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ABSTRACT Cloud computing technology has become an integral trend in the market of information
technology. Cloud computing virtualization and its Internet-based lead to various types of failures to occur
and thus the need for reliability and availability has become a crucial issue. To ensure cloud reliability
and availability, a fault tolerance strategy should be developed and implemented. Most of the early fault
tolerant strategies focused on using only one method to tolerate faults. This paper presents an adaptive
framework to cope with the problem of fault tolerance in cloud computing environments. The framework
employs both replication and checkpointing methods in order to obtain a reliable platform for carrying out
customer requests. Also, the algorithm determines the most appropriate fault tolerance method for each
selected virtual machine. Simulation experiments are carried out to evaluate the framework’s performance.
The results of the experiments show that the proposed framework improves the performance of the cloud in
terms of throughput, overheads, monetary cost, and availability.
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I. INTRODUCTION
The current market of Information Technology (IT) has
witnessed a considerable change due to the presence of cloud
computing, which has become an integral part of most of the
businesses [1]. Today, most of the businesses, from single
to large enterprises, migrated to cloud computing in order to
obtain a high level of productivity by entrusting their IT issues
to an expert one. Cloud computing provides comprehensive
IT services and solutions for both companies and individual
users [2], [3]. They can lease components of the cloudwithout
expending time and money in constructing or buying these
components [4]. In cloud systems, computing is introduced
as an abstract service over the Internet with hiding the details
of implementation [3].

The deployment models of cloud computing systems
are public, private or hybrid. In public, services are pro-
vided through the Internet in forms of cloud practical
application. The main categories of these applications
include Infrastructure-as-a-Service (IaaS), Software-as-a-
Service (SaaS) and Platform-as-a-Service (PaaS). Most of
IT businesses cannot invest in certain services such as
supercomputer-class services. In IaaS, the cloud provides
computing, storage and networking resources with any
required configuration and capacity as paid services to the

customers. Examples of practical applications of IaaS can
include Amazon EC2 and Google Compute Engine. In most
IT organizations, there are no enough experts to develop and
run the required software applications. In SaaS, the cloud pro-
vides customers with access to professionally implemented
software applications and thus they save the customers’
money. Salesforce.com and Google Apps are examples of
practical applications of SaaS. In PaaS, customers can run
their custom applications on the general purpose software and
hardware with themost recent configurations. Practical appli-
cations of PaaS include Google App Engine and Microsoft
Azure [4], [5].

Private clouds are implemented and maintained by
enterprises to provide internal services and they have more
flexibility than public clouds but they are more expensive.
In hybrid clouds, some portions of computing can be done
in a public cloud while other portions can be done internally
through the private one [6].

In spite of cloud computing systems used to provide ser-
vices of computing, they are not perfectly reliable and they
could suffer from outages of services due to failures [7].
An outage is defined as the case in which a customer request
is not completed in its desired deadline. With the increase of
the cloud users, the number of required services increases and
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then the probability of outages increases. The main causes
of these outages include software failures such as incorrect
upgrade, excessive work load, hacking, etc. and hardware
failures such as unavailable resource, network failure, power
down, etc.

Outages are popular in public clouds in which an enormous
number of services is provided to customers with required
levels of service quality. In the last decade, many outages
have occurred in most famous public cloud environments.
In 2013, the home page of Amazon went down for
almost an hour, which costs Amazon close to five million
US Dollars [8]. In 2014, several Google services such as
Gmail, Calendar, Google Docs were stumbled for about an
hour. Some servers of Google receive incorrect configura-
tions which cause extensive errors [9]. In 2015, some services
of Azure cloud such as virtual machines and websites had
more than two and half hours of interruptions across multiple
regions [10].

Cloud outages or failures have a great impact on both the
cloud vendors and the customers. For vendors, a profit will
be lost due to the cloud resources that will be used in order
to alleviate the effects of outages occurred. K. Bilal et al [11]
have stated that each downtime hour in a data center costs
around U$ 50,000. For customers, their requirements, such as
deadline time, may not be achieved. So, there is a great need
for a reliable and available cloud with a dynamic method of
fault tolerance. The method should transparently remove or
reduce to some extent the effects of failures on both customers
and profit needs.

