the k th block, alter-
nating between the blocks in the forward and backward
directions. This propagation is halted once all of the blocks
in the window have been operated, or if the interleaver

VOLUME 4, 2016 9885

R. Al-Dujaily et al.: Scalable Turbo Decoding Algorithm

provides the window with another a priori LLR, whereupon
the above-described process is restarted.When not employing
otherwise-unutilized CCs for propagating the information
supplied by a priori LLRs, these CCs may be used to prop-
agate information supplied by the adjacent windows. More
specifically, when the algorithmic blocks at the adjoining
ends of the adjacent windows are operated as described in
Section II-D, they will provide updated a priori state metrics
ᾱkfirst−1 or β̄klast . Here, kfirst and klast are the indices of the
first and last algorithmic blocks in the window considered.
The information provided by ᾱkfirst−1 may be propagated
by using a forward recursion to perform the operations
of Section II-D for the algorithmic blocks in the window
in ascending order of index k . Likewise, a backward recur-
sion may be employed to operate the algorithmic blocks in
decreasing order of index k and propagate the information
provided by β̄klast . These recursions are halted once all of the
blocks in the window have been operated, or if the window is
provided with an updated a priori LLR or state metric ᾱkfirst−1
or β̄klast , whereupon the corresponding above-mentioned
process is restarted.

Following the completion of the iterative decoding process,
the a posteriori LLRs {b̄u,p1,k}

N
k=1 may be obtained according

to b̄u,p1,k = b̄u,a1,k + b̄
u,e
1,k . A hard-decision may be imposed upon

these a posteriori LLRs in order to obtain the bits {b̂u1,k}
N
k=1,

where each bit value is obtained as the result of a binary test
b̂u1,k = b̄u,p1,k > 0.

IV. THE NoC PROPOSED FOR TURBO
DECODER IMPLEMENTATION
In this section, we propose anNoC platform for implementing
the proposed scalable turbo decoding algorithm of Section III.
We commence in Section IV-A by providing a brief introduc-
tion to the architecture of a typical NoC platform. Following
this, Section IV-B describes the topology of the tiles in our
proposed NoC platform and the mapping of the windows
described in Section III onto these tiles. Finally, the NoC rout-
ing employed for implementing the interleaver is described in
Section IV-C.

A. NoC ARCHITECTURE
An NoC comprises an on-chip interconnection network
between many identical nodes, each of which is so-called
a tile. A tile comprises four main components, namely an
IP core, a router, Network Interfaces (NIs) and links. The
IP cores refer to a block of reusable components, which
may be ASIPs, ASICs, FPGAs, CPUs, DSPs or memory,
for example. In order to perform inter-tile communications,
a router is employed and connected to the local IP core via
an NI in each tile, while the routers of different tiles are
connected via links, which are typically on-chip wires.

The layout pattern of the interconnections between the
on-chip components is referred to as the network topology.
Many topologies exist in the literature, ranging from the
simple shared bus [18] and ring [19] topologies, to more

complicated application-specific topologies, such as those
of [20] and [21]. The selection of an appropriate topology
depends on design constraints such as performance, area,
power, locality of traffic and quality of service. Given a
particular network topology, routing is responsible for choos-
ing a path between any two communicating nodes, which
are referred to as a source-destination pair. The careful
selection of an appropriate routing algorithm is crucial for
achieving good network performance. An effective routing
algorithm has to carefully consider load balancing, through-
put, latency, power consumption, fault-tolerance, deadlocks,
livelocks and the limited hardware resources available on
chip [22]. Although an abundance of routing algorithms have
been proposed in the literature [23], [24], they are typically
classified into three kinds, namely deterministic, oblivious
and adaptive [23].

B. TOPOLOGY AND MAPPING ONTO IP CORES
As shown in Figure 4(a), we employ a two-dimensional (2D)
mesh topology for implementing our proposed turbo decoder
NoC, since its regular grid-like structure is particularly suited
to fabrication [25], [26]. Furthermore, the proposed turbo
decoder schematic of Figure 1 is also a regular 2D structure,
which can therefore be readily mapped to an NoC employing
a 2D mesh topology. As shown in Figure 4(a), a 2D mesh
NoC having the dimensions of X by 2Y may be invoked for
decoding frames comprising N bits that are decomposed into
P number of windows, where XY = P. Accordingly, the
unshaded tiles ∈ {1, 2, 3, . . . ,XY } and the shaded tiles ∈
{XY + 1,XY + 2,XY + 3, . . . , 2XY } respectively correspond
to the upper and the lower decoders of Figure 1, wherein
each tile processes one of the P windows. Note that adjacent
windows of algorithmic blocks are mapped to adjacent tiles
in Figure 4(a), according to a pattern that meanders from side
to side in the 2D mesh topology.

