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ABSTRACT This paper establishes the asymptotic closed forms of the expectation and variance of the Gini
correlation (GC) under a particular type of bivariate contaminated Gaussian model emulating a frequently
encountered scenario in statistical signal processing. Monte Carlo simulation results verify the correctness of
the theoretical results established in this paper. In order to gain further insight intoGC,we also compareGC to
Pearson’s product moment correlation coefficient, Kendall’s tau, and Spearman’s rho by means of root mean
squared error. The newly explored theoretical and simulational findings not only deepen the understanding
of the rather new GC, but also shed new light on the topic of correlation theory, which is widely applied in
statistical signal processing.

INDEX TERMS Contaminated Gaussian model (CGM), correlation coefficient, Gini correlation (GC),
Pearson’s product moment correlation coefficient (PPMCC).

I. INTRODUCTION
Correlation coefficients have been the most popular statistics
to quantify the strength of statistical relationship between
random variables (signals/images) in many sub-areas of sig-
nal/image processing [1]–[5]. Among a multitude of meth-
ods prevailing in the literature, Pearson’s product moment
correlation coefficient (PPMCC), Kendall’s tau (KT) and
Spearman’s rho (SR) are perhaps the most widely utilized [6].
PPMCC is appropriate mainly for quantifying linear asso-
ciations, while KT and SR are invariant under increasing
monotone transformations, thus often considered as robust
alternatives to PPMCC. Based on Cauchy-Schwarz inequal-
ity, Daniels proposed a generalized correlation coefficient
which embraces PPMCC, KT and SR as particular cases [7].
Besides these three conventional coefficients, other corre-
lation coefficients based on order statistics have also been
proposed, such as Gini correlation (GC) [8] and order
statistics correlation coefficient (OSCC) [9]–[11]. Recently,
Xu et al. have shown that OSCC, GC and SR can be
linked together by another generalized correlation coefficient
under various combinations of variates and ranks in its
definition [12].

It is well known that PPMCC is an optimal estimator of
the population correlation coefficient in the sense of unbi-
asedness and approaching the Cramer-Rao lower bound for
large samples under bivariate normal model (BNM) [13].
On the other hand, GC, KT and SR are only suboptimal under
BNM. By deriving the exact bounds of asymptotic relative
efficiency (ARE) to PPMCC, Xu et al. have shown that GC
outperforms KT outperforms SR in terms of ARE under
BNM [12], [14]. Despite its optimality in BNM, empirical
evidences have shown that PPMCC performs poorly in the
following two scenarios [12], [15]:

1) the underlying data follows BNM, but one variable
is attenuated by some monotone nonlinearity in the
transfer characteristics of electronic devices [16]; and

2) the majority of the data follows BNM, but one variable
is corrupted by a tiny fraction of outliers with very large
variance (impulsive noise) [17]–[19].

These two scenarios are frequently encountered in radar and
communication when measuring the intensity of association
between a prescribed ‘‘clean’’ signal and a distorted version
probably attenuated by the presence of receiver nonlinearity
and/or environmental impulsive noise [20].
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To account for these scenarios, one might stick to the
conventional strategy, that is, ranking the cardinal variable(s)
and employing afterwards the rank-based SR or KT, which
are robust against both nonlinearity and impulsive noise [14].
However, using only ranks of the two variables, we unavoid-
ably lose information embedded in the variates of the clean
variable [8]. A better strategy would be to resort to GC [8],
which makes full use of ordinal and cardinal informa-
tion jointly provided by the two variables. Being invariant
under monotone nonlinear transforms [8] andmathematically
tractable under BNM [12], [28], GC has been shown to be an
appropriate choice in Scenario 1 mentioned above [12], [15].
Now the question is, under a reasonable model emulating
Scenario 2, does GC still possess mathematical tractability
and a performance higher than KT and SR as in BNM and
hence Scenario 1? Our purpose in this work is thus to answer
this question, in both theoretical and empirical manners.

The organization of the rest part is arranged as follows.
Section II lays the foundation of this work by present-
ing the definition of GC, a particular type of contaminated
Gaussian model (CGM) that simulates Scenario 2, and two
auxiliary lemmas which are mandatory for further theoretical
developments. Section III derives the asymptotic closed form
formulas concerning the mean and variance of GC under
the specified CGM. In Section IV we verify our theoretical
findings via Monte Carlo simulations. Finally, we conclude
this paper by summarizing and our main findings of Gini
correlation as well as the other three coefficients in Section V.