Fault tolerance methods can be reactive or proactive. The
main goal of the reactive methods is to reduce the effect of
the occurring faults while the goal of the proactive meth-
ods is to avoid the occurrence of faults. Reactive methods
mainly include replication and checkpointing. Most cloud
computing systems depend on reactive methods, especially
replication [12].

The replication method assumes that the likelihood of a
single VM failure is extremely higher than the occurrence
of simultaneous failures of multiple VMs. It allows multiple
virtual machines to start simultaneously executing redundant
copies of the same request in order to preclude recomputation
of it from scratch in a case of failure. Thus, the service can be
efficiently provided to customers without affecting their QoS
requirements in the presence of failures. In checkpointing,
the cloud intermediately saves the execution state of both
the currently executed request and the executing VM to a
stable storage in order to minimize the recovery time in a
case of failure. If a failure occurred, instead of restarting the
request’s execution from its early start, it will be started from
the point in the computation where the last checkpoint was
saved [12], [13].

The main contribution of this paper is to present an
adaptive framework to cope proactively and reactively with
the problem of fault tolerance in cloud computing environ-
ments. In order to be proactive, the framework depends on
customer requirements and the available information about

virtual machines at the scheduling time. Also, the framework
employs both checkpointing and replication methods and
it dynamically selects the suitable method according to the
current conditions of the cloud.

The rest of the paper is arranged as follows: Section 2
presents a brief illustration of the related work. Section 3
describes the problem. Section 4 provides the details of the
proposed framework. In Section 5, results obtained from
simulation are presented and the paper concludes in Section 6.

II. BACKGROUND AND RELATED WORK
A. BACKGROUND
The dynamic behavior of the cloud increases the probability
of failures. In order to avoid or reduce the effects of these
failures, the cloud should apply fault tolerance, which can
be reactive or proactive. Reactive fault tolerance methods are
applied in order to minimize or omit the influence of failures
on monetary and time costs. Replication and checkpointing
are the two commonly used reactive methods.

The replication method is based on that the likelihood of
failures will be reduced when multiple virtual machines are
used to carry out the same customer’s request. Recompilation
of a request is avoided by performing multiple replicas of the
request on different virtual machines at the same time. If a
virtual machine fails the cloud can still perform the request
within the boundaries of customer’s needs. The results of the
virtual machine that finishes first are considered and results
of other virtual machines are neglected [13].

Checkpointing is the second reactive method. In check-
pointing, the status of request’s execution is repeatedly saved
to a stable and safe storage during execution. In a case of
failure, the cloud can continue executing the request starting
from the last point at which status was recorded. This will
avoid restarting the service of the request from its initial point
of execution. Although this can minimize the response time
of carrying out a request, more wasted time can result in.
This wasted time is due to the recovery of a virtual machine
from the failed state if it is the only one that can carry out the
task. Nonetheless, the cloud should use this method if there is
only a single virtual machine that can carry out the customer’s
request. The time between two checkpoints is denoted as the
checkpoint interval [14].

On the other hand, proactive methods are probabilistic and
they are employed in order to predict to a possible extent the
faults of virtual machines prior to their occurrence. The main
goal of these methods is trying to avoid the occurrence of
failures and then avoid recovery procedures of the reactive
methods. During the scheduling of requests, proactive meth-
ods take scheduling decisions according to the prior failure
information of the available virtual machines. Therefore, the
number of future failures can be reduced and the reliability of
the cloud will be improved.

B. RELATED WORK
Fault tolerance is one of the most important issues in dis-
tributed computing systems such as grid and cloud computing
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systems. In grid computing, there is a lot of fault tolerance
work have been done in the literature, whilst a little research
has been devoted to the area of cloud computing.

In 2010, Goiri et al. [14] proposed a checkpoint based
method that reduces the time needed to store checkpoints.
They achieved this through only saving modifications of
the read-write regions. They employed the Distributed
File System of the Hadoop to save checkpoints. In 2013,
Hui et al. [15] proposed a fault tolerant method based
on using coordinated checkpoints at the virtual machine
level. Their method removes the unavailability due to using
coordinated protocols for checkpoint recovery. In 2014,
Limam and Belalem [16] defined an adaptive checkpoint
method with the aim to remove unnecessary checkpoints or
add extra checkpoints according to the current status of the
cloud component. Their method increases or decreases the
checkpoint interval with fixed rates. In 2015, J. Cao et al. [17]
have introduced a uniform fault tolerance method based on
checkpointing. Their method supports long jobs and priorities
assigned to jobs.