The 2D mesh is employed to interleave the extrinsic LLRs
b̄e1,k that are produced by the tiles of Figure 4(a). These
are routed according to the approach of Section IV-C and
delivered to the destination tile, where they are used as the
a priori LLRs b̄a1,k . As described in Section IV-A, each tile
includes an IP core, which comprises an ASIP processor and
some memory blocks, as shown in Figure 4(b). In each clock
cycle, the ASIP performs the operations of Section II-D for a
particular one of the algorithmic blocks in the corresponding
window, depending on the delivery of the a priori LLRs b̄a1,k ,
according to the novel schedule described in Section III.More
specifically, in each unshaded tile corresponding to the upper
decoder, the ASIP processor is designed to process (5) – (8)
using L = 3, as detailed in Section II-D. As demonstrated
in [13], the ASIPmay complete these calculations for a single
algorithmic block within a single clock cycle using 75 adders
(some of which are used for maximum or subtraction opera-
tions), where the critical path is formed by a chain of 6 adders.
Furthermore, a block of memory is employed for storing all
a priori message LLRs b̄u,a1,k , all parity LLRs b̄u,a2,k and all

9886 VOLUME 4, 2016

R. Al-Dujaily et al.: Scalable Turbo Decoding Algorithm

FIGURE 4. (a) Schematic of the proposed 2D mesh NoC, having the
dimensions of X by 2Y , (b) schematic of the IP core in each tile,
(c) schematic of the router in each tile.

a priori systematic LLRs b̄u,a3,k for all algorithmic blocks in
the corresponding window. By contrast, the ASIP proces-
sors of the shaded tiles corresponding to the lower decoder

process (5) – (8) with only L = 2, requiring 74 adders with a
critical path comprising 6 adders. Accordingly, these tiles do
not require memory for storing a priori systematic LLRs b̄l,a3,k ,
as discussed in Section II-D. In addition to these LLRs, each
IP core employs another block of memory for storing both the
branch metrics δ̄k , as well as the forward state metrics ᾱk and
backward state metrics β̄k−1, as shown in Figure 4(b). Most
of these intermediate variables are produced and consumed
within the same window of algorithmic blocks and hence
within the same tile. However, as described in Section III,
when the k th = first and k th = last algorithmic blocks in a
particular window are operated, the resultant sets ofM back-
ward state metrics β̄kfirst−1 andM forward state metrics ᾱklast
must be provided to the preceding window and the following
window, respectively. Compared to the single extrinsic LLRs
that are produced at a time by each tile, these sets of state
metrics comprise M times as much data, where we have
M = 8 in the case of the LTE turbo code. However, this data
is only exchanged with a neighboring window and hence with
a neighboring tile. Therefore, in order to avoid congestion
on the 2D mesh, these sets of state metrics are exchanged
using one-hop links between adjacent tiles in our proposed
NoC implementation, which are shown as the dotted lines in
Figure 4(a) and 4(b). These single-hop links may be formed
using shared registers and links, where the size of the registers
will be specified according to the size of the forward and
backward state metrics.

C. ROUTING
The router of each tile in the proposed NoC has five bi-
directional ports, which are connected to the IP core of that
tile and to the routers of its four neighboring tiles, as shown
in Figure 4. These connections form the paths that are used
for conveying the extrinsic message LLRs b̄e1,k between the
tiles associated with the upper and the lower decoders of
the proposed turbo decoder algorithm. Note that the tiles
residing at the edges or the corners of the NoC mesh have
fewer than five ports, as shown in Figure 4. In each clock
cycle, an input may be provided to some or all of a router’s
ports, and it may provide an output to one of its ports. More
specifically, an input will be provided on the port connected
to the associated IP core, if it generates an extrinsic extrinsic
message LLR b̄e1,k during the clock cycle, as described in
Section III. Likewise, an input will be provided on a port
connected to a neighboring router, if it provides an output on
its corresponding port, as will be detailed below. As shown in
Figure 4(c), an input provided on a particular port is passed to
a corresponding First In First Out (FIFO) buffer, containing
four memory elements, where this number was found to offer
a desirable tradeoff between NoC performance and hardware
requirement [22], [27]. If the FIFO buffer is currently empty,
then this input will become immediately available at its out-
put. By contrast, if the FIFO buffer is partially full, then the
input is stored in the specific memory element representing
the end of the queue and the value stored at the start of the

VOLUME 4, 2016 9887

R. Al-Dujaily et al.: Scalable Turbo Decoding Algorithm

queue is made available at the output of the FIFO buffer.
Finally, if the FIFO buffer is totally full, then the input is
rejected and the credit out signal of Figure 4(c) is asserted,
in order to inform the source of the input. Following this,
the crossbar switch of Figure 4(c) is directed by the routing
algorithm to be discussed below for selecting the value at the
front of the queue in a particular one of the FIFO buffers. The
routing algorithm also directs the crossbar switch to clock the
selected value into the output buffer of a particular one of the
ports, ready to be provided in the next clock to the associated
IP core or a neighboring router, as appropriate. However, if
the credit in signal of Figure 4(c) is asserted by that IP core
or neighboring router, then the output buffer is not updated,
so that another attempt can be made to pass the rejected value
in the next clock cycle.