For convenience of following discussions, throughout we
employ symbols E(·), V(·), C(·, ·) and corr(·, ·) to denote
the mean, variance, covariance and correlation of (between)
random variables, respectively. Symbols of N (µ, σ 2) and
N (µ1, µ2, σ

2
1 , σ

2
2 , ρ) represent univariate and bivariate nor-

mal distributions, respectively. The sign' reads ‘‘is approxi-
mately equals to’’, whereas the sign , stands for ‘‘is defined
as’’. The notation u(t) = O(v(t)), t → L (might be infinite),
denotes that |u(t)/v(t)| remains bounded as t → L [21].
All other notation is to be defined where it first occurs.

II. DEFINITIONS AND AUXILIARY RESULTS
In this section, we first present the definition of GC in terms
of ranks and variates which, while equivalent to the original
version proposed in [8], is more convenient for later analyses
in this work. We then construct a particular type of CGM
which simulates Scenario 2 remarked in the previous section.
We also formulate two auxiliary lemmas based on which the
major results in Theorem 1 are established.

A. DEFINITION OF GC
Let {(Xi,Yi)}ni=1 denote n data pairs drawn from some contin-
uous bivariate population. Rearranging {Xi}ni=1 in ascending
order yields a new sequence of X(1)< · · ·<X(n), which is
termed the order statistics of X [22]–[24]. Suppose that Xj
is at the kth position in the sorted sequence {X(i)}ni=1, the
number k ∈ [1 n] is termed the rank of Xj and is denoted
by Pj. Similarly we can also define the rank of Yj which is

denoted by Qj. Then, as shown in [12], the Gini correlation
with respect to {(Xi,Yi)}ni=1 can be defined as

rG(Y ,X ) ,

1
n(n−1)

n∑
i=1

(2Pi − 1− n)Yi

1
n(n−1)

n∑
i=1

(2Qi − 1− n)Yi

. (1)

Swapping X and Y as well as P and Q in (1) gives the other
version of rG(X ,Y ). In general rG(X ,Y ) 6= rG(Y ,X ). The
choice between rG(X ,Y ) and rG(Y ,X ) depends on different
roles played by X and Y in Scenario 2.

B. CONTAMINATED GAUSSIAN MODEL
To simulate Scenario 2 mentioned in Section I, throughout
this work we set the pdf of X and Y as follow CGM [25]

(1− ε)N (µx , µy, σ 2
x , σ

2
y , ρ)+ εN (µx , µy, σ ′2x , σ

′2
y , ρ

′)

(2)

where 0 < ε � 1, σ ′y = σy and σ ′x → ∞. By such setup,
the marginal distribution of Y isN (µy, σ 2

y ), representing the
impulsive-noise-free (clean) variable; whereas the marginal
distribution of X is (1 − ε)N (µx , σ 2

x ) + εN (µx , σ ′2x ), emu-
lating a normal variable corrupted with a tiny fraction ε of
impulsive noise whose variance σ ′x is very large (→ ∞).
Under this configuration, the parameter ρ is of interest we
seek to estimate, while the parameter ρ′ is considered the
undesirable interference. Our purpose throughout is then to
investigate the influnce of both ε and ρ′ on the performances
of GC, KT, SR and PPMCC when estimating the value of ρ.

C. AUXILIARY RESULTS
Lemma 1: Let [W1 W2 W3 W4]ᵀ be a quadrivariate nor-

mal random vector with E(Wr ) = 0, V(Wr ) = σ 2
r , and

corr(Wr ,Ws) = %rs for r, s = 1, . . . , 4. Write H (t) = 1
for t > 0 and H (t) = 0 for t ≤ 0. Then

I , E {H (W1)H (W2)W3W4}

=
1
2π

σ3σ4√
1− %212

× [%13%24 + %14%23 − %12(%13%14 + %23%24)]

+ σ3σ4%34

(
1
4
+

sin−1 %12
2π

)
(3)

K , E {H (W1)W2W3} =
σ2σ3%23

2
(4)

and

L , E {H (W1)W2} =
σ2%12
√
2π

. (5)