In 2010, Zhao et al. [18] used the replication method
in order to propose a fault-tolerant middleware. In 2013,
Ganga and Karthik [12] have proposed a replication based
method in order to tolerate faults when using scientific work-
flow systems. Das and Khilar [19] proposed a replication
based method to reduce the service time and to increase
the system availability. Their method depends on using soft-
ware variants on several virtual machines to tolerate faults.
In addition, it reduces the likelihood of future faults by not
scheduling tasks to virtual machines of servers whose success
rates are very low. Alhosban et al. [3] introduced a scheme
that depends on the prediction and planning. A method of
recovery is elected to be applied when faults occurred. The
selection depends on failure history, user requirements and
service weight and criticality. Methods that can be selected
are replication and retry.

In 2012, Zheng et al. [13] have proposed an algorithm that
can select a fault tolerance method for each virtual machine.
All methods that the algorithm can select from are variations
of the replication method such as parallel and multiversion.
In 2015, Saranya et al. [20] presented and evaluated a method
based on both replication and resubmission of tasks. Their
method depends on a priority assigned to each task depending
on tasks length, their deadline and the out-degree of each
task. In 2015, Liu and Wei [21]] proposed a replication based
algorithm that considers the failures of both hardware and
software.

The analysis of literature shows that most of the previ-
ous work done are fundamentally based on using a single
fault tolerance method, either replication or checkpointing.
There is a little work done that considers using both of the
two methods together to tolerate faults in cloud computing
systems. Also, most of the existing replication based work
considers a static or fixed number of replicas and they do
replication for all virtual machines in the cloud, which is not
an economic approach. In the case of checkpointing, most

of the proposed work assumes fixed or fixed change of the
length of the checkpoint interval during the execution of the
customer requests or jobs. There is a little work done that
considers the adaptive length of the checkpoint interval. So,
there is a need for a framework that considers both replication
and checkpointing methods and selects the number of replica
or checkpoints in an adaptive manner.

III. PROBLEM DESCRIPTION
Cloud services are provided either as storage services or com-
puting services. Dropbox, iCloud and Google are examples of
storage services and Amazon EC2 and Microsoft Azure are
examples of computing services. In order to be served, a cus-
tomer submits his service request to the cloud provider along
with the requirements needed for his request. The provider
negotiates with the customer in order to determine both the
quality of service and the price. If the customer accepts, the
provider will prepare the cloud virtual machine that can carry
out the request and the service will start.

Most of the cloud resources are not primarily designed
to accomplish the economic objective of the cloud. These
resources are collected into various virtual machines to
accomplish customer requests. So, it is expected that numer-
ous failures will occur that will protract the time expected to
carry out the customer requests and this will exhaust the cloud
resources. For customers, theywill not get their services in the
time expected. For the cloud, failures will lead to loss of cloud
resources and then money. This will lead to a considerable
impact on the reliability, credibility and reputation of the
cloud [22]. Thus, it is heavily required to implement fault
tolerance methods in cloud computing systems in order to
alleviate or omit the influence of failures on the performance
of the cloud.

Replication of both data and applications is the method
used by most of the current cloud computing systems. It is
applied in Amazon S3 by storing data objects on multiple
storage units. The iCloud can rent infrastructure services
from Amazon’s EC2 or Microsoft’s Azure to fulfill the
replication. In spite of that, cloud outage reports refer to
the point that the reliability is still insufficient [23]. Apply-
ing fault tolerance methods in clouds faces the following
challenges:

1. The cloud can have only a single copy of the virtual
machine that can carry out the request of the customer.
Also, the cloud may have multiple virtual machines
that can carry out the customer’s request, but only
one is available and the others are busy in performing
other services or they are out of service. So, replication
method cannot be applied.