The router of Figure 4(c) employs round-robin arbitration,
to direct the crossbar switch to select which input FIFO buffer
should provide the output of the router in each clock cycle.
In successive CCs, round-robin arbitration rotates through
each input FIFO buffer in turn, skipping over any that are
empty. Furthermore, the router of Figure 4(c) employs the
deterministic Dimension-Ordered Routing (DOR) routing
algorithm of [27], which is also known as XY routing for
the 2D mesh topology. As suggested by the terminology, the
DOR algorithm transfers the LLRs from the source tile to the
destination tile in a dimension-by-dimension manner, which
readily guarantees freedom from deadlock.More specifically,
if the destination tile of an LLR has a different X co-ordinate
to that of its current location, then it is routed in the appro-
priate X direction. Otherwise, it is routed in the appropriate
Y direction, until it reaches its destination. Since the proposed
scalable turbo decoder has the feature of having self-regulated
network traffic, [27], [28] showed that the DOR routing algo-
rithm can outperform the most sophisticated-adaptive routing
algorithms, such as negative-first [29], odd-even [30] and
DyAD [31], [32].

V. RESULTS AND EVALUATION
In this section, we compare the proposed NoC turbo decoder
with the application of the conventional Log-BCJR turbo
decoder to an NoC. We commence in Section V-A by dis-
cussing the differences between the NoC implementation of
the proposed turbo decoding algorithm and the conventional
Log-BCJR decoding algorithm. Following this, we describe
the simulation tools and methodology used for their compar-
ison in Section V-B. Finally, we present the results of our
experiments in Section V-C.

A. IMPLEMENTATION OF THE BENCHMARKER
In order to serve as a benchmarker for the proposed NoC
turbo decoder, a conventional LTE turbo decoder employing
the Log-BCJR algorithm with the PIVI windowing tech-
nique [33] was also applied to the proposed NoC of Figure 4.
More specifically, this conventional turbo decoder was imple-
mented using the same topology andmapping as the proposed
parallel turbo decoding algorithm, where P tiles are used for

each of the upper and lower decoder, with each tile allocated
to the processing of one of the P windows in a frame. This
approach facilitates a direct and fair comparison, since this
topology andmapping does not particularly benefit or impede
either algorithm. In the Log-BCJR benchmarker, the IP core
in each tile is capable of processing one of the K = N/P
bits in the corresponding window per clock cycle. However,
in contrast to the proposed turbo decoding algorithm, here
the ASIP processor in the IP core is designed to process
the conventional Log-BCJR algorithm of (9) – (13), where
we have L = 3 for the upper decoder and L = 2 for
the lower decoder. Accordingly, each IP core schedules the
processing of the bits in the corresponding window across
several consecutive CCs, using a conventional Log-BCJR’s
forward recursion, followed by a backward recursion. More
explicitly, during the first (K − 1) CCs of the turbo decod-
ing process, each tile corresponding to the upper decoder
performs a forward recursion, in which (9) and (10) are
performed for the jth bit in the window during the jth clock
cycle, where j ∈ {1, 2, 3, . . . ,K − 1}. During the next K
CCs, each tile corresponding to the upper decoder performs
a backward recursion, in which (11) – (13) are performed for
the (2K − j)th bit in the jth clock cycle, where j ∈ {K ,K + 1,
K + 2, . . . , 2K − 1}. As and when the extrinsic LLRs b̄u,e1,k
are obtained during the backward recursion, they are routed
across the NoC to the tiles of the lower decoder, which may
take several CCs. At the corresponding tiles of the lower
decoder, these LLRs become the a priorimessage LLRs b̄l,a1,k
according to the interleaver π , where b̄l,a1,k = b̄u,e1,π (k). A tile
of the lower decoder may begin its forward recursion as soon
as the a priori message LLR corresponding to the first bit in
the window has been received. However, once the forward
recursion has started, it may stall while waiting for each
successive a priorimessage LLR to be received, owing to the
data dependencies of the Log-BCJR algorithm. Once a tile of
the lower decoder has completed its forward recursion, it may
perform the backward recursion during the next K successive
CCs, in order to generate extrinsic LLRs to be routed across
the NoC. When these LLRs arrive at the corresponding tiles
of the upper decoder of Figure 4(a), they become a priori
message LLRs. The rest of the iterative decoding process
continues in this manner, where stalls may be incurred during
the forward recursions of the tiles corresponding to both the
upper and lower decoder.

Note that since the tiles process the windows indepen-
dently of each other, the processing of one window may
begin earlier than another. However, the a priori message
LLRs corresponding to a particular window in either the
upper or the lower decoder are typically provided from many
different windows in the other decoder, owing to the action
of the interleaver. This tends to approximately synchronize
the processing of the windows in the benchmarker. Owing to
this, the throughput of the benchmarker tends to be limited
by the longest routes through the NoC, which cause stalls in
the forward recursion processing performed throughout the
NoC. Note that this bottleneck affecting the benchmarker’s

9888 VOLUME 4, 2016

R. Al-Dujaily et al.: Scalable Turbo Decoding Algorithm

The Log-BCJR turbo decoding algorithm.