Proof: See Appendix I.
Lemma 2: Let {[ξ1i ξ

2
i ξ

3
i ξ

4
i ]

ᵀ
}
n1
i=1 be n1 i.i.d. quadruples

drawn from a quadrivariate normal population N (000,666) with
000 , [0 0 0 0]ᵀ, 666 , (ςrςsηrs)4×4, ς2r , V(ξ ri ) and ηrs ,
corr(ξ ri , ξ

s
i ) for r, s = 1, . . . , 4. Let {[ζ 1j ζ

2
j ζ

3
j ζ

4
j ]

ᵀ
}
n2
j=1 be

n2 i.i.d. quadruples drawn from another quadrivariate normal
population N (000,666′) with 666′ , (ς ′rς

′
sη
′
rs)4×4, ς

′2
r , V(ζ ri )
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and η′rs , corr(ζ ri , ζ
s
i ) for r, s = 1, . . . , 4. Assume that

the ξ - and ζ -vectors are mutually independent. Let n =
n1 + n2. Denote by {[Z1

k Z2
k Z3

k Z4
k ]

ᵀ
}
n
k=1 the union of

{[ξ1i ξ
2
i ξ

3
i ξ

4
i ]

ᵀ
}
n1
i=1 and {[ζ

1
j ζ

2
j ζ

3
j ζ

4
j ]

ᵀ
}
n2
j=1. Let Z̃

r
k denote

respectively the ranks of Z rk , k = 1, . . . , n, for r = 1, . . . , 4.
Write n[m] , n(n− 1) · · · (n−m+ 1) and λp , ς2p + ς

′2
p for

p = 1, 2. Define

U ,
1

n(n− 1)

n∑
k=1

(2Z̃1
k − 1− n)Z3

k (6)

and

V ,
1

n(n− 1)

n∑
k=1

(2Z̃2
k − 1− n)Z4

k . (7)

Then

E(U ) =
1
√
π

2
n[2]

(
n[2]1

ς3η13

2
+ n1n2

ς1ς3η13
√
2λ1

+ n1n2
ς ′1ς
′

3η
′

13
√
2λ1

+ n[2]2
ς ′3η
′

13

2

)
(8)

E(V ) =
1
√
π

2
n[2]

(
n[2]1

ς4η24

2
+ n1n2

ς2ς4η24
√
2λ2

+ n1n2
ς ′2ς
′

4η
′

24
√
2λ2

+ n[2]2
ς ′2η
′

24

2

)
(9)

and

C(U ,V ) =
4A− 2(n− 1)B+ (n− 1)2C − D

n2(n− 1)2
(10)

where

D = n2(n− 1)2E(U )E(V ) (11)

C = n1ς3ς4η34 + n2ς ′3ς
′

4η
′

34 (12)

B = (n− 1)
(
n1ς3ς4η34 + n2ς ′3ς

′

4η
′

34
)

(13)

A =
28∑
`=1

[α`(n1, n2)I`(ς, ς ′, η, η′)

+α`(n2, n1)I`(ς ′, ς, η′, η)] (14)

with α` being the number of terms (the third column) in
Table 3, I` the quantities obtained upon substitution into (3)
of variances and correlation coefficients with respect to
[W1 W2 W3 W4]ᵀ listed in Table 3.

Proof: See Appendix II.

III. ASYMPTOTIC MEAN AND VARIANCE OF GC IN
CONTAMINATED GAUSSIAN MODEL
This section is devoted to derivations of the expectation and
variance of GC for samples generated by CGM (2). For
notational compactness, the argument of rG(Y ,X ) will be
dropped in the sequel unless ambiguity happens.
Theorem 1: Let {(Xi,Yi)}ni=1 be a union of {(Xj,Yj)}n1j=1

and {(X ′j′ ,Y
′

j′ )}
n2
j′=1, the former being n1 i.i.d. data pairs fol-

lowing N (µx , µy, σ 2
x , σ

2
y , ρ), and the latter being n2 i.i.d.

data pairs following N (µx , µy, σ ′2x , σ
′2
y , ρ

′). Assume that

(X ,Y) and (X ′,Y ′) are independent with each other. Assume
also that σ ′x → ∞. Denote by ε the ratio of n2/n. Then,
for large n and small ε, the expectation and variance of GC
defined in (1) with respect to {(Xi,Yi)}ni=1 are, respectively,