2. The number of replicas should not be static or fixed
because this will lead to a poor influence on the cloud.
This is due to the fact that additional virtual machines
will be used to carry out the same service. However,
these virtual machines can be used to carry out other
customer services. Thus, the cloud will lose profit
charges.
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3. It is not economical to implement replication for each
service or virtual machine. Replication should only be
applied for services that are allocated to the most valu-
able virtual machines that will have a great impact on
the performance of the cloud if they fail. Determining
the most valuable virtual machines is a great challenge.

4. In the checkpointing method, determining the length of
the checkpointing interval is a major challenge. Check-
pointing with fixed checkpoint interval could lead to
redundant checkpoints that consume cloud resources
and increases checkpointing latency.

In order to cope with the first challenge, checkpointing
method is involved in our framework beside replication. Our
framework allows the cloud to choose either checkpointing
or replication in order to achieve fault tolerance. In order
to address the second challenge, a replication algorithm that
adaptively determines the number of replicas of an applica-
tion is proposed. For the third challenge, the percentage of
profit gained by the cloud when using the virtual machine is
involved in determining the number of replicas required for
each virtual machine. For the fourth challenge, an algorithm
that adaptively determines the length of the checkpointing
interval is proposed. The algorithm assumes that the length
of the checkpointing interval must not be fixed during the
execution of the customer’s task. The algorithm considers the
failure probability of virtual machines to calculate the next
checkpointing interval.

IV. CLOUD ARCHITECTURE
Cloud computing environments should have the ability to
receive, perform, monitor and control customers’ requests.
The cloud should be reliable in order to provide its services
within the limits of customer requirements. This section
describes the proposed framework which enables the cloud
to be reliable. As shown in Figure 1, the architecture of the
framework assumes the cloud consists of three main layers:
application, virtual and physical layers. One function of the
application layer is to allow customers to interact with the
cloud. Also, it performs the scheduling of customers’ requests
to the virtual machines in the cloud. In addition, tolerating
faults is the responsibility of the application layer. In order to
perform these functions, the structure of the application layer
comprises four modules:

1. Service Inspector: This module is responsible for
ensuring the achievement of customer’s QoS require-
ments. In this paper, the considered QoS requirements
include time and monetary costs. A customer can sub-
mit his request to the cloud through this module along
with the QoS requirements. The module asks the Status
Database module for the availability of appropriate
VMs that can carry out the customer request and gets a
reply. If the reply indicates the presence of appropriate
VMs that can carry out the request within customer’s
requirements, the Service Inspector will accept the
request and it will deliver it to the Scheduler module.
Otherwise, the request will be discarded.

FIGURE 1. The level architecture of a cloud computing system.

FIGURE 2. Scheduler components and their interactions.

2. Scheduler: The main function of the Scheduler is to
assign each request to the suitable virtual machine
that can perform it within the limits of customer
requirements. Also, Scheduler has the responsibil-
ity of determining the charge of serving the request.
In addition, Scheduler has the responsibility of fault
tolerance. In order to do its responsibilities, the
Schedulermodule should contain the following compo-
nents: Ranker, Pricing, Scheduling and Fault Tolerance
Manager (SFTM) and Dispatcher. Figure 2 illustrates
the interactions between the main components of the
Scheduler. The main role of the Ranker is to deter-
mine the most valuable VMs in the cloud (see sub-
section 4.2). It receives customer’s request with QoS
requirements from the Service Inspector and contacts
the Status Database module in order to get information
about the virtual machines that can accomplish the
request. Based on this information, it prepares a list
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Algorithm 1 SFT Algorithm
Input: cju is the cost required by the customer u for request

j,
τju is the deadline time required by the customer u
for request j,
cji is the estimated cost if the request j is executed
by VMi,
τji is the estimated time if the request j is executed
by VMi,

j = 1;
While (there are requests not served)

{
For each request j do

{
Find a list of VMs that can carry out j;
For each VMi in the list do

If (cji > cju||τji > τju)/∗VMi cannot
serve j∗/

remove VMi from the
list;

If (list is not empty) /∗The request
can be served ∗/

{
Sort the VMs list ascending
based on cji × τji;
If (there is more than one VM
in the list)

Replication is selected;
Else

Checkpointing is
selected;

Else {
Send ‘‘Request cannot be
served’’ to theQoSController;
End the algorithm for j;
}

j++; /∗ next request ∗/
}/∗ For end∗/

}/∗ While end∗/

of VMs that can fulfill the time and monetary require-
ments of the customer’s request. Pricing component
determines the charge the customer should pay for the
service. SFTM implements Algorithm 1 in order to
select the appropriate fault tolerancemethod for the vir-
tual machine assigned to each request. The algorithm
selects either checkpointing or replication based on
information about virtual machines. Dispatcher deliv-
ers the requests of customers to the selected VMs.