γ̄k (Sk−1, Sk) =
L∑
j=1

[
bj(Sk−1, Sk) · b̄aj,k

]
(9)

ᾱk (Sk) = max*
{Sk−1|c(Sk−1,Sk)=1}

[γ̄k (Sk−1, Sk)+ ᾱk−1(Sk−1)] (10)

β̄k−1(Sk−1) = max*
{Sk |c(Sk−1,Sk)=1}

[
γ̄k (Sk−1, Sk)+ β̄k (Sk)

]
(11)

δ̄k (Sk−1, Sk) = γ̄k (Sk−1, Sk)+ ᾱk−1(Sk−1)+ β̄k (Sk) (12)

b̄ej,k =
[

max*
{(Sk−1,Sk)|bj(Sk−1,Sk)=1}

[
δ̄k (Sk−1, Sk)

]]
−

[
max*

{(Sk−1,Sk)|bj(Sk−1,Sk)=0}

[
δ̄k (Sk−1, Sk)

]]
− b̄aj,k (13)

FIGURE 5. The tool-chain used to evaluate the proposed NoC-optimized
turbo decoding algorithm.

processing efficiency is imposed by the data dependencies
of the Log-BCJR algorithm, which are eliminated in the
proposed NoC-optimized algorithm of Section III.

B. EVALUATION METHODOLOGY
The performance comparison of Section V-C was performed
using the tool-chain of Figure 5. Here, Noxim [34] simu-
lator was modified to simulate the traffic that is produced
by the proposed NoC. More specifically, Noxim was con-
figured to simulate the schedules used by the proposed
NoC-optimized turbo decoding algorithm of Section III and
by the benchmarker Log-BCJR algorithm of Section V-A.
In this way, Noxim became able to identify, which specific
extrinsic LLRs are generated by each tile in each clock cycle.
More specifically, by simulating the routing of these LLRs
across the NoC, Noxim could also identify which a priori
LLRs are delivered to each tile in each clock cycle and then
apply the turbo decoding schedule for determining which
extrinsic LLRs are produced in response and when. Note that
while Noxim has awareness of when the LLRs are generated
and delivered, it does not have awareness of the specific value
of these LLRs, since it does not simulate the computations
of the turbo decoding algorithms of Sections III and V-A.
Instead, the traffic traces generated by Noxim were pro-
vided for Matlab simulations of the algorithms, which were
programmed to simulate the computations of the algorithms

with consideration of when the a priori LLRs become avail-
able at each tile. These Matlab simulations were run repeat-
edly in a Monte Carlo manner, in order to characterize
the Bit Error Ratio (BER) performance of the proposed
NoC-optimized turbo decoding algorithm, as well as of the
benchmarker Log-BCJR algorithm. More specifically, after
each iteration of each run of each algorithm, our simulation
recorded the number of decoding errors observed and the
number of CCs that have elapsed so far. By averaging across
the different runs of the algorithms, the BER may be charac-
terized as functions of the number of iterations performed,
or equivalently of the number of CCs performed. During
the operation of the proposed NoC-optimized turbo decoding
algorithm of Section III, the number of ‘equivalent iterations’
is given by dividing the total number of generated extrinsic
LLRs by 2N , noting that some tiles may have generated
more extrinsic LLRs than others. In the case of the bench-
marker Log-BCJR algorithm of Section V-A, an iteration is
completed whenever a complete set of 2N extrinsic LLRs is
generated.

As shown in Figure 5, our Noxim simulations are
parametrized by the NoC topology, size, and methods of arbi-
tration and routing, which were configured as described in
Section IV. Furthermore, our Noxim and Matlab simulations
are both parametrized by the frame length N , the window
size K and the interleaver design π , as shown in Figure 5.
Here, the standard LTE interleaver designs were employed
for all simulations, while the effects of the parameters N and
K are investigated in Section V-C.

C. RESULTS AND DISCUSSIONS
In this section, we discuss the results of the comparison
between the proposed NoC turbo decoder and the application
of the conventional Log-BCJR turbo decoder to an NoC. The
hardware resource utility achieved by both implementations
is discussed in Section V-C1, while their error correction
capability is discussed in Section V-C2.

1) HARDWARE RESOURCE UTILITY
Figure 6(a) characterizes the number of CCs required by the
benchmarker NoC implementation of the LTE turbo decoder

VOLUME 4, 2016 9889

R. Al-Dujaily et al.: Scalable Turbo Decoding Algorithm

TABLE 1. A comparison between the proposed and benchmarker NoC implementations for different configurations, in terms of hardware resource utility,
error correction capability and throughput. Here, the hardware resource utility of the benchmarker is defined as CCs required per I

CCs used per I × 100%, the error

correction capability is represented by the Eb/N0 value where a BER of 10−4 is achieved and the throughput is indicated by the CCs used in order to
achieve the BER of 10−4. In each case, BPSK modulation is employed for communication over an AWGN channel.