E(rG) ' (1− 2ε)

×

{
ρ +

1
n

[(π
3
+2
√
3
)
ρ−2

(
sin−1

ρ

2
+ ρ

√
4−ρ2

)]}
+
√
2ε

×

{
ρ′ +

1
n

[(π
3
+ 2
√
3− 2

)
ρ′

−
√
2
(
sin−1

ρ′
√
2
+ ρ′

√
2− ρ′2

)]}
(15)

and

V(rG)

'
1
n

[
π

3
+

(π
3
+ 4
√
3
)
ρ2 − 4ρ sin−1

ρ

2
− 4ρ2

√
4− ρ2

]
+
ε

n

[
16ρ2

√
4− ρ2 + 16ρ sin−1

ρ

2

−

(
4π
3
+ 4+ 14

√
3
)
ρ2
]

−
4
n
ε

(
ρ sin−1

ρ′
√
2
+
√
2ρ′ sin−1

ρ

2
+
ρ′2

2

)
+

2
√
2

n
ερρ′

(
π

3
+ 2
√
3+ 2− 2

√
4−ρ2 −

√
4−2ρ′2

)
.

(16)
Proof: Since rG is shift invariant [8], we loss no general-

ity by assumingµx = µy = 0 hereafter. Denote byU0 and V0
the numerator and denominator of (1), respectively. Then, by
the well known delta method [26], it follows that

E(rG) '
E(U0)
E(V0)

[
1+

V(V0)
E2(V0)

−
C(U0,V0)
E(U0)E(V0)

]
(17)

and

V(rG) '
E2(U0)
E2(V0)

[
V(U0)
E2(U0)

+
V(V0)
E2(V0)

−
2C(U0,V0)
E(U0)E(V0)

]
.

(18)

To work out (17) and (18), it suffices to find E(U0), E(V0),
V(U0), V(V0) and C(U0,V0). It is easy to verify that U0 and
V0 are two particular cases with ξ - and ζ -terms of

U :

{
[ξ1 ξ2 ξ3 ξ4]ᵀ = [X Y Y Y ]ᵀ

[ζ 1 ζ 2 ζ 3 ζ 4]ᵀ = [X ′ Y ′ Y ′ Y ′]ᵀ

and

V :

{
[ξ1 ξ2 ξ3 ξ4]ᵀ = [Y Y Y Y ]ᵀ

[ζ 1 ζ 2 ζ 3 ζ 4]ᵀ = [Y ′ Y ′ Y ′ Y ′]ᵀ

in Lemma 2, respectively. Substituting the associated vari-
ance and correlation coefficient terms{
U0 : ς1 = σx , ς2 = ς3 = ς4 = σy, η13 = ρ , η24 = 1
V0 : ς ′1 = σ

′
x , ς
′

2 = ς
′

3 = ς
′

4 = σ
′
y, η
′

13 = ρ
′, η′24 = 1
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into (8) and (9) yields

E(U0) =
1
√
π

2
n[2]

[
n[2]1 σyρ

2
+
n[2]2 σ

′
yρ
′

2

+
n1n2σxσyρ√
2(σ 2

x + σ
′2
x )
+

n1n2σ ′xσ
′
yρ
′√

2(σ 2
x + σ

′2
x )

]
and

E(V0) =
1
√
π

2
n[2]

[
n[2]1 σy

2
+
n[2]2 σ

′
y

2

+
n1n2σ 2

y√
2(σ 2

y + σ
′2
y )
+

n1n2σ ′2y√
2(σ 2

y + σ
′2
y )

]
which degenerate respectively to

E(U0) =
σy
√
π

2
n[2]

(
n[2]1 ρ

2
+
n1n2ρ′
√
2
+
n[2]2 ρ

′

2

)
(19)

and

E(V0) =
σy
√
π

(20)

by letting σy = σ ′y and σ
′
x →∞.

Now we proceed to carrying out the second moments.
Write Z1

= Z2
= X and Z3

= Z4
= Y .