3. Status Database: It represents the central repository of
information about all virtual machines in the cloud such
as computing capacity, storage capacity, price, usage
history and failure history.

4. VM Monitor: The main function of this module is to
observe the performance of the virtual machines in

the cloud. It notifies the Status Database to update the
record of a VM in a case of the failure or the recovery
of that VM. In addition, this module has the respon-
sibility for forming or reforming virtual machines of
the cloud. It has virtualization software used to form
unique and isolated virtual machines using the cloud
physical resources.

VM layer is the second layer of the cloud. It contains
virtual machines of the cloud and each virtual machine is
formed using one or more physical resources. Also, each
physical resource may be shared and used by multiple virtual
machines. Furthermore, different VMs can be emulated on a
single physical resource in order to satisfy the requirements
needed by customer requests. This layer has a module called
Resource Monitor. The main function of this module is to
observe the performance of the physical resources of the
cloud and to notify the VM monitor with changes occurred.
Changes include resources leaving the cloud or new resources
joining the cloud. Upon these changes, ResourceMonitor can
reform affected virtual machines.

The third layer of the cloud is the physical layer and
it contains hardware and software resources of the cloud.
Resources are the real operators in the cloud.

A. SFT ALGORITHM
Algorithm 1 is called the Selecting Fault Tolerance (SFT)
algorithm and it is proposed with the objective to select the
appropriate method for tolerating faults in the cloud com-
puting system. The algorithm is implemented in the SFTM
component of the Scheduler module. In order to achieve its
objective, the algorithm depends on using customer’s require-
ments and the available information about virtual machines.
First, the algorithm prepares a list of virtual machines that can
carry out the customer’s request and satisfies the customer’s
requirements. The customer’s requirements considered by
the algorithm include both time costs and monetary costs.
Thereafter, the algorithm selects checkpointing method if
there is only a single VM in the list. Otherwise, the algorithm
selects replication method.

B. REPLICATION ALGORITHM
Replication is applied when there are multiple and available
virtual machines in the cloud that can carry out the customer’s
request. However, it is a central challenge to define the opti-
mal number of replicas. In addition, it is not an economical
approach to perform replication for all virtual machines [24].
So, we only need to replicate requests executed on the most
valuable virtual machines that will have a great impact on the
performance of the cloud if they fail.

In order to determine the most valuable VMs in the cloud,
VMs should be ranked according to their value and influence
on the cloud. The ranking is based on failure probability of
the virtual machine and the profit gained through using it.
Failure history of a virtual machine can determine its proba-
bility to fail. For each virtual machine, failure history can be
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represented by the number of failures occurring, failure time,
the time between failures and failure types. The need of a
virtual machine to a fault tolerance method is determined
by failure probability. As the value of the failure probability
becomes high, the need for applying fault tolerance methods
rises.

In general, the occurrence of random failures is a stochastic
process [25] and Jump Linear Systems (JLSs) can be used to
model it because they involve event driven and time evolving
techniques. The process is based on the time period between
two consecutive faults. In clouds, this time period is a ran-
dom variable following general probability distributions and
the process is often called semi-Markov process. The jump
linear system of the semi-Markov process is known as semi-
Markovian JLS with time-varying transition rates [26], [27].