FIGURE 6. Cycle-accurate Noxim simulation results of routing in the
proposed and benchmarker NoC implementations of the LTE turbo
decoder. (a) Number of CCs required to complete different numbers of
decoding iterations I by the benchmarker employing different frame
lengths N and window sizes K . (b) Comparison between the number of
decoding iterations completed by the benchmarker and the number of
equivalent decoding iterations completed by the proposed
implementation, in the same number of CCs.

for performing different numbers of decoding iterations I ,
when decoding frames having different frame lengths N
and window sizes K . As may be expected, the number of
CCs required for the benchmarker to complete each iteration

grows with the window size K . However, the relationship is
not entirely linear, since a larger NoC size typically results
in heavier inter-tile traffic, leading to a greater prevalence
of stalls, requiring more CCs to complete each iteration
than might otherwise be expected. Note that the NoC size
employed is in accordance with the ratio of the frame length
N and the window size K , as shown in Table 1. Owing to
this, Table 1 shows that a small-size NoC facilitates a higher
hardware resource utility for the benchmarker than a large-
size NoC for a given frame length N . Here, the utility is
quantified as CCs required per I

CCs used per I × 100%, where the number of
CCs used per I is obtained using the experimental results of
Figure 6(a), while the number of CCs required per I may be
obtained as 4K , since a single iteration comprises two half-
iterations, which includes a K -clock-cycle forward recursion
and a K -clock-cycle backward recursion. Note that although
a small-size NoC implementation achieves a better hardware
resource utility than a large-size NoC implementation, the
required overall CCs per iteration of Figure 6(a) is typically
worse, owing to the employment of a large window size K .

By contrast, our proposed NoC implementation achieves
a constant hardware resource utility of 100% all the time,
regardless of the frame length N , the window size K and the
NoC size. This is due to its elimination of the Log-BCJR
data dependencies, allowing it to avoid the stalls that are
incurred by the benchmarker. As shown in Figure 6(b), this
advantage of the proposed NoC implementation allows it to
complete 1.8 to 2.5 times as many equivalent iterations as the
benchmarker in the same number of CCs, when implementing
the LTE turbo decoder. Note that this performance gain for
the proposed NoC implementation is related more to the NoC
size rather than to the window size K , as in the benchmarker
implementation. This is because the data dependencies within
a window have been eliminated in the proposed NoC
implementation.

2) ERROR CORRECTION CAPABILITY
Figures 7 and 8 characterize the BER performance of the
proposed and benchmarker NoC implementations of the LTE

9890 VOLUME 4, 2016

R. Al-Dujaily et al.: Scalable Turbo Decoding Algorithm

FIGURE 7. BER performance achieved by the proposed Fully-Parallel (FP)
and benchmarker Log-BCJR (PIVI) NoC implementations of the LTE turbo
decoder, when employing a frame length of N = 512, window sizes of
(a) K = 4, (b) K = 16 and (c) K = 64, as well as the numbers of CCs that
are required for the benchmarker to complete various numbers of
decoding iterations I ∈ {2,4,8,16,32}. The BER performance of a
non-windowing Log-BCJR (K = N) LTE turbo decoder is also provided for
the case of employing the same frame length of N = 512 and I = 50
iterations. In each case, BPSK modulation over an AWGN channel is
assumed.

turbo decoder, when employing frame lengths of N = 512
and N = 6144, respectively. In each case, the BER perfor-
mance is plotted for various window sizesK and for the num-
bers of CCs that are required for the benchmarker to complete

FIGURE 8. BER performance achieved by the proposed FP and
benchmarker Log-BCJR (PIVI) NoC implementations of the LTE turbo
decoder, when employing a frame length of N = 6144, window sizes of
(a) K = 48, (b) K = 192 and (c) K = 768, as well as the numbers of CCs
that are required for the benchmarker to complete various numbers of
decoding iterations I ∈ {2,4,8,16}. The BER performance of a
non-windowing Log-BCJR (K = N) LTE turbo decoder is also provided for
the case of employing the same frame length of N = 6144 and
I = 50 iterations. In each case, BPSK modulation over an AWGN channel
is assumed.

I ∈ {2, 4, 8, 16, 32} iterations, when using BPSKmodulation
for communication over an AWGN channel. After employing
a sufficiently high number of CCs in each case, the NoC
implementations can be seen to converge towards the BER

VOLUME 4, 2016 9891

R. Al-Dujaily et al.: Scalable Turbo Decoding Algorithm

performance of a conventional Log-BCJR LTE turbo decoder
employing only a single window of length K = N and
employing I = 50 decoding iterations, hence validating the
operation of the NoC.