Then V(U0) = C(U0,U0) becomes a particular case of
C(U ,V ) in Lemma 2 with

U and V :

{
[ξ1 ξ2 ξ3 ξ4]ᵀ = [X X Y Y ]ᵀ

[ζ 1 ζ 2 ζ 3 ζ 4]ᵀ = [X ′ X ′ Y ′ Y ′]ᵀ

where the associated variance and correlation coefficient
terms are

ς1 = ς2 = σx , ς3 = ς4 = σy
ς ′1 = ς

′

2 = σ
′
x , ς ′3 = ς

′

4 = σ
′
y

η12 = η34 = 1, η13 = η14 = η23 = η24 = ρ

η′12 = η
′

34 = 1, η′13 = η
′

14 = η
′

23 = η
′

24 = ρ
′.

Substituting these parameters into (10) and letting σy = σ ′y
and σ ′x →∞ thereafter, we have

V(U0) =
σ 2
y

n2(n− 1)2

{
n(n2 − 1)

3

+
2ρ2

π

[√
3n[3]1 − n

[2]
1 (2n1 − 3)

]
+

2ρ′2

π

[√
3n[3]2 − 2

√
2n1n

[2]
2

− n2
(
n21 − 2n1n2 + 2n22 + 2n1 − 5n2 + 3

) ]}
.

(21)

FIGURE 1. Verification of (15) concerning E(rG) in Theorem 1 for n = 100. From top to bottom, each row corresponds to a different
ρ′ ∈ {−1,0,1}, respectively; whereas from left to right, each column corresponds to a different ε ∈ {0.02,0.04,0.06,0.08}, respectively.
Good agreements are observed between simulation results (circles) and corresponding theoretical counterparts (solid lines). For
comparison, the contamination-free version (25) is also included in each subplot (see dashed curves).
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FIGURE 2. Verification of (16) concerning V(rG) in Theorem 1 for n = 100. From top to bottom, each row corresponds to a different
ρ′ ∈ {−1,0,1}, respectively; whereas from left to right, each column corresponds to a different ε ∈ {0.02,0.04,0.06,0.08}, respectively. For a
better visual effect, all variances are scaled up by a factor of n. Good agreements are observed between simulation results (circles) and
theoretical counterparts (solid lines). For comparison, the contamination-free version (26) is also included in each subplot (see dashed curves).

In a similar way we also obtain

V(V0) =
σ 2
y

n[2]

[
n+ 1
3
+

2(n− 2)
√
3

π
−

2(2n− 3)
π

]
(22)

as well as

C(U0,V0) =

∑9
k=1 Ck

n2(n− 1)2
(23)

where

C1 =
2σ 2

y

π
n[2]1

[
ρ

√
1− ρ2 + sin−1 ρ

]

C2 =
2σ 2

y

π
n[2]1 (n− 2)

[
ρ

√
4− ρ2 + sin−1

ρ

2

]

C3 = −
2σ 2

y

π
n[2]1 (2n− 3)ρ

C4 =
2σ 2

y

π
n[2]2

(
ρ′
√
1− ρ′2 + sin−1 ρ′

)

C5 =
2σ 2

y

π
n[2]2 (n− 2)

(
ρ′
√
4− ρ′2 + sin−1

ρ′

2

)

C6 = −
2σ 2

y

π
n[2]2 (2n− 3)ρ′

C7 = −
2
√
2σ 2

y

π
n1n2(n− 1)ρ′

C8 =
2σ 2

y

π
n1n2(n− 1)ρ′

√
2− ρ′2

C9 =
2σ 2

y

π
nn1n2 sin−1

ρ′
√
2
.

Substituting (19)–(23) alongwith ε = n2/n into (17) and (18),
tidying up, and omitting O(n−2) and O(ε2) terms thereafter,
we finally arrive at (15) and (16), respectively. Hence the
theorem holds true.
Remark 1: Letting n → ∞ in (15), E(rG) simplifies to a

neater form of

E(rG) = (1− 2ε)ρ +
√
2ερ′. (24)

Moreover, as ε→ 0, (15) and (16) reduce respectively to

E(rG) ' ρ+
1
n

[(π
3
+ 2
√
3
)
ρ−2

(
ρ

√
4− ρ2 + sin−1

ρ

2

)]
(25)
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TABLE 1. RMSE of four estimators for n = 100, ε = {0.02,0.04,0.06,0.08} and ρ′ = {−1,0}.

and

V(rG) '
1
n

[π
3
+

(π
3
+ 4
√
3
)
ρ2

− 4ρ sin−1
ρ

2
− 4ρ2

√
4− ρ2

]
(26)

which are consistent with the contamination-free versions
that have been established in our previous work [12]
((36) and (37) therein).