In this work, the failure probability of a virtual machine
is assumed to follow Poisson distribution. This means that
the number of failures in any two different or disjoint periods
of time is independent over the time change. The failure
probability distribution of a virtual machine i in a given time
interval can be expressed as:

Fi(X )=
e−µµx

x!
0≤Fi (X)≤1 and x=0, 1, 2, . . . , n, (1)

where X (x0, x1, x2, . . . , xn) represents the number of failures
happened in a given time period and µ is the average number
of failures in the given time period for a virtual machine i.
The value of µ is given by:

µ =
fi

Ti/τji
, (2)

where fi is the number of failures of a virtual machine i and
Ti is the period of time in which fi failures have occurred. τji
represents the estimated time when request or application j is
executed on virtual machine i. Thus, the probability of one
failure (x = 1) to take place during the execution of a request
is given by:

Fi (x1) = µe−µ. (3)

The virtual machine profit, denoted as Pi, represents the
percentage of cloud profit gained through the usage of virtual
machine i in performing requests. The value of the virtual
machine i to the cloud is determined by its profit. The greater
the profit of a virtual machine the more its value.

The rank of a virtual machine is computed by the Ranker
component of the scheduler. The Ranker obtains the values
of failure probability and profit of virtual machines from the
Status Database. Thereafter, it calculates the rank of each
virtual machine using the formula:

Ri = µe−µ × Pi, (4)

where Ri is the rank of virtual machine i, µe−µ is the proba-
bility of a failure to take place and Pi is the profit of virtual
machine i.
The fixed number of replicas is not an efficient choice

in cloud computing environments because additional virtual

Algorithm 2 Replication Algorithm
• Fi(X ) : The failure probability of a virtual machine i
• Pi : The percentage of cloud profit gained through the
usage of virtual machine i

• Rep : The number of replicas
• Fi (X) (k), k = 0, 1, 2, . . . , n, are integers
such that 0 <= Fi (X) (k) <= 1.0 and
Fi (X) (0) < F i (X) (1) < . . . < Fi(X )(n)

• Pi(y), y = 0, 1, 2, . . . ,m, are the percentage of cloud
profit gained by virtual machine i such that 0 <=

Pi(y) <= 100 and

Pi (0) < Pi (1) < . . . < Pi(m)

• Rep (l) (w) , l = 0, 1, 2, . . . , nandw = 0, 1, 2, . . . ,m,
are integers

For (a = 0; a < n; a++)
{
For (b = 0; b < m; b++)
{
If (F i (X) (a) ≤ Fi(X ) < Fi(X )(a + 1) and Pi (b) ≤ Pi <
Pi (b+ 1))

Rep = Rep (a) (b);

}
}

machines will be used to carry out the same request. However,
these virtual machines can be used to carry out requests of
other customers. Thus, profit charges will be wasted. Also,
it is not economically to implement replication for each
request or for each VM.

Algorithm 2 is the replication algorithm proposed in this
paper in order to adaptively determine the number of replicas
of a request. The number of replicas will not be fixed for all
requests or virtual machines. In order to adaptively determine
the number of replicas, the operation of the algorithm depends
on both the failure probability and the percentage of cloud
profit gained by the virtual machine assigned to carry out
the customer’s request. As either the failure probability or
profit percentage of a virtual machine increases the need for
more replicas increases. Consequently, virtual machines with
higher values of profit or failure probability have higher fault-
tolerance needs and then higher priority of replication than
other VMs.

C. CHECKPOINT ALGORITHM
Distributed systems, such as grid computing systems, have
widely used checkpointing as a reactive fault tolerance
method to alleviate the impact of failures when occurred.
Moreover, most cloud computing systems implement repli-
cation techniques. However, from the perspective of the
cloud service provider, replication results in profit loss due
to allocating extra components to execute the replicas of
a request, particularly these components may be useful for
other requests. Also, from the perspective of customers,
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replication leads to time loss due to waiting for components
that execute replicas to be free from executing other requests.
So, the main advantage of using checkpointing over repli-
cation is to preserve the computing resources of the cloud
to other customers’ requests and to reduce the profit loss
because of using replication.

Checkpointing interval and latency are the two
parameters that strongly influence a checkpointing algorithm.
The checkpointing interval represents the time between a
checkpoint and the next checkpoint. Checkpointing latency
is the time consumed in saving a checkpoint. In the case of
small checkpoint interval, there will be a large number of
checkpoints. This large number of checkpoints will heavily
consume cloud resources when saving checkpoints and thus
high checkpointing latency results in. Moreover, long check-
point interval leads to a small number of checkpoints and then
a considerable part of the request should be recomputed in the
case of failure. This small number of checkpoints will slightly
consume cloud resources when saving checkpoints and thus
low checkpointing latency results in.