In all cases, Figures 7 and 8 show that within any
particular number of CCs, the proposed implementation
achieves a superior BER. In the case where N = 512 and
K = 4, the proposed implementation using 1300 CCs
achieves a superior BER to the benchmarker using 2100 CCs,
as shown in Figure 7(a). This very significant performance
gain may be attributed to the avoidance of stalls in the
proposed NoC implementation, which allows it to complete
around 4 equivalent iterations within the number of CCs
required for the benchmarker to complete I = 2 itera-
tions, as shown in Figure 6(b). Furthermore, as described in
Section III, the proposed implementation achieves a higher
hardware resource utility than the benchmarker, with the
result that each of its equivalent decoding iteration has a
greater benefit to the BER than each iteration of the bench-
marker. Note however that the gain demonstrated by the
proposed implementation forN = 512 andK = 4 diminishes
as N or K is increased. For example, in the case where
N = 6144 and K = 192, the proposed implementation using
30000 CCs achieves a similar BER to the benchmarker using
58000 CCs, as shown in Figure 8(b).

Note that in conventional PIVI-based Log-BCJR LTE
turbo decoders, it is necessary to synchronize the processing
within the algorithmic blocks in order to avoid error correc-
tion performance degradation. However, in a NoC implemen-
tation, the requirement to synchronize the processing of the
algorithmic blocks causes stalls, which temporarily prevent
decoding progress from being made and which lead to a poor
resource utility. By contrast, the novel scheduling of the pro-
posed NoC implementation eliminates stalls, by removing the
requirement to synchronize the processing of the algorithmic
blocks. This allows the proposed implementation to maintain
100% resource utility and to make more decoding progress
within a particular amount of time, leading to the BER gains
shown in Figures 7 and 8.

Table 1 quantifies the average number of CCs required by
the proposed and benchmarker NoC implementations of the
LTE turbo decoder to achieve a BER of 10−4 at the Eb/N0
value, where this achieved by the Log-BCJR turbo decoder
employing I = 8 decoding iterations. For all combinations
of the frame length N and the window size K considered,
the proposed NoC implementation can be seen to require sig-
nificantly fewer CCs than the benchmarkers, for the reasons
discussed above. The throughput of these NoC implementa-
tions is proportional to the reciprocal of the number of CCs
that they employ. In accordance with this, Table 1 quantifies
the throughput gain that is offered by the proposed NoC
implementation over the benchmarker. This throughput gain
is as high as 213% for the case where N = 512 and K = 4.
For most other combinations of N and K , the throughput
gains offered by the proposed NoC implementation is several
tens of percent.

VI. CONCLUSIONS
Owing to their programmable arrangement of
high-performance IP cores, NoCs hold the promise of facili-
tating turbo decoders that can flexibly support different frame
lengths with high throughputs. In this paper, we have pro-
posed a novel NoC implementation of the LTE turbo decoder.
This implementation is based upon a novel algorithm that
dispenses with the serial data-dependencies of the Log-BCJR
algorithm, which otherwise cause frequent stalls in NoC
implementations. By avoiding these stalls, our proposed NoC
implementation achieves a significantly higher hardware
resource utility than a benchmarker NoC implementation
based on the Log-BCJR algorithm. This facilitates significant
throughput improvements for a wide variety of frame lengths
N and window sizes K , including a throughput gain of 213%
for the case of decoding an N = 512-bit frame using a NoC
comprising 16×16 IP cores. Our future work will consider
the implementation of the proposed NoC in silicon.

REFERENCES
[1] M. Brejza, L. Li, R. Maunder, B. Al-Hashimi, C. Berrou, and

L. Hanzo, ‘‘20 years of turbo coding and energy-aware design guide-
lines for energy-constrained wireless applications,’’ IEEE Commun. Sur-
veys Tut., vol. 18, no. 1, pp. 8–28, Jun. 2015. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7131434

[2] P. Hailes, L. Xu, R. Maunder, B. Al-Hashimi, and L. Hanzo,
‘‘A survey of FPGA-based LDPC decoders,’’ IEEE Commun. Surv.
Tut., vol. 18, no. 2, pp. 1098–1122, Feb. 2015. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7360870

[3] A. Abbasfar, D. Divsalar, and K. Yao, ‘‘Accumulate repeat accu-
mulate coded modulation,’’ in Proc. IEEE MILCOM Military Com-
mun. Conf., vol. 1. Nov. 2004, pp. 169–174. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1493264

[4] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA);
Multiplexing and Channel Coding, ETSI, Standard v11.1.0,
Feb. 2013.

[5] L. Benini and G. De Micheli, ‘‘Networks on chips: A new SoC paradigm,’’
Computer, vol. 35, no. 1, pp. 70–78, Jan. 2002.

[6] H. Moussa, ‘‘On-chip communication network for flexible multiprocessor
turbo decoding,’’ in Proc. 3rd Int. Conf. Inf. Commun. Technol. Theory
Appl. (ICTTA), 2008, pp. 1–6.

[7] M. Martina and G. Masera, ‘‘Turbo NOC: A framework for the
design of network-on-chip-based turbo decoder architectures,’’ IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 10, pp. 2776–2789,
Oct. 2010.

[8] C. Condo, M. Martina, and G. Masera, ‘‘A network-on-chip-based
turbo/LDPC decoder architecture,’’ inProc. Design, Autom. Test Eur. Conf.
Exhibit. (DATE), 2012, pp. 1525–1530.