IV. NUMERICAL RESULTS
In this section we verify the theoretical results established
in Theorem 1 and compare the performances among four
correlation coefficients byMonte Carlo simulations. Since all
analytical results are derived under the assumptions of large n
and small ε, we choose the sample size n = 100 and contam-
ination fractions 0.02 ≤ ε ≤ 0.1 in the following numerical

study. The majority of the samples {(Xi,Yi)}n1i=1 are drawn
fromN (0, 0, 1, 1, ρ); whereas the minority of contaminating
samples {(X ′i ,Y

′
i )}

n2
i=1 are drawn fromN (0, 0, 108, 1, ρ′). All

bivariate normal samples are generated by the function of
mvnrnd in Matlab environment. For reason of accuracy, the
number of Monte Carlo trials is set to be 105.

A. VERIFICATION OF E(rG) AND V(rG) IN THEOREM 1
Fig. 1 illustrates the simulation results (circles) superimpos-
ing on solid theoretical curves with respect to (15) under
various circumstances. From top to bottom, each row corre-
sponds to a different ρ′ ∈ {−1, 0, 1}, respectively; whereas
from left to right, each column corresponds to a different
ε ∈ {0.02, 0.04, 0.06, 0.08}, respectively. Good agreements
are observed between observed values and corresponding
theoretical curves. Moreover, we can also observe that both
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ε and ρ′ contribute to the bias effect between E(rG) and the
ideal case (ε = 0; dashed lines) governed by (25).
Fig. 2 contains diagrams of the theoretical results (16)

(solid lines) superimposed on simulation results (circles)
in the same scenarios as in Fig. 1. For comparison, the
contamination-free version (26) is also included in each sub-
plot (dashed curves). For a better visual effect, all variances
are scaled up by a factor of n. Again, good agreements
are observed between simulation results and corresponding
theoretical counterparts. It is also observed that, 1) for |ρ|
large, V(rG) increases if ρ and ρ′ have opposite signs; and it
decreases if ρ and ρ′ have the same signs, 2) ε increasesV(rG)
for |ρ| large, and 3) V(rG)|ρ′<0 is the reversal of V(rG)|ρ′>0
when ε is fixed.

B. COMPARISON OF RMSE AMONG FOUR ESTIMATORS
In order to gain further insight into GC, we make a compari-
son among GC, PPMCC(ρP), KT(ρK ) and SR(ρS ) by means
of root mean squared error (RMSE). For a fair comparison,
some transformations of KT and SR are necessary. From [14],
when samples are drawn from CGM, ε → 0 and n → ∞,
it follows:

lim
ε→0
n→∞

E(rK ) =
2
π
sin−1 ρ (27)

lim
ε→0
n→∞

E(rS ) =
6
π
sin−1

ρ

2
. (28)

Inverting these two equations yields two asymptotic unbiased
estimators of ρ

ρ̂K , sin
(π
2
rK
)

ρ̂S , 2 sin
(π
6
rS
)

which are termed Fisher consistent versions of KT and SR
under the ‘‘pure’’ bivariate normal models (for ε = 0). Since
when ε = 0, both limn→∞ E(rG) = ρ and limn→∞ E(rP) =
ρ hold true, their Fisher consistent versions are then defined
to be ρ̂P , rP and ρ̂G , rG, respectively. Based on these
four unbiased estimators of ρ, we proceed to comparing their
performances in the following. As customary in statistical
signal processing, the RMSE, defined as

RMSE ,
√
E(ρ̂ − ρ)2

is chosen as our figure of merit in performance comparison.
Table 1 lists the RMSEs with respect to ρ̂G, ρ̂S , ρ̂K and ρ̂P

for n = 100, ε ∈ {0.02, 0.04, 0.06, 0.08} and ρ′ ∈ {−1, 0},
respectively. Due to symmetry as well as space constraint,
the RMSE values for ρ′ = 1 are not shown here. Within
each of the eight blocks, the minima of RMSE with respect
to ρ̂G, ρ̂S , ρ̂K and ρ̂P are highlighted with gray areas in a
rowwisemanner. It appears that 1) the conventional ρ̂P, which
has maximal RMSE in most cases, performs far more worst
than the other three estimators, 2) except for some rare cases,
ρ̂G outperforms ρ̂K when |ρ| is of small to medium mag-
nitudes, 3) ρ̂K outperforms ρ̂G when |ρ| falls around the

neighborhood of 1, and 4) ρ̂S plays an intermediate role
between ρ̂G and ρ̂K , which is manefested by the phenomenon
that its RMSE lies always in between those of ρ̂G and ρ̂K
in Table 1.