So, determining the length of the checkpointing inter-
val is the major challenge for a checkpointing technique.
Fixed interval leads to redundant checkpoints that consume
cloud resources and increase checkpointing latency. So, the
main objective of our work is to develop an algorithm that
adaptively determines the length of the checkpointing inter-
val. Algorithm 3 assumes that the length of the checkpointing
interval must not be fixed during the execution of the cus-
tomer’s task. The algorithm calculates the next checkpointing
interval at the time of the current checkpoint. It is calculated
based on the failure history of the VM on which the task is
executed. In the case of a poor failure history, the algorithm
will shorten the checkpoint interval. Moreover, the algorithm
will prolong the checkpoint interval in case of good failure
history.

V. RESULTS
There are many available cloud-simulator environments and
CloudSim is one of the most of them [28], [29]. Among all
classes and packages of the CloudSim, there is no one that
supports the implementation of fault-tolerant clouds. So, the
creation of an extra package is needed in order to support
the implementation of fault-tolerant methods in the cloud
computing systems. This created package provides services
of fault tolerance through allowing some virtual machines of
cloud data centers to be faulty. The classes of the package
allow the development of fault tolerant based algorithms that
can monitor virtual machines in order to detect failures and
resolve them. The package can implement both checkpoint-
ing and replication techniques. The package provides the
ability to measure throughput, availability, time overhead and
monetary waste overhead.

The cloud used in our experiments is generated with
100 heterogeneous virtual machines that are connected with
fast Ethernet technology (100Mb/s). The number of data
centers used in each experiment ranges from 5 to 10.

Algorithm 3 Checkpoint Algorithm
• τji : The execution time of task j on VM i
• τ r ji : The remaining execution time of task j on VM i
• Fi (x1) : Failure probability of VM i
• Fi (x0) : Probability of no failure of VM i
• h: Checkpoint interval
• z: Number of failures during the task execution

Calculate Fi (x1) = µe−µ;
For each task j allocated to VM i do
{
z = 0; h = τji × F i (xz) ; //Initial checkpoint interval
τ r ji = τji;
Start execution of j on i;
do
{

τ r ji = τ r ji − h;

If failure occurred then
{
z++;
τ r ji = τ r ji + h;
h = h(1− Fi (xz)); // decrease checkpoint interval
Restore last checkpoint;
Restart execution from τji − τ r ji;
}
At time τji − τ r ji perform a checkpoint;
h = h(1+ Fi (xz)); // increase checkpoint interval
Resume execution;
}While (τ r ji 6= 0)
}

Each data center contains 4 hosts. The size of each host’s
memory is 10 GB and the storage is 2TB. The processing
capacity of computational units in each host is assumed to
be in the range from 1000 to 10000 MIPS. The number of
customer requests ranges from 500 up to 2500 requests. Each
virtual machine has amemory of 4 GB and one computational
unit. The size of data required for each request processing is
randomly selected from 10 MB up to 1 GB. The price cost of
the cloud computing unit is assumed to be in the range from
$0.1 to $10

We evaluate the performance of our proposed
framework by comparing it with the checkpointing based
algorithm proposed in [17], named optimal checkpoint
interval (OCI) algorithm, which is based on using vari-
able checkpoint intervals. Different simulation experiments
have been conducted with a variable number of customers’
requests. The performance metrics used in the comparison
include throughput, availability, checkpoints overheads and
the amount of monetary waste.

Figure 3 shows the results of the throughput comparison
between the proposed framework and OCI algorithm. The
number of requests is shown in the x-axis and the results
of throughput, measured in requests per hour, are plotted as
columns. In general, the throughput of both the proposed
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FIGURE 3. Throughput Comparsion.

framework and the OCI algorithm increases with the increase
in the submitted customers’ requests. The figure clearly
shows that the proposed framework has a better throughput
than the OCI algorithm. This is because the proposed frame-
work has less turnaround time than the OCI algorithm. This
is attributed to the fact that the proposed algorithm considers
the failure probability as a criterion when selecting virtual
machines to carry out requests. On the other hand, the OCI
algorithm considers the number of failures. This will make
our proposed framework less prone to fail and more reliable
than the OCI algorithm.