[9] C. Condo, M. Martina, and G. Masera, ‘‘VLSI implementation
of a multi-mode turbo/LDPC decoder architecture,’’ IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 20, no. 6, pp. 1441–1454,
Jun. 2013.

[10] L. Li, R. G.Maunder, B.M.Al-Hashimi, and L. Hanzo, ‘‘A low-complexity
turbo decoder architecture for energy-efficient wireless sensor networks,’’
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 1, pp. 14–22,
Jan. 2013.

[11] P. Robertson, P. Hoeher, and E. Villebrun, ‘‘Optimal and sub-optimal
maximum a posteriori algorithms suitable for turbo decoding,’’ Eur. Trans.
Telecommun., vol. 8, no. 2, pp. 119–125, Mar. 1997. [Online]. Available:
http://doi.wiley.com/10.1002/ett.4460080202

[12] R. G. Maunder, ‘‘A fully-parallel turbo decoding algorithm,’’
IEEE Trans. Commun., vol. 63, no. 8, pp. 2762–2775,
Aug. 2015.

[13] A. Li, L. Xiang, T. Chen, R. G. Maunder, B. M. Al-Hashimi, and
L. Hanzo, ‘‘VLSI implementation of fully-parallel LTE turbo decoders,’’
IEEE Access, vol. 4, pp. 323–346, Jan. 2016. [Online]. Available:
http://eprints.soton.ac.uk/386016/

9892 VOLUME 4, 2016

R. Al-Dujaily et al.: Scalable Turbo Decoding Algorithm

[14] A. Li, P. Hailes, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo,
‘‘1.5 Gbit/s FPGA implementation of a fully-parallel turbo decoder
designed for mission-critical machine-type communication applications,’’
IEEE Access, vol. 4, pp. 5452–5473, Aug. 2016. [Online]. Available:
http://eprints.soton.ac.uk/399185/

[15] A. Li, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, ‘‘Implementation
of a fully-parallel turbo decoder on a general-purpose graphics processing
unit,’’ IEEE Access, vol. 4, pp. 5624–5639, Jun. 2016. [Online]. Available:
http://eprints.soton.ac.uk/397525/

[16] P. Robertson, E. Villebrun, and P. Hoeher, ‘‘A comparison of opti-
mal and sub-optimal MAP decoding algorithms operating in the log
domain,’’ in Proc. IEEE Int. Conf. Commun. (ICC), vol. 2. Jun. 1995,
pp. 1009–1013.

[17] M. Wu, Y. Sun, G. Wang, and J. R. Cavallaro, ‘‘Implementation of
a high throughput 3GPP turbo decoder on GPU,’’ J. Signal Process.
Syst., vol. 65, no. 2, pp. 171–183, Nov. 2011. [Online]. Available:
http://link.springer.com/10.1007/s11265-011-0617-7

[18] P. Guerrier and A. Greiner, ‘‘A generic architecture for on-
chip packet-switched interconnections,’’ in Proc. Design Autom.
Test Eur. Conf. Exhibit. 2000, pp. 250–256. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=840047

[19] S. Khawam et al., ‘‘Efficient implementations of mobile video computa-
tions on domain-specific reconfigurable arrays,’’ in Proc. Design Autom.
Test Eur. Conf. Exhibit. (DATE), vol. 2. 2004, pp. 1–6. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1269064

[20] K. Srinivasan, K. Chatha, and G. Konjevod, ‘‘An automated technique
for topology and route generation of application specific on-
chip interconnection networks,’’ in Proc. IEEE/ACM Int. Conf.
Comput. Design (ICCAD), 2005, pp. 231–237. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1560070

[21] T. Ahonen and D. A. Sigüenza-Tortosa, H. Bin, and J. Nurmi,
‘‘Topology optimization for application-specific networks-on-
chip,’’ in Proc. Int. Workshop Syst. Level Interconnect Predict.,
New York, NY, USA, 2004, p. 53. [Online]. Available: http://
dl.acm.org/citation.cfm?id=966747.966758
http://portal.acm.org/citation.cfm?doid=966747.966758

[22] R. Al-Dujaily, T. Mak, F. Xia, A. Yakovlev, and M. Palesi, ‘‘Embedded
transitive closure network for runtime deadlock detection in networks-on-
chip,’’ IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 7, pp. 1205–1215,
Jul. 2012.

[23] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Mateo, CA, USA: Morgan Kaufmann, 2004.

[24] N. Jerger and L. Peh, On-Chip Networks (Synthesis Lectures in Computer
Architecture). Province, CA, USA: Morgan Kaufmann, 2009. [Online].
Available: http://books.google.co.uk/books?id=Nf9q6goSpssC

[25] Intelá. (Mar. 2012). The 80-Core Tera-Scale Research Chip. [Online].
Available: http://techresearch.intel.com/ProjectDetails.aspx?Id=151

[26] Tilera. (Dec. 2011). Tilera Company Products Briefs. [Online]. Available:
www.tilera.com/products/processors

[27] G. Ascia, V. Catania,M. Palesi, and D. Patti, ‘‘Implementation and analysis
of a new selection strategy for adaptive routing in networks-on-chip,’’ IEEE
Trans. Comput., vol. 57, no. 6, pp. 809–820, Jun. 2008.