V. CONCLUDING REMARKS
In this paper, we have derived the asymptotic closed form for-
mulas (Theorem 1) concerning the expectation and variance
of GC under the specified CGM of (2). This model simulates
reasonably the frequently encountered Scenario 2 in radar and
communication, where one variable is clean and the other
corrupted by a tiny fraction of impulsive noise with very large
variance [20]. Theoretical calculations and simulation results
suggest that Gini correlation exhibits robust behaviors under
the scenario where one channel contains impulsive noise. The
mathematical tractability and empirical findings revealed in
this work not only deepen the understanding of the rather
new Gini correlation, but also shed new light on the topic of
correlation analysis, which is widely applied in the area of
statistical statistical processing.

APPENDIX I
PROOF OF LEMMA 1

Proof: The first two statements (3) and (4) follow
readily from [12]. By the definition of L, it follows that

L =
∞∫
0

dw1

∞∫
−∞

w2φ(w1,w2; %12)dw2 (29)

with

φ =
1

2πσ1σ2

1√
1− %212

× exp

{
−1

2(1− %212)

[
w2
1

σ 2
1

−
2%12w1w2

σ1σ2
+
w2
2

σ 2
2

]}
(30)

being the pdf of the bivariate normal random vector [W1 W2]ᵀ

with mean [0 0]ᵀ. Differentiating both side of (29) with
respect to %12 yields

dL
d%12

= σ1σ2

∞∫
0

dw1

∞∫
−∞

w2
∂

∂w2

(
∂φ

∂w1

)
dw2

= σ1σ2

∞∫
0

dw1

[
w2

∂φ

∂w1

∣∣∣∣∞
−∞︸ ︷︷ ︸

=0

−

∞∫
−∞

∂φ

∂w1
dw2

]

= −σ1σ2

∞∫
−∞

dw2

∞∫
0

∂φ

∂w1
dw1

= −σ1σ2

∞∫
−∞

dw2

[
φ

∣∣∣∞
0

]

= σ1σ2

∞∫
−∞

φ(0,w2; %12)dw2. (31)
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where the first step follows from the well known relationship

dφ
d%12

= σ1σ2
∂2φ

∂w1∂w2
.

From (30) it follows that

φ(0,w2; %12) =
1

2πσ1σ2

1√
1− %212

exp

{
−

1

2(1−%212)

w2
2

σ 2
2

}
.

(32)

A substitution of (32) into (31) gives dL/d%12 = σ2/
√
2π ,

and henceL = σ2%12/
√
2π+const., where the constant term

is null by noticing that E{H (W1)W2} = 0 for %12 = 0. This
completes the proof of (5).

APPENDIX II
SKETCH PROOF OF LEMMA 2

Proof: Due to space limitation, we only provide a sketch
of the proof here. We first derive E(U ) and E(V ). From
definition (6),

E(U ) =
1
n[2]

E

{
n∑
i=1

(2Z̃1
i − 1− n)Z3

i

}
. (33)

Substituting Z̃i =
∑n

k=1 H (Zi − Zk ) + 1 [27] into (33),
expanding and recalling that E(Z ) = 0, it follows that

E(U ) =
2
n[2]

n∑
i=1

n∑
k=1

E
{
H (Z1

i − Z
1
k )Z

3
i

}
. (34)

Since, by definition, {[Z1
k Z

2
k Z

3
k Z

4
k ]

ᵀ
}
n
k=1 is a mixture of

{[ξ1i ξ
2
i ξ

3
i ξ

4
i ]

ᵀ
}
n1
i=1 and {[ζ 1j ζ

2
j ζ

3
j ζ

4
j ]