FIGURE 4. Overheads comparsion.

Figure 4 illustrates the comparison of overheads between
the proposed framework and OCI algorithm. The figure
shows that the overheads of the proposed framework are less
than that of the OCI algorithm. This is because our pro-
posed framework adaptively determines the length of the next
checkpointing interval while the OCI algorithm changes it
with constant rates. Thus, the proposed framework eliminates

the unnecessary checkpoints and then overheads are reduced.

FIGURE 5. Monetary cost comparsion.

Figure 5 illustrates the comparison of monetary waste
between the proposed framework and OCI algorithm. We can
see that the proposed framework has a lower monetary waste
than the OCI algorithm. This is due to that the proposed
framework has a less number of failures and a less number
of checkpoints than the OCI algorithm. This will save the
resources of the cloud for other customer requests and thus
money is saved.

FIGURE 6. Availability comparsion.

The availability of a cloud is the percentage of the service
time and failure time. The service time is the operational
time of the cloud per a certain period of time. Figure 6
shows the comparison of availability between the proposed
framework and OCI algorithm. The figure shows that the
proposed framework provides better availability than the OCI
algorithm. This is due to the adaptive checkpoint interval that
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our proposed framework provides which helps to decrease the
number of failures occurring.

FIGURE 7. Overhead comparsion.

Also, we evaluate the performance of our proposed
framework by comparing it with the replication based algo-
rithm proposed in [21]. As this algorithm considers a static
or fixed number of replicas, we will denote it the static algo-
rithm. Figure 7 illustrates overheads’ comparison between
the proposed framework and static algorithm. The term of
overheads represents the number of replicas the cloud should
perform. The figure shows that the overheads of the proposed
framework are less than that of the static algorithm. This is
because our proposed algorithm considers an adaptive num-
ber of replicas that can dynamically change for each request
according to the current conditions of the virtual machine
assigned to perform the request. On the other hand, the static
algorithm considers a fixed number of replicas regardless the
current conditions of the virtual machines assigned.

FIGURE 8. Money waste comparsion.

Figure 8 shows the monetary waste comparison between
the proposed framework and static algorithm.We can see that
the proposed framework has a lower monetary waste than

TABLE 1. Performance improvement.

the static algorithm. This is because the proposed framework
only replicates the most valuable virtual machines and not all
virtual machines as the static algorithm. This will decrease
the number of virtual machines consumed in the replication.
Thus, profit charges will not be lost.

From the above results of the experiments, it is shown that
the proposed framework improves the performance of the
cloud in terms of throughput, overheads, monetary cost and
availability. The adaptive nature of the proposed framework
gives it superiority over the other related ones. This adap-
tive nature appears when determining the number of repli-
cas for virtual machines or when calculating the checkpoint
intervals. Improving throughput will improve the number of
services the cloud can serve in the same time and then the
profit of the cloud increases. Improving the overheads leads
to saving resources of the cloud for other customers. This will
reduce the waiting time for customer requests. Improving the
amount of monetary waste will allow the cloud provider to
enhance the services of the cloud through continuous main-
tenance and new resources added. Improving availability of
the cloud will reinforce the trust of the customers.

VI. CONCLUSION
Failures are unavoidable in cloud computing environments.
To treat this issue, an adaptive framework for tolerating faults
in cloud computing environments has been proposed in this
paper. The framework has one algorithm for selecting vir-
tual machines to carry out customers’ requests and another
algorithm for selecting the suitable fault tolerance method.
Both replication and checkpointing methods are included
in the framework. The performance of the framework is
evaluated with a replication-based algorithm and also with
a checkpointing-based algorithm in terms of throughput,
cloud overheads, monetary cost and availability. Experimen-
tal results indicate that the proposed framework improves the
cloud’s performance as shown in Table 1.

In the future work, we will include investigations about
applying our framework and the well-established fault detec-
tion and reliable control methods for complex industrial pro-
cesses, such as developed in [30] and [31], in the cloud
computing environment. Also, we will provide more consid-
eration to the migration of data centers and tasks between
them.
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