[28] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks (Morgan Kaufmann Series in Computer Architecture and Design
Series). San Mateo, CA, USA: Morgan Kaufmann, 2004. [Online]. Avail-
able: https://books.google.ca/books?id=oOqpcB5191sC

[29] C. Glass and L. Ni, ‘‘The turn model for adaptive routing,’’ in Proc. 19th
Annu. Int. Symp. Comput. Archit., 1992, pp. 278–287.

[30] G. M. Chiu, ‘‘The odd-even turn model for adaptive routing,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 11, no. 7, pp. 729–738, Jul. 2000.

[31] J. Hu and R. Marculescu, ‘‘DyAD—Smart routing for networks-on-chip,’’
in Proc. ACM/IEEE Design Autom. Conf., May 2004, pp. 260–263.

[32] T. Mak, P. Y. K. Cheung, K.-P. Lam, and W. Luk, ‘‘Adaptive routing in
network-on-chips using a dynamic-programming network,’’ IEEE Trans.
Ind. Electron., vol. 58, no. 8, pp. 3701–3716, Aug. 2011.

[33] M. May, C. Neeb, and N. Wehn, ‘‘Evaluation of high
throughput turbo-decoder architectures,’’ in Proc. IEEE Int. Symp.
Circuits Syst., May 2007, pp. 2770–2773. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4253252

[34] F. Fazzino, M. Palesi, and D. Patti. Noxim: Network-on-Chip
Simulator, accessed on Dec. 1, 2016. [Online]. Available:
http://noxim.sourceforge.net/

RA’ED AL-DUJAILY received the B.Sc. and
M.Sc. degrees in control and computer engineer-
ing from the University of Technology, Baghdad,
Iraq, in 1998 and 2001, respectively, and
the Ph.D. degree from the School of Elec-
trical, Electronic, and Computer Engineering,
Newcastle University, U.K. His research interests
include network-on-chip, reconfigurable comput-
ing, VLSI circuits design, and fault tolerance in
VLSI.

AN LI received the B.Eng. degree (Hons.) in
electronic engineering from the University of
Southampton in 2011 and the M.Phil. degree from
the University of Cambridge in 2012. He is cur-
rently pursuing the Ph.D. degree with the Wireless
Communication Research Group, University of
Southampton. His research interests include paral-
lel turbo decoding algorithms and their implemen-
tations upon VLSI, FPGA, and GPGPU.

ROBERT G. MAUNDER received the B.Eng.
degree (Hons.) in electronic engineering from the
University of Southampton, U.K., in 2003, and
the Ph.D. degree in wireless communications in
2007. Hewas a Lecturer in 2007 and anAssociated
Professor in 2013. His research interests include
joint source/channel coding, iterative decoding,
irregular coding, and modulation techniques.

TERRENCE MAK (S’05–M’09) received the
B.Eng. andM.Phil. degrees in systems engineering
from The Chinese University of Hong Kong in
2003 and 2005, respectively, and the Ph.D. degree
from Imperial College London in 2009. In 2010,
he joined the School of Electrical, Electronic,
and Computer Engineering, Newcastle Univer-
sity, as a Lecturer. During his Ph.D., he was a
Research Engineer Intern with the VLSI Group,
Sun Microsystems Laboratories, Menlo Park, CA,

USA. He was a Visiting Research Scientist with the Poons Neuroengi-
neering Laboratory, MIT. His research interests include FPGA architecture
design, network-on- chip, reconfigurable computing, and VLSI design for
biomedical applications. He was a recipient of the Croucher Foundation
Scholarship and the US Navel Research Excellence in Neuroengineering in
2005. In 2008, he served as the Co-Chair of the UK Asynchronous Forum,
and in 2008, he was the Local Arrangement Chair of the Fourth International
Workshop on Applied Reconfigurable Computing.

VOLUME 4, 2016 9893

R. Al-Dujaily et al.: Scalable Turbo Decoding Algorithm

BASHIR M. AL-HASHIMI (M’99–SM’01–F’09)
is currently a Professor of Computer Engineering
and the Dean of the Faculty of Physical Sciences
and Engineering, University of Southampton, U.K.
He is also an ARM Professor of Computer Engi-
neering and the Co-Director of the ARM-ECS
Research Centre. He has graduated 31 Ph.D. stu-
dents. He has authored over 300 technical papers,
authored or co-authored five books. His research
interests include methods, algorithms, and design

automation tools for energy efficient of embedded computing systems.

LAJOS HANZO (F’04) has graduated 111 PhD
students and has an H-index of 62. He has coau-
thored 1600+ contributions at IEEE Xplore. He is
FREng, FIET, a fellow of the EURASIP, and a RS
Wolfson Fellow. He is the Chair in telecommuni-
cations with the University of Southampton.

9894 VOLUME 4, 2016