ᵀ
}
n2
j=1, (34) can be

written as

E(U ) =
2
n[2]

n∑
i=1

n∑
k=1

E
{
H (ξ1i − ξ

1
k )ξ

3
i

}
+

2
n[2]

n1∑
i=1

n2∑
k ′=1

E
{
H (ξ1i − ζ

1
k ′ )ξ

3
i

}
+

2
n[2]

n2∑
i′=1

n1∑
k=1

E
{
H (ζ 1i′ − ξ

1
k )ζ

3
i′

}
+

2
n[2]

n2∑
i′=1

n2∑
k ′=1

E
{
H (ζ 1i′ − ζ

1
k ′ )ζ

3
i′

}
(35)

which becomes the first lemma statement (8) after some
straightforward algebra along with the assistance of (5) in
Lemma 1. In a similar manner we also have the second lemma
statement (9) for E(V ).
Next we deal with C(U ,V ). It follows from [12] that

C(U ,V ) =
4A− 2(n− 1)B+ (n− 1)2C − D

n2(n− 1)2
(36)

where

D = n2(n− 1)2E(U )E(V ) (37)

C =
n∑
i,j

E(Z3
i Z

4
j ) (38)

B =
n∑

i,j,k

E
{
H (Z1

i − Z
1
k )Z

3
i Z

4
j

}
+

n∑
i,j,l

E
{
H (Z2

j − Z
2
l )Z

3
i Z

4
j

}
(39)

and

A =
n∑

i,j,k,l

E
{
H (Z1

i − Z
1
k )H (Z2

j − Z
2
l )Z

3
i Z

4
j

}
. (40)

The expression of D is easily obtained by substituting
(8) and (9) into (37).

For convenience, denote by B1 and B2 the two triple sum-
mations of B in (39). Then it follows that B1 is decomposable
into eight sub-triple summations which can be further parti-
tioned into 16 disjoint and exhaustive subsets that listed in
Table 2. An application of (13) to Table 2 leads directly to

B1 = n[2]1
η34ς3ς4

2
+ n1n2

η34ς3ς4

2

+ n1n2
η′34ς

′

3ς
′

4

2
+ n[2]2

η′34ς
′

3ς
′

4

2
.

Similarly we also have

B2 = n[2]1
η34ς3ς4

2
+ n1n2

η34ς3ς4

2

+ n1n2
η′34ς

′

3ς
′

4

2
+ n[2]2

η′34ς
′

3ς
′

4

2
.

Thus

B = B1 + B2 = (n− 1)(n1η34ς3ς4 + n2η′34ς
′

3ς
′

4)

which is the result of (13).

TABLE 2. Quantities for evaluation of B1 in Lemma 2.
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TABLE 3. Quantities for evaluating A =
∑n

i,j,k,l E{H(Z1
i − Z1

k )H(Z2
j − Z2

l )Z3
i Z4

j } in Lemma 2.

By (38), it follows that

C =
n∑
i=1

n∑
j=1

E(Z3
i Z

4
j )

=

n1∑
i=1

n1∑
j=1

E(ξ3i ξ
4
j )+

n1∑
i=1

n2∑
j′=1

E(ξ3i ζ
4
j′ )

+

n2∑
i′=1

n1∑
j=1

E(ζ 3i′ ξ
4
j )+

n2∑
i′=1

n2∑
j′=1

E(ζ 3i′ ζ
4
j′ )

which simplifies to the statement of (12) after some elemen-
tary derivations.

The quadruple summation in (40) can be decomposed as

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

=

( n1∑
i=1

+

n2∑
i′=1

) n1∑
j=1

+

n2∑
j′=1


×

( n1∑
k=1

+

n2∑
k ′=1

)( n1∑
l=1

+

n2∑
l′=1

)
(41)

where, in the right side, (i j k l) and (i′ j′ k ′ l ′) are
suffixes corresponding to ξ - and ζ -terms, respectively. This
means that A contains 16 sub-quadruple summations which
can be further partitioned into 56 disjoint and exhaustive
subsets. In other words, A is a summation of 56 integrals of
the form E{H (W1)H (W2)W3W4}, i.e., the I`-terms, weighted
by corresponding subset cardinality, i.e., the α`-terms. The
statement (14) thus follows by substituting into (3) the corre-
sponding parameters tabulated in Table 3 as well as exploiting
the symmetry of (41).
